Добірка наукової літератури з теми "Copper ores"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Copper ores".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Статті в журналах з теми "Copper ores"
Kenzhaliyev, Bagdaulet, Aigul Koizhanova, Tatiana Chepushtanova, Arailym Mukangaliyeva, and David Magomedov. "INNOVATIVE METHODS FOR PROCESSING COPPER ORES IN KAZAKHSTAN: A COMPREHENSIVE APPROACH TO ENHANCING THE EFFICIENCY OF VALUABLE COMPONENT EXTRACTION." SERIES CHEMISTRY AND TECHNOLOGY, no. 3 (October 1, 2024): 124–36. http://dx.doi.org/10.32014/2024.2518-1491.241.
Повний текст джерелаTran, Hien Thi, and Phong Duc Pham. "Research and complete the processing technology of Son La oxide copper ores for the Tay Bac Minerals Joint Stock Company." Journal of Mining and Earth Sciences 62, no. 3b (July 20, 2021): 22–29. http://dx.doi.org/10.46326/jmes.2021.62(3b).03.
Повний текст джерелаI., Blinov, and Vinogradov N. "Mineral Composition of Ores Used at Ustye-I, a Fortified Settlement of the Bronze Age (Chelyabinsk Region)." Teoriya i praktika arkheologicheskikh issledovaniy 33, no. 4 (December 2021): 166–84. http://dx.doi.org/10.14258/tpai(2021)33(4).-10.
Повний текст джерелаFatyanov, А., and S. Scheglova. "OPTIMIZATION OF THE PROCESSING TECHNOLOGY OF COPPER ORES OF THE UDOKAN DEPOSIT." Transbaikal State University Journal 27, no. 7 (2021): 33–40. http://dx.doi.org/10.21209/2227-9245-2021-27-7-33-40.
Повний текст джерелаZalesov, M. V., V. A. Grigoreva, V. S. Trubilov, and A. Ya Boduen. "Designing of engineering solutions to enhance efficiency of high-copper gold-bearing ore processing." Mining Industry Journal (Gornay Promishlennost), no. 5/2021 (November 12, 2021): 51–56. http://dx.doi.org/10.30686/1609-9192-2021-5-51-56.
Повний текст джерелаChen, Bo Wei, Jian Kang Wen, and Guo Cheng Yao. "Acidophiles and its Use in Mineral Biomining with Emphasis on China." Advanced Materials Research 926-930 (May 2014): 4201–4. http://dx.doi.org/10.4028/www.scientific.net/amr.926-930.4201.
Повний текст джерелаNeira, Andrés, Diana Pizarro, Víctor Quezada, and Lilian Velásquez-Yévenes. "Pretreatment of Copper Sulphide Ores Prior to Heap Leaching: A Review." Metals 11, no. 7 (July 2, 2021): 1067. http://dx.doi.org/10.3390/met11071067.
Повний текст джерелаTop, J. L., J. N. M. Agricola, and A. F. Fort. "Concentration of Cupriferous Micas by Hgms." Magnetic Separation News 2, no. 3 (January 1, 1988): 145–51. http://dx.doi.org/10.1155/1988/45689.
Повний текст джерелаZvereva, N., V. Myazin, and I. Kostromina. "Technological possibility of increasing the complexity of the use of gold-bearing polymetallic ores of the Novo-Shirokinsky deposit." TRANSBAIKAL STATE UNIVERSITY JOURNAL 28, no. 6 (2022): 6–14. http://dx.doi.org/10.21209/2227-9245-2022-28-6-6-14.
Повний текст джерелаSanwani, Edy, Riria Zendy Mirahati, and Siti Khodijah Chaerun. "Recovery of Copper from Pyritic Copper Ores Using a Biosurfactant-Producing Mixotrophic Bacterium as Bioflotation Reagent." Solid State Phenomena 262 (August 2017): 181–84. http://dx.doi.org/10.4028/www.scientific.net/ssp.262.181.
Повний текст джерелаДисертації з теми "Copper ores"
Seifelnassr, A. A. S. "Bacterial aided percolation leaching of copper sulphide ores." Thesis, Bucks New University, 1988. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.234445.
Повний текст джерелаGroenewald, Nico Albert. "Measuring the dielectric properties of crushed copper ore." Thesis, Stellenbosch : University of Stellenbosch, 2010. http://hdl.handle.net/10019.1/5230.
Повний текст джерелаENGLISH ABSTRACT: Previous work has shown that microwave heating of mineral ores induces micro cracks within the ore structure, which can be attributed to the difference in the adsorption of microwaves amongst the different mineral phases. This reduces the energy required during subsequent grinding and enhances the liberation of valuable minerals. In order to design microwave applicators for this purpose, knowledge of the effective dielectric properties of the crushed ore is required. Of particular interest is the effective complex permittivity of the bulk crushed ore. The measurement of the effective permittivity of a large volume of crushed ore is most readily accomplished using the waveguide measurement technique. In this method a representative sample of the material is placed in a defined and fixed volume in a standard size rectangular section metallic waveguide. The magnitude and phase angle of the transmitted and reflected low power microwaves through and from the sample are measured. The complex permittivity can be extracted from these so-called scattering, or Sij parameters. In this study the effective complex permittivities for two porphyry copper ores and a copper carbonatite ore were determined as a function of particle size distribution (-26.5+2mm) using two sizes of waveguide (WR284 and WR340). The sample holders incorporate dielectric windows for the location of the material under test. The extraction of dielectric properties from Sij parameter measurements is problematic using standard algorithms in such cases. Accordingly a new Database Extraction (DBE) Algorithm has been developed. In this method, a database of scattering parameters is established through electromagnetic modelling of the measurement system. A search algorithm is used to determine the effective complex permittivity of the modelled load whose scattering parameters provide the best fit to the experimental data. The goodness of the experimental fit of the simulated to the measured Sij parameters is determined by a root mean squared deviation minimisation metric. Results show that the method can be used successfully to determine an effective complex permittivity for a bulk volume of the crushed material. It is concluded that the dielectric property extraction over the full operational frequency interval (2.3-3 GHz) is preferred as it has a larger degree of extraction confidence and hence reliability. Results show that with increasing particle size, the experimental fit between the simulated and measured Sij parameters becomes increasingly poor, as wall effect become more prominent. The effect is most prominent for the smaller WR284 waveguide size. It is shown that for a waveguide size of similar size to the particle size, the Sij parameter fitting is poorer compared to when a larger waveguide size is used. The extracted complex permittivity reproducibility between repeated dielectric property measurements is improved for the WR340 waveguide size, as the extractions in the WR284 waveguide is dominated by the combined particle size and wall-effects of the sample holder. Ore mineralogy is identified as a key parameter that influences the dielectric properties of the crushed ore. For ores with a dominant microwave absorbent mineral phase, the dielectric constant and loss factor is found to be larger, compared with ores with a more dominant microwave transparent gangue mineral phase.
AFRIKAANSE OPSOMMING: Navorsing toon dat die verhitting van mineraal erts, met mikrogolwe, mikroskaal frakture in die mineraalstruktuur teweeg bring weens die verskil in die adsorpsie van mikrogolwe in die verskillende mineraalfases. Gevolglik verminder die energievereiste vir die vergruising van die erts en verbeter die vrystelling van waardevolle minerale wat vasgevang is in die mineraalmatriks. Vir die ontwerp van mikrogolfapplikators vir dié doel, word die effektiewe diëlektriese eienskappe van die vergruisde erts benodig. Van spesifieke belang is die effektiewe komplekse permittiwiteit van die erts. Die effektiewe permittiwiteit van `n vergruisde materiaal monster word met behulp van die golfgeleier tegniek gemeet. Vir dié tegniek word `n verteenwoordigende monster van die materiaal in `n rigiede volume in `n standaard grootte reghoekige golfgeleier geplaas. Die grootte en fasehoek komponente van die deurgelate en weerkaatste mikrogolwe deur en van die oppervlak van die materiaal word gemeet. Die komplekse permittiwiteit van die vergruisde materiaal kan geëkstrakteer word vanaf hierdie sogenaamde verspreide, of Sij parameters. In hierdie studie word die effektiewe permitiwiteit van twee porforie koper ertse en `n koper karbonatiet erts bepaal as funksie van partikel grootte (-26.5+2 mm) deur gebruik te maak van twee standaard grootte golfgeleiers. Die monster houers inkorporeer diëlektriese vensters om die vergruisde materiaal monster in posisie te hou. In so `n geval is die ekstraksie van die diëlektriese eienskappe vanuit die Sij parameter metings problematies. Gevolglik is ‘n nuwe Databasis Ekstraksie Algoritme ontwikkel wat `n databasis van verspreide parameters opstel deur die elektromagnetiese simulasie van die metingsisteem. `n Soek-algoritme word gebruik om die effektiewe komplekse permitiwiteit van die gesimuleerde monster te bepaal wat die beste ooreenstem met dié van die gemete eksperimentele Sij parameter data. Die mate van ooreenstemming tussen die parameters, word bepaal aan die hand van die minimaliserings prosedure. Resultate toon dat dié metode geskik is vir die bepaling van die effektiewe komplekse permitiwiteit van die vergruisde monster. Dit word vasgestel dat die betroubaarheid van die geëkstraeerde Sij parameters, en gevolglik die diëlektriese eienskappe van die erts, toeneem indien die algoritme oor `n groter frekwensie band uitgevoer word. Resultate toon verder dat met toenemende partikel grootte, die mate waartoe die absolute grootte en fasehoek komponente van die gesimuleerde en gemete Sij parameters ooreenstem, versleg. Dit word toegeskryf aan wand-effekte. Hierdie verskynsel is veral opmerklik vir die kleiner grootte golfgeleier. Dit word getoon dat vir metings waar die golfgeleier dieselfde orde grootte geometriese afmetings het as die vergruisde erts self, die passing tussen die gesimuleerde en gemete Sij parameters swakker is, wanneer dit vergelyk word met metings waar dit nie die geval is nie. Die reproduseerbaarheid van die geëkstraeerde diëlektriese eienskap waardes verbeter vir lesings wat uitgevoer word in `n groter grootte golfgeleier. Laasgenoemde word toegeskryf aan die meer dominante wand-effekte wat kenmerklik is vir `n kleiner golfgeleier. Erts mineralogie word geïdentifiseer as `n sleutel parameter wat die diëlektriese eienskappe van die vergruisde materiaal beïnvloed. Beide die diëlektriese konstante en verliesfaktor is groter vir ertse met `n oorheersende mikrogolf absorberende mineraalfase.
Gendall, Ian Richard. "The porphyry copper system and the precious metal-gold potential." Thesis, Rhodes University, 1994. http://hdl.handle.net/10962/d1005604.
Повний текст джерелаSainath, Narayana Rangaiah 1968. "Dynamic behavior of flow during leaching of copper ores." Thesis, The University of Arizona, 1991. http://hdl.handle.net/10150/291737.
Повний текст джерелаCrane, Martin John, University of Western Sydney, of Science Technology and Environment College, and of Science Food and Horticulture School. "Geochemical studies of selected base metal minerals from the supergene zone." THESIS_CSTE_SFH_Crane_M.xml, 2001. http://handle.uws.edu.au:8081/1959.7/232.
Повний текст джерелаDoctor of Philosophy (PhD)
Kamali, Mahtab. "Recovery of copper from low-grade ores by Aspergillus niger." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 2001. http://www.collectionscanada.ca/obj/s4/f2/dsk3/ftp05/MQ64055.pdf.
Повний текст джерелаLatorre, J. J. "Exploration for stratabound copper, lead and zinc deposits in the Damara-Katanga orogen, central-southern Africa." Thesis, Rhodes University, 1992. http://hdl.handle.net/10962/d1005558.
Повний текст джерелаJiang, Mofen. "The Chemical and kinetic mechanism for leaching of chrysocolla by sulfuric acid." Thesis, The University of Arizona, 1992. http://etd.library.arizona.edu/etd/GetFileServlet?file=file:///data1/pdf/etd/azu_e9791_1992_610_sip1_w.pdf&type=application/pdf.
Повний текст джерелаLégaré, Nathalie. "Les minéralisations de zinc-cuivre du secteur Frotet-Troilus, Chibougamau, Québec /." Thèse, Chicoutimi : Université du Québec à Chicoutimi, 2002. http://theses.uqac.ca.
Повний текст джерелаBarriga, Vilca Abrahan. "Studies on the curing and leaching kinetics of mixed copper ores." Thesis, University of British Columbia, 2013. http://hdl.handle.net/2429/44500.
Повний текст джерелаКниги з теми "Copper ores"
Blatov, I. A. Obogashchenie medno-nikelevykh rud. Moskva: Ruda i metally, 1998.
Знайти повний текст джерела1923-, Tooker Edwin Wilson, ed. Gold in porphyry copper systems. [Washington D.C.]: U.S. G.P.O., 1990.
Знайти повний текст джерелаC, Sweet Palmer, ed. Copper, lead, and zinc resources in Virginia. Charlottesville, Va: Commonwealth of Virginia, Dept. of Mines, Minerals, and Energy, Division of Mineral Resources, 1989.
Знайти повний текст джерелаLee, Andrew Walther. Evolution of the Rosario copper-molybdenum porphyry deposit and associated copper-silver vein system, Collahuasi District. Ann Arbor, MI: [UMI Dissertation Services, 1993.
Знайти повний текст джерелаNaboĭchenko, S. S. Avtoklavnai͡a︡ pererabotka medno-t͡s︡inkovykh i t͡s︡inkovykh kont͡s︡entratov. Moskva: "Metallurgii͡a︡", 1989.
Знайти повний текст джерелаIndia, Geological Survey of, ed. General information on copper-lead-zinc ores in India. [Calcutta]: Geological Survey of India, 1994.
Знайти повний текст джерелаLaverov, N. P. Medno-nikelevye mestorozhdenii︠a︡ Pechengi. Moskva: GEOS, 1999.
Знайти повний текст джерелаBelogub, E. V. Zona okislenii︠a︡ Zapadno-Ozernogo t︠s︡inkovo-mednokolchedannogo mestorozhdenii︠a︡ (I︠U︡zhnyĭ Ural) =: Supergene zone of the Zapadno-Ozernoye VHMS deposit (Southern Urals). Miass: In-tut mineralogii UrO RAN, 2006.
Знайти повний текст джерелаOrtega, Rustin Cabrera. Geología y regularidades de la distribución de los yacimientos de cobre y oro de la región mineral de Las Villas. La Habana: Instituto de Geología y Paleontología, Academia de Ciencias de Cuba, 1986.
Знайти повний текст джерелаMenzie, W. D. Grade and tonnage model of Porphyry Cu deposits in British Columbia, Canada, and Alaska, U.S.A. Reston, VA: U.S. Geological Survey, 1993.
Знайти повний текст джерелаЧастини книг з теми "Copper ores"
Szymanowski, Jan. "Processing of Copper Ores." In Hydroxyoximes and Copper Hydrometallurgy, 367–411. Boca Raton: Routledge, 2022. http://dx.doi.org/10.1201/9780203751336-21.
Повний текст джерелаMathur, Ryan, and Yun Zhao. "Copper Isotopes Used in Mineral Exploration." In Isotopes in Economic Geology, Metallogenesis and Exploration, 433–50. Cham: Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-031-27897-6_14.
Повний текст джерелаToro, L., C. Abbruzzese, F. Vegliò, and B. Paponetti. "Biometallurgy for Manganese and Copper Ores." In Advances in Fine Particles Processing, 441–51. Boston, MA: Springer US, 1990. http://dx.doi.org/10.1007/978-1-4684-7959-1_37.
Повний текст джерелаAvila-Salinas, W. "Origin of the Copper Ores at Corocoro, Bolivia." In Stratabound Ore Deposits in the Andes, 659–70. Berlin, Heidelberg: Springer Berlin Heidelberg, 1990. http://dx.doi.org/10.1007/978-3-642-88282-1_52.
Повний текст джерелаNorgate, Terry, Sharif Jahanshahi, and Nawshad Haque. "Rock Smelting of Copper Ores with Waste Heat Recovery." In REWAS 2013, 217–30. Cham: Springer International Publishing, 2013. http://dx.doi.org/10.1007/978-3-319-48763-2_23.
Повний текст джерелаNorgate, Terry, Sharif Jahanshahi, and Nawshad Haque. "Rock Smelting of Copper Ores with Waste Heat Recovery." In REWAS 2013, 217–30. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2013. http://dx.doi.org/10.1002/9781118679401.ch23.
Повний текст джерелаBascur, Osvaldo A., and Freddy Retamal. "Increasing Water Recovery to Maximize Copper Production with Low-Grade Ores." In Proceedings of the 62nd Conference of Metallurgists, COM 2023, 887–97. Cham: Springer Nature Switzerland, 2023. http://dx.doi.org/10.1007/978-3-031-38141-6_113.
Повний текст джерелаTerbish, Narangarav, Ankhchimeg Ganzorig, Dugar Davaajargal, and Battsengel Baatar. "Reprocessing of tailing from Erdenet copper ores: Optimization of the flotation." In Proceedings of the Second International Conference on Resources and Technology (RESAT 2023), 35–53. Dordrecht: Atlantis Press International BV, 2023. http://dx.doi.org/10.2991/978-94-6463-318-4_4.
Повний текст джерелаFrancois, Nicolas, Yulai Zhang, Richard Henley, Ron Cruikshank, Ajay Limaye, Michael Turner, Levi Beeching, Andrew Kingston, Mohammad Saadatfar, and Mark Knackstedt. "In Situ Microtomography of the Tensile Fracture and Fragmentation of Porphyry Copper Ores." In Album of Porous Media, 43. Cham: Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-031-23800-0_31.
Повний текст джерелаBocharov, V., V. Ignatkina, A. Kayumov, M. Viduetsky, and V. Maltsev. "Complex Processing of Refractory Pyrite Copper, Copper-Zinc and Polymetallic Ores on the Basis of Flotation and Combined Technologies." In Progress in Materials Science and Engineering, 89–96. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-75340-9_12.
Повний текст джерелаТези доповідей конференцій з теми "Copper ores"
"Bioleaching of sulfide copper-nickel ores." In Bioinformatics of Genome Regulation and Structure/Systems Biology (BGRS/SB-2022) :. Institute of Cytology and Genetics, the Siberian Branch of the Russian Academy of Sciences, 2022. http://dx.doi.org/10.18699/sbb-2022-294.
Повний текст джерелаШмакова, Александра. "Сharacterization of copper-nickel mineralization of metagabbroids (North Timan)". У Mineralogical and technological appraisal of new types of mineral products. Petrozavodsk: Karelian Research Center of RAS, 2019. http://dx.doi.org/10.17076/tm13_10.
Повний текст джерелаNakajima, Yasuharu, Joji Yamamoto, Shigeo Kanada, Sotaro Masanobu, Ichihiko Takahashi, Jun Sadaki, Ryosuke Abe, Katsunori Okaya, Seiji Matsuo, and Toyohisa Fujita. "Study on Seafloor Mineral Processing for Mining of Seafloor Massive Sulfides." In ASME 2012 31st International Conference on Ocean, Offshore and Arctic Engineering. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/omae2012-83354.
Повний текст джерелаNakajima, Yasuharu, Shotaro Uto, Shigeo Kanada, Joji Yamamoto, Ichihiko Takahashi, Sho Otabe, Jun Sadaki, Katsunori Okaya, Seiji Matsuo, and Toyohisa Fujita. "Concept of Seafloor Mineral Processing for Development of Seafloor Massive Sulfides." In ASME 2011 30th International Conference on Ocean, Offshore and Arctic Engineering. ASMEDC, 2011. http://dx.doi.org/10.1115/omae2011-49981.
Повний текст джерелаKostryukova, Anastasiya. "INFLUENCE OF COPPER-SULPHIDE ORES MINING AND PROCESSING ON ENVIRONMENT." In 17th International Multidisciplinary Scientific GeoConference SGEM2017. Stef92 Technology, 2017. http://dx.doi.org/10.5593/sgem2017/52/s20.069.
Повний текст джерелаBaibatsha, Adilkhan. "MINERALOGY OF COPPER-NIKEL ORES IN ULYTAU ZONE (CENTRAL KAZAKHSTAN)." In 15th International Multidisciplinary Scientific GeoConference SGEM2015. Stef92 Technology, 2011. http://dx.doi.org/10.5593/sgem2015/b11/s1.039.
Повний текст джерелаYefimenko, S. A. "Monitoring of the Extraction of Copper Ores in Kazakhmys LLC." In 1st EAGE International Geosciences Conference on Kazakhstan. European Association of Geoscientists & Engineers, 2010. http://dx.doi.org/10.3997/2214-4609.20145718.
Повний текст джерелаNakajima, Yasuharu, Joji Yamamoto, Tomoko Takahashi, Blair Thornton, Yuta Yamabe, Gjergj Dodbiba, and Toyohisa Fujita. "Development of Elemental Technologies for Seafloor Mineral Processing of Seafloor Massive Sulfides." In ASME 2019 38th International Conference on Ocean, Offshore and Arctic Engineering. American Society of Mechanical Engineers, 2019. http://dx.doi.org/10.1115/omae2019-96040.
Повний текст джерелаBaibatsha, Adilkhan, Alma Bekbotayeva, Maxat Kembayev, Yerkhozha Mamanov, and Zakira Baibatchayeva. "MINERALOGY AND PROCESSING OF ACCUMULATED TAILINGS OF KAZAKHSTAN BENEFICIATION FACTORIES AS TECHNOGENIC ORES." In 23rd SGEM International Multidisciplinary Scientific GeoConference 2023. STEF92 Technology, 2023. http://dx.doi.org/10.5593/sgem2023/1.1/s01.10.
Повний текст джерелаFellicia, D. M., M. I. Pownceby, S. Palanisamy, R. Z. Mukhlis, and M. A. Rhamdhani. "A short review – hydrogen reduction of copper-containing resources." In 12th International Conference of Molten Slags, Fluxes and Salts (MOLTEN 2024) Proceedings, 1533–41. Australasian Institute of Mining and Metallurgy (AusIMM), 2024. http://dx.doi.org/10.62053/whjg1173.
Повний текст джерелаЗвіти організацій з теми "Copper ores"
Jonasson, I. R., O. R. Eckstrand, and D. H. Watkinson. Preliminary Investigations of the Abundance of Platinum, Palladium and Gold in Some Samples of Canadian Copper - Nickel Ores. Natural Resources Canada/ESS/Scientific and Technical Publishing Services, 1987. http://dx.doi.org/10.4095/122476.
Повний текст джерелаWilliams-Jones, A. E., I. M. Samson, and R. L. Linnen. Preliminary Results of a Study of the Ores, Wall-Rock Alteration, and Fluid Inclusions At the Madeleine Copper Mine, Gaspe, Quebec. Natural Resources Canada/ESS/Scientific and Technical Publishing Services, 1986. http://dx.doi.org/10.4095/120385.
Повний текст джерелаByers, C. H., J. M. Begovich, and J. M. Holmes. An economic and energy evaluation of the replacement of conventional technology with continuous chromatography in the dump leaching of copper ores. Office of Scientific and Technical Information (OSTI), February 1989. http://dx.doi.org/10.2172/6111296.
Повний текст джерелаTravis, B. A Simulator for Copper Ore Leaching. Office of Scientific and Technical Information (OSTI), May 1999. http://dx.doi.org/10.2172/763213.
Повний текст джерелаSpano, Christian, Paolo Natali, Charles Cannon, Suzanne Greene, Osvaldo Urzúa, Carlos Sucre, and Adriana Unzueta. Latin America and the Caribbean 2050: Becoming a Global Low-Carbon Metals and Solutions Hub. Inter-American Development Bank, July 2021. http://dx.doi.org/10.18235/0003412.
Повний текст джерелаMcMillan, W. J. Chapter 7a: Geology and Ore Deposits of the Highland Valley Copper Mine. Natural Resources Canada/ESS/Scientific and Technical Publishing Services, 1991. http://dx.doi.org/10.4095/132372.
Повний текст джерелаAmes, D. E., and M. G. Houlé. Targeted Geoscience Initiative 4: Canadian nickel-copper-platinum group elements-chromium ore systems -- fertility, pathfinders, new and revised models. Natural Resources Canada/ESS/Scientific and Technical Publishing Services, 2015. http://dx.doi.org/10.4095/296674.
Повний текст джерелаCorriveau, L., and E. G. Potter. Advancing exploration for iron oxide-copper-gold and affiliated deposits in Canada: context, scientific overview, outcomes, and impacts. Natural Resources Canada/CMSS/Information Management, 2024. http://dx.doi.org/10.4095/332495.
Повний текст джерелаMowatt, J. C., and T. C. Mowatt. Skarns and ore deposits of the Whitehorse Copper Belt, Yukon Territory, Canada: Some aspects of petrogenesis and mineralization at the Arctic Chief, Little Chief, and Black Cub South localities. Alaska Division of Geological & Geophysical Surveys, December 2007. http://dx.doi.org/10.14509/19557.
Повний текст джерелаAmes, D. E., and M. G. Houlé. A synthesis of the TGI-4 Canadian nickel-copper-platinum group elements-chromium ore systems project -- revised and new genetic models and exploration tools for Ni-Cu-PGE, Cr-(PGE), Fe-Ti-V-(P), and PGE-Cu deposits. Natural Resources Canada/ESS/Scientific and Technical Publishing Services, 2015. http://dx.doi.org/10.4095/296675.
Повний текст джерела