Добірка наукової літератури з теми "CONVERSION OF ENERGY"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "CONVERSION OF ENERGY".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Статті в журналах з теми "CONVERSION OF ENERGY"

1

Kishore, Abhishek, and Ameen Uddin Ahmad. "Ocean Thermal Energy Conversion." International Journal of Trend in Scientific Research and Development Volume-1, Issue-5 (August 31, 2017): 412–15. http://dx.doi.org/10.31142/ijtsrd2314.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Gates, Bruce C., George W. Huber, Christopher L. Marshall, Phillip N. Ross, Jeffrey Siirola, and Yong Wang. "Catalysts for Emerging Energy Applications." MRS Bulletin 33, no. 4 (April 2008): 429–35. http://dx.doi.org/10.1557/mrs2008.85.

Повний текст джерела
Анотація:
AbstractCatalysis is the essential technology for chemical transformation, including production of fuels from the fossil resources petroleum, natural gas, and coal. Typical catalysts for these conversions are robust porous solids incorporating metals, metal oxides, and/or metal sulfides. As efforts are stepping up to replace fossil fuels with biomass, new catalysts for the conversion of the components of biomass will be needed. Although the catalysts for biomass conversion might be substantially different from those used in the conversion of fossil feedstocks, the latter catalysts are a starting point in today's research. Major challenges lie ahead in the discovery of efficient biomass conversion catalysts, as well as in the discovery of catalysts for conversion of CO2 and possibly water into liquid fuels.
Стилі APA, Harvard, Vancouver, ISO та ін.
3

YAMABE, Chobei, and Kenji HORII. "Direct energy conversion." Journal of the Fuel Society of Japan 68, no. 11 (1989): 950–60. http://dx.doi.org/10.3775/jie.68.11_950.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Bossel, Ulf. "Alternative Energy Conversion." Ceramics in Modern Technologies 2, no. 2 (May 29, 2020): 86–91. http://dx.doi.org/10.29272/cmt.2020.0005.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Pilon, Laurent, and Ian M. McKinley. "PYROELECTRIC ENERGY CONVERSION." Annual Review of Heat Transfer 19, no. 1 (2016): 279–334. http://dx.doi.org/10.1615/annualrevheattransfer.2016015566.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Batschelet, William H. "Photochemical energy conversion." Journal of Chemical Education 63, no. 5 (May 1986): 435. http://dx.doi.org/10.1021/ed063p435.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Peter, L. M. "Photochemical energy conversion." Journal of Electroanalytical Chemistry and Interfacial Electrochemistry 286, no. 1-2 (June 1990): 292. http://dx.doi.org/10.1016/0022-0728(90)85084-i.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Marignetti, Fabrizio, Haitao Yu, and Luigi Cappelli. "Marine Energy Conversion." Advances in Mechanical Engineering 5 (January 2013): 457083. http://dx.doi.org/10.1155/2013/457083.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Dragt, J. B. "Wind Energy Conversion." Europhysics News 24, no. 2 (1993): 27–30. http://dx.doi.org/10.1051/epn/19932402027.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Palacios, Rodrigo E., Stephanie L. Gould, Christian Herrero, Michael Hambourger, Alicia Brune, Gerdenis Kodis, Paul A. Liddell, et al. "Bioinspired energy conversion." Pure and Applied Chemistry 77, no. 6 (January 1, 2005): 1001–8. http://dx.doi.org/10.1351/pac200577061001.

Повний текст джерела
Анотація:
Artificial photosynthetic antenna systems have been synthesized based on carotenoid polyenes and polymer-polyenes covalently attached to tetrapyrroles. Absorption of light in the blue/green region of the spectra excites the polyenes to their S2 state, and ultrafast singlet energy transfer to the tetrapyrroles occurs when the chromophores are in partial conjugation. The additional participation of other excited states of the polyene in the energy-transfer process is a requirement for perfect antenna function. Analogs of photosynthetic reaction centers consisting of tetrapyrrole chromophores covalently linked to electron acceptors and donors have been prepared. Excitation of these constructs results in a cascade of energy transfer/electron transfer which, in selected cases, forms a final charge-separated state characterized by a giant dipole moment (>150 D), a quantum yield approaching unity, a significant fraction of the photon energy stored as chemical potential, and a lifetime sufficient for reaction with secondary electron donors and acceptors. A new antenna-reaction center complex is described in which a carotenoid moiety is located in partial conjugation with the tetrapyrrole π-system allowing fast energy transfer (<100 fs) between the chromophores. In this assembly, the energy transduction process can be initiated by light absorbed by the polyene.
Стилі APA, Harvard, Vancouver, ISO та ін.

Дисертації з теми "CONVERSION OF ENERGY"

1

Lundin, Staffan. "Marine Current Energy Conversion." Doctoral thesis, Uppsala universitet, Elektricitetslära, 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-280763.

Повний текст джерела
Анотація:
Marine currents, i.e. water currents in oceans and rivers, constitute a large renewable energy resource. This thesis presents research done on the subject of marine current energy conversion in a broad sense. A review of the tidal energy resource in Norway is presented, with the conclusion that tidal currents ought to be an interesting option for Norway in terms of renewable energy. The design of marine current energy conversion devices is studied. It is argued that turbine and generator cannot be seen as separate entities but must be designed and optimised as a unit for a given conversion site. The influence of support structure for the turbine blades on the efficiency of the turbine is studied, leading to the conclusion that it may be better to optimise a turbine for a lower flow speed than the maximum speed at the site. The construction and development of a marine current energy experimental station in the River Dalälven at Söderfors is reported. Measurements of the turbine's power coefficient indicate that it is possible to build efficient turbines for low flow speeds. Experiments at the site are used for investigations into different load control methods and for validation of a numerical model of the energy conversion system and the model's ability to predict system behaviour in response to step changes in operational tip speed ratio. A method for wake measurements is evaluated and found to be useful within certain limits. Simple models for turbine runaway behaviour are derived, of which one is shown by comparison with experimental results to predict the behaviour well.
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Silva, Ubiravan Geraldo de Oliveira e. [UNESP]. "Análise energética em refino de petróleo." Universidade Estadual Paulista (UNESP), 2010. http://hdl.handle.net/11449/99282.

Повний текст джерела
Анотація:
Made available in DSpace on 2014-06-11T19:29:53Z (GMT). No. of bitstreams: 0 Previous issue date: 2010-07-29Bitstream added on 2014-06-13T20:00:00Z : No. of bitstreams: 1 silva_ugo_me_guara.pdf: 1310169 bytes, checksum: 03b83347690591e428c0b581f7931124 (MD5)
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
No trabalho apresentado foi realizada uma análise de eficiência energética levando em conta variáveis tais como a pressão, a temperatura, o estado físico dos componentes e a atividade de cada elemento que compõe a unidade de craqueamento em refino de petróleo. Tal análise foi realizada baseando-se na Primeira e Segunda leis da Termodinâmica. Destacou-se na análise do FCC a geração e a perda de energia com os gases, levando em conta a concentração molar de cada gás na entrada e na saída do FCC. No riser foram levadas em conta as transformações ocorridas e sua cinética com o propósito de fazer uma análise de gasto de energia no processo de formação inicial dos produtos do FCC; com isso, determinaram-se as quantidades de calor que foram utilizados no processo principal de formação. Foram realizadas análises sobre os fluxos de massas no vaso separador com a abordagem de um suposto fluxo interno, que seria a diferença entre as energias adquiridas com o vapor de retificação com os fluxos de carbono arrastados e com energia vinda do riser, e o fluxo de saída também para o processo de retificação no stripper. Verificou-se a energia gerada pelo regenerador e sua distribuição, que é feita com o aquecimento do catalisador na linha de transmissão do stripper e das perdas de energia com a troca do catalisador gasto e pela massa de catalisador que entra no riser. A energia perdida durante o processo foi associada à energia perdida na integralidade e em cada unidade. Verificou-se que uma parcela do calor gerado no processo é absorvida por gases inertes necessários ou integrados a gases reagentes; além disso, observou-se a formação de novos gases e compostos químicos que geram certas quantidades de energia, e que estão e são importantes na contabilização de toda energia que é gerada. Em tal análise levou-se em conta a energia de formação dos gases e a...
In the present study it was performed an analysis of energy efficiency taking into account variables such as pressure, temperature, physical state of the components and activities of each element that makes up a cracker in petroleum refining. The First and Second Law of Thermodynamics were used for the present analysis. It was highlighted in the analysis of the FCC the generation and loss of energy with the gases, taking into account the molar concentration of each gas at the inlet and outlet of the FCC. In the riser it was taken into account the transformations and their kinetics in order to make an analysis of energy use in the process of initial formation of the products of the FCC; with these results, it was determined the amounts of heat that were used in the main proceedings training. It was analyzed the flow of masses in the separator vessel with the approach of a supposed internal flow, which would be the difference between the energy gained steam with the rectification of carbon fluxes and dragged with energy coming from the riser, and the outflow also for the grinding process in stripper. There was the energy generated by the regenerator and its distribution, which is made by heating the catalyst in the transmission line striper and loss of energy with the exchange of spent catalyst and the mass of catalyst entering the riser. The energy lost during the process was associated with the energy that disappeared in the whole and in each unit. It was found that a portion of the heat generated is absorbed by inert gases necessary or integrated reactive gases; in addition, it was observed the formation of new gases and chemicals that generate amounts of energy, and are important in accounting for all energy that is generated. In this analysis it was taken into account the energy of formation of exhaust gases and the opportunities of products formation in the conditions ... (Complete abstract click electronic access below)
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Thorburn, Karin. "Electric Energy Conversion Systems : Wave Energy and Hydropower." Doctoral thesis, Uppsala : Acta Universitatis Upsaliensis, 2006. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-7081.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Balouchi, Farouk. "Footfall energy harvesting : footfall energy harvesting conversion mechanisms." Thesis, University of Hull, 2013. http://hydra.hull.ac.uk/resources/hull:8433.

Повний текст джерела
Анотація:
Ubiquitous computing and pervasive networks are prevailing to impact almost every part of our daily lives. Convergence of technologies has allowed electronic devices to become untethered. Cutting of the power-cord and communications link has provided many benefits, mobility and convenience being the most advantageous, however, an important but lagging technology in this vision is the power source. The trend in power density of batteries has not tracked the advancements in electronic systems development. This has provided opportunity for a bridging technology which uses a more integrated approach with the power source to emerge, where a device has an onboard self sustaining energy supply. This approach promises to close the gap between the increased miniaturisation of electronics systems and the physically constrained battery technology by tapping into the ambient energy available in the surrounding location of an application. Energy harvesting allows some of the costly maintenance and environmentally damaging issues of battery powered systems to be reduced. This work considers the characteristics and energy requirements of wireless sensor and actuator networks. It outlines a range of sources from which the energy can be extracted and then considers the conversion methods which could be employed in such schemes. This research looks at the methods and techniques for harvesting/scavenging energy from ambient sources, in particular from the motion of human traffic on raised flooring and stairwells for the purpose of powering wireless sensor and actuator networks. Mechanisms for the conversion of mechanical energy to electrical energy are evaluated for their benefits in footfall harvesting, from which, two conversion mechanisms are chosen for prototyping. The thesis presents two stair-mounted generator designs. Conversion that extends the intermittent pulses of energy in footfall is shown to be the beneficial. A flyback generator is designed which converts the linear motion of footfall to rotational torque is presented. Secondly, a cantilever design which converts the linear motion to vibration is shown. Both designs are mathematically modelled and the behaviour validated with experimental results & analysis. Power, energy and efficiency characteristics for both mechanisms are compared. Cost of manufacture and reliability are also discussed.
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Zhao, Yixin. "Developing Nanomaterials for Energy Conversion." Cleveland, Ohio : Case Western Reserve University, 2010. http://rave.ohiolink.edu/etdc/view?acc_num=case1270172686.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Laestander, Joakim, and Simon Laestander. "OTEC - Ocean Thermal Energy Conversion." Thesis, KTH, Energiteknik, 2012. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-98974.

Повний текст джерела
Анотація:
OTEC is a technology where power is produced by utilizing the temperature difference in the oceans between surface water and water from the deep. It is considered that a temperature difference of 20K is required – a temperature difference found close to the equator.This report investigates if OTEC can produce enough electricity to provide 100 000 people, living on a generic island of 10 km2 somewhere alongside the equator in the pacific ocean, with their electricity needs. In this project a literature review has been made to establish a basic knowledge of OTEC and later a mathematical model has been programmed and simulated. Finally the results of the simulation has been examined and discussed.Two different cycles has been simulated alongside each other with the goal to establish which one of these two cycles that were best suited the island. To facilitate computing some assumptions and simplifications were made.The closed cycle (CC) was the most effective but the open cycle (OC) had several positive synergies that the closed cycle didn’t have. The costs of a facility of both cycles were based on older studies in the field and the conclusion was that the open cycle was the cheaper one. Facilities of both cycles can effectively meet the islands energy needs but if OC is chosen before CC more facilities has to be built due to the OC has lower energy output.Further work and development is necessary before OTEC seriously can challenge todays fossil fuel based energy systems, or until the oil starts to get too expensive. Today OTEC technology demands large investments but if the positive environmental effects and the fact that the island releases itself from import of energy are taken into account there are incentives to invest in OTEC already.
OTEC är en teknik där kraft utvinns från havsvatten genom att utnyttja temperaturdifferensen mellan ytvatten och vatten från djupet. Denna teknik kräver dock generellt en temperaturdifferens på minst 20K. En sådan temperaturskillnad är geografiskt begränsad till den tropiska zonen runt ekvatorn.I rapporten undersöks om OTEC kan användas till att förse 100 000 människor, boende på en 10 stor generisk ö i just den tropiska zonen, med dess elbehov. I detta projekt har det gjorts en litteraturstudie för att etablera en kunskapsbas och sedan gjorts en matematisk modell i programmet EES och slutligen har resultaten från modellen granskats och diskuterats. I modellen jämfördes två olika cykler och målet var att bestämma vilken av dessa som var det bästa alternativet för ön. För att underlätta beräkningarna gjordes vissa antaganden och förenklingar.Den slutna cykeln var mest effektiv men den öppna cykeln (OC) hade positiva synergieffekter som den sluta cykeln (CC) saknade. Kostnaden för en anläggning baserades på äldre studier och enligt dessa var den öppna cykeln billigare än den slutna. Anläggningar av de båda cyklerna kan tillgodose den fiktiva öns energibehov, det behöver dock byggas fler anläggningar om OC väljs framför CC.Det kommer krävas ytterligare arbete med att utveckla tekniken innan OTEC på allvar kan utmana dagens fossilbränslebaserade energisystem – eller att oljan helt enkelt blir för dyr. Idag är OTEC för dyrt för att kunna motiveras rent ekonomiskt, men om även miljövinsterna beaktas, samt att ön befriar sig från importer och därigenom får större kontroll över sitt eget energisystem, finns goda incitament att investera i OTEC redan idag.
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Chin, Timothy Edward. "Electrochemical to mechanical energy conversion." Thesis, Massachusetts Institute of Technology, 2010. http://hdl.handle.net/1721.1/63015.

Повний текст джерела
Анотація:
Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Materials Science and Engineering, 2010.
Cataloged from PDF version of thesis.
Includes bibliographical references.
Electrode materials for rechargeable lithium ion batteries are well-known to undergo significant dimensional changes during lithium-ion insertion and extraction. In the battery community, this has often been looked upon negatively as a degradation mechanism. However, the crystallographic strains are large enough to warrant investigation for use as actuators. Lithium battery electrode materials lend themselves to two separate types of actuators. On one hand, intercalation oxides and graphite provide moderate strains, on the order of a few percent, with moderate bandwidth (frequency). Lithium intercalation of graphite can achieve actuation energy densities of 6700 kJ m-3 with strains up to 6.7%. Intercalation oxides provide strains on the order of a couple percent, but allow for increased bandwidth. Using a conventional stacked electrode design, a cell consisting of lithium iron phosphate (LiFePO4) and carbon achieved 1.2% strain with a mechanical power output of 1000 W m 3 . Metals, on the other hand, provide colossal strains (hundreds of percent) upon lithium alloying, but do not cycle well. Instead, a self-amplifying device was designed to provide continuous, prolonged, one-way actuation over longer time scales. This was still able to achieve an energy density of 1700 kJ n 3, significantly greater than other actuation technologies such as shape-memory alloys and conducting polymers, with displacements approaching 10 mm from a 1 mm thick disc. Further, by using lithium metal as the counterelectrode in an electrochemical couple, these actuation devices can be selfpowered: mechanical energy and electrical energy can be extracted simultaneously.
by Timothy Edward Chin.
Ph.D.
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Clark, Joanna Helen. "Inorganic materials for energy conversion." Thesis, University of Liverpool, 2011. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.569768.

Повний текст джерела
Анотація:
In an effort to design systems that harvest solar light and convert this into chemical energy, the primary aim of the work presented in this thesis was to develop complex metal oxide materials that were active photocatalysts under visible light. The existing methods for visible light incorporation into photocatalytically active materials are reviewed. Of these, metal to metal charge transfer (MMCT) between bimetallic surface- grafted assemblies was taken as particular inspiration. It was hypothesised that MMCT between metal centres within a bulk complex metal oxide could be similarly applied to yield photocatalytic ally active charge carriers. This approach takes advantage of the stability of bulk systems and the ability to tune the compositions of complex oxide materials. Moreover, it was proposed that MMCT between metal centres located on crystallographically distinct sites of a bulk material would aid charge separation and migration throughout the extended lattice. The optical properties of the RE2 Ti207 (RE = Y, La, Ce, Pr) and Ba2XTizM3015 (X = La, Ce, Pr, Nd, Bi; M = Nb, Ta) series, which include some novel cerium(III) titanates, revealed systematic changes in the electronic structures of these materials. These were rationalised with respect to the energy of Ln 4f states. The proposed electronic structures present the partial achievement of the bulk MMCT hypothesis, with optical transitions from occupied Ce 4f midgap states to the unoccupied primarily Ti 3d conduction band. These Ce3+ /rr" charge transfer materials were inactive photocatalysts, attributed to the presence the Ce 4f-based midgap states that facilitate charge recombination. The double perovskite CaCu3T40IZ, with A-site Cu2+ and B-site Ti4+ cations and whose dielectric properties have been studied extensively in the past, is an ideal candidate for the two site MMCT strategy. Here, the optical and photocatalytic properties, rationalised with the aid of DFT calculations, present the partial achievement of the bulk MMCT hypothesis. Sol-gel derived Pt-CaCu3 Ti4012 is an active photocatalyst toward the visible light photo-oxidation of model pollutants methyl orange (MO) and 4-chlorophenol (4CP). Optical spectra and product analysis show that these reactions proceed via more selective routes than the typical reaction over TiOz P25 under DV light. Interestingly, the products of 4CP photo-oxidation were shown to be dependent on the wavelength of incident light. Cu-doping of BizTiz07 was found to stabilise the pyrochlore structure with respect to the Aurivillius phase Bi4 Ti3012 and to impart significant visible light absorption. Sol-gel derived Pt-BiI.6Cuo.4 Tiz07 photo-oxidised MO under visible light via conventional band gap excitation, as determined by quantum efficiency measurements. In contrast, sol-gel derived Pt-B4 Ti3012 photo-oxidised MO via the excitation of adsorbed MO, and was also active toward 4CP photo-oxidation under visible light. The excitation method, mechanisms and product distributions have been investigated for each of the photo-oxidation reactions presented in this thesis. In particular, the photo- oxidation of MO over some Pt-modified metal oxides has been shown to proceed via excitation of adsorbed MO and not of the semiconductor. Additionally, the mechanism and products of these processes are far more selective than the related DV reactions over TiOz P25, and have been shown to depend to some extent on the semiconductor support.
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Qiu, Xiaofeng. "NANOSTRUCTURED MATERIALS FOR ENERGY CONVERSION." Case Western Reserve University School of Graduate Studies / OhioLINK, 2008. http://rave.ohiolink.edu/etdc/view?acc_num=case1207243913.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Riboni, F. "PHOTOCATALYTIC REACTIONS FOR ENERGY CONVERSION." Doctoral thesis, Università degli Studi di Milano, 2014. http://hdl.handle.net/2434/244319.

Повний текст джерела
Анотація:
General upward trends in fossil fuel consumption and CO2 emissions, along with the accepted belief that global chemistry substantially influences climate, require that scientific research provides efficient remedies and/or alternatives to the present scenario. Photocatalysis is often proposed as one of the most promising technique to achieve these purposes. This PhD thesis is mainly focused on the investigation of TiO2-based systems for the photocatalytic oxidation of formic acid in aqueous suspension, as well as for H2 production by methanol photo steam reforming in the gas phase. Two different approaches were adopted to minimize the drawbacks usually characterizing TiO2 photocatalysts: i) TiO2-WO3 mixed oxide photocatalysts were prepared with the aim of reducing the recombination rate of photopromoted electron/hole pairs. The superior photocatalytic performance of the mixed oxide system was mainly attributed to the positive effect induced by W in efficiently trapping the photopromoted electron from the conduction band of TiO2, ensuring extended charge carriers separation. Even better results were obtained upon the surface modification with Pt nanoparticles which, by virtue of the metal high work function, further enhanced e-/h+ separation. ii) surface modification of TiO2 with Au nanoparticles, possessing a Localized Surface Plasmon Resonance (LSPR) at λ = 530 nm was proved to be an efficient way to promote TiO2 photoactivity under visible light irradiation. By selecting three titania samples (i.e., a stoichiometric, nearly non defective TiO2, a N-doped TiO2 and a oxygen vacancy-rich TiO2), evidence of two different plasmonic photoactivity mechanisms was provided, with the so-called hot electron transfer promoting plasmonic photoactivity in the stoichiometric TiO2 and Plasmon Resonance Energy Transfer accounting for the observed plasmonic visible light photoactivity of doped samples. Being the abatement of CO2 through (photo)electrochemical reduction very challenging (E0(CO2/CO2-* = -2.14 V)), an alternative way has been studied: pyridinyl radicals (1-PyH*), photogenerated by irradiating a pyridine (Py) solution, were found to efficiently react with CO2 yielding a carbamic species (HPy-1-COOH), triggered by a stepwise mechanism where electron transfer from 1-PyH* precedes proton transfer. Formate (HCOO-) was also obtained, demonstrating that photoexcited pyridine does catalyze the 2e—reduction of CO2. Finally, Fenton oxidation of gaseous isoprene on the surface of aqueous Fe2+ droplets, yielding carboxylic acids, polyols and carbonyl compounds, detected in situ through ElectroSpray Ionization Mass Spectrometry, accounted for alternative routes for the conversion of organic gases into secondary organic aerosol, occurring under tropospheric conditions, and may be incorporated into present atmospheric chemistry models.
Стилі APA, Harvard, Vancouver, ISO та ін.

Книги з теми "CONVERSION OF ENERGY"

1

Goswami, D. Yogi, and Frank Kreith, eds. Energy Conversion. Second edition. | Boca Raton : CRC Press, 2017. | Series:: CRC Press, 2017. http://dx.doi.org/10.1201/9781315374192.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Energy conversion. St. Paul: West Pub. Co., 1992.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Kocabiyikoğlu, Zeki Uğurata. Electromechanical Energy Conversion. First edition. | Boca Raton, FL : CRC Press, 2020. |: CRC Press, 2020. http://dx.doi.org/10.1201/9780429317637.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Piotrowiak, Piotr, ed. Solar Energy Conversion. Cambridge: Royal Society of Chemistry, 2013. http://dx.doi.org/10.1039/9781849735445.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Pleskov, Yuri V. Solar Energy Conversion. Berlin, Heidelberg: Springer Berlin Heidelberg, 1990. http://dx.doi.org/10.1007/978-3-642-74958-2.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Likhtenshtein, Gertz. Solar Energy Conversion. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2012. http://dx.doi.org/10.1002/9783527647668.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Kitanovski, Andrej, Jaka Tušek, Urban Tomc, Uroš Plaznik, Marko Ožbolt, and Alojz Poredoš. Magnetocaloric Energy Conversion. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-08741-2.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Rosa, Richard J. Magnetohydrodynamic energy conversion. Washington: Hemisphere Pub. Corp., 1987.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Soni, Amit, Dharmendra Tripathi, Jagrati Sahariya, and Kamal Nayan Sharma. Energy Conversion and Green Energy Storage. Boca Raton: CRC Press, 2022. http://dx.doi.org/10.1201/9781003258209.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Bauer, Gottfried H. Photovoltaic Solar Energy Conversion. Berlin, Heidelberg: Springer Berlin Heidelberg, 2015. http://dx.doi.org/10.1007/978-3-662-46684-1.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Частини книг з теми "CONVERSION OF ENERGY"

1

Wolff, Lodwijk Reiner, and Valerylvanovit Yarigin. "Thermionic Energy Conversion, Space Technology for Energy Conservation." In Conversion, 199–206. Berlin, Heidelberg: Springer Berlin Heidelberg, 1992. http://dx.doi.org/10.1007/978-3-642-95701-7_32.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Demirel, Yaşar. "Energy Conversion." In Energy, 229–303. London: Springer London, 2012. http://dx.doi.org/10.1007/978-1-4471-2372-9_7.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Demirel, Yaşar. "Energy Conversion." In Energy, 241–319. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-29650-0_7.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Demirel, Yaşar. "Energy Conversion." In Energy, 233–311. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-56164-2_7.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Sankaranarayanan, Krishnan. "Energy Conversion." In Efficiency and Sustainability in the Energy and Chemical Industries, 103–32. 3rd ed. Boca Raton: CRC Press, 2023. http://dx.doi.org/10.1201/9781003304388-12.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Kurchania, A. K. "Biomass Energy." In Biomass Conversion, 91–122. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-28418-2_2.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Renner, Joel L., and Marshall J. Reed. "Geothermal Energy." In Energy Conversion, 177–87. Second edition. | Boca Raton : CRC Press, 2017. | Series:: CRC Press, 2017. http://dx.doi.org/10.1201/9781315374192-8.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Goswami, D. Yogi, and Frank Kreith. "Global Energy Systems." In Energy Conversion, 1–30. Second edition. | Boca Raton : CRC Press, 2017. | Series:: CRC Press, 2017. http://dx.doi.org/10.1201/9781315374192-1.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Bunce, Richard H. "Gas Turbines." In Energy Conversion, 209–22. Second edition. | Boca Raton : CRC Press, 2017. | Series:: CRC Press, 2017. http://dx.doi.org/10.1201/9781315374192-10.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Klett, David E., Elsayed M. Afify, Kalyan K. Srinivasan, and Timothy J. Jacobs. "Internal Combustion Engines." In Energy Conversion, 223–55. Second edition. | Boca Raton : CRC Press, 2017. | Series:: CRC Press, 2017. http://dx.doi.org/10.1201/9781315374192-11.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Тези доповідей конференцій з теми "CONVERSION OF ENERGY"

1

Eijkel, Jan C. T., Albert van den Berg, and Yanbo Xie. "Ballistic energy conversion." In 2017 19th International Conference on Solid-State Sensors, Actuators and Microsystems (TRANSDUCERS). IEEE, 2017. http://dx.doi.org/10.1109/transducers.2017.7994000.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Crabtree, George W., Nathan S. Lewis, David Hafemeister, B. Levi, M. Levine, and P. Schwartz. "Solar Energy Conversion." In PHYSICS OF SUSTAINABLE ENERGY: Using Energy Efficiently and Producing It Renewably. AIP, 2008. http://dx.doi.org/10.1063/1.2993729.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

"Conversion of solar energy, geothermal energy." In CONV-09. Proceedings of International Symposium on Convective Heat and Mass Transfer in Sustainable Energy. Connecticut: Begellhouse, 2009. http://dx.doi.org/10.1615/ichmt.2009.conv.790.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Hirshfield, J. L., M. A. LaPointe, and A. K. Ganguly. "Gyroharmonic conversion experiments." In High energy density microwaves. AIP, 1999. http://dx.doi.org/10.1063/1.59008.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Woolf, L. D. "Solar Photothermophotovoltaic Energy Conversion." In 22nd Intersociety Energy Conversion Engineering Conference. Reston, Virginia: American Institute of Aeronautics and Astronautics, 1987. http://dx.doi.org/10.2514/6.1987-9060.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Regan, Thomas M., Jose G. Martin, Juanita R. Riccobono, and Jacques E. Ludman. "Multisource thermophotovoltaic energy conversion." In SPIE's 1995 International Symposium on Optical Science, Engineering, and Instrumentation, edited by Tomasz Jannson. SPIE, 1995. http://dx.doi.org/10.1117/12.221246.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Beresnevich, Vitalijs, Shravan Koundinya Vutukuru, Martins Irbe, Edgars Kovals, Maris Eiduks, Kaspars Burbeckis, and Janis Viba. "Wind energy conversion generator." In 20th International Scientific Conference Engineering for Rural Development. Latvia University of Life Sciences and Technologies, Faculty of Engineering, 2021. http://dx.doi.org/10.22616/erdev.2021.20.tf213.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

"Electro-mechanical energy conversion." In 2016 10th International Conference on Compatibility, Power Electronics and Power Engineering (CPE-POWERENG). IEEE, 2016. http://dx.doi.org/10.1109/cpe.2016.7544195.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

"Electro-mechanical energy conversion." In 2015 9th International Conference on Compatibility and Power Electronics (CPE). IEEE, 2015. http://dx.doi.org/10.1109/cpe.2015.7231076.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

"Photovoltaic energy conversion systems." In IECON 2013 - 39th Annual Conference of the IEEE Industrial Electronics Society. IEEE, 2013. http://dx.doi.org/10.1109/iecon.2013.6700285.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Звіти організацій з теми "CONVERSION OF ENERGY"

1

Atanassov, Plamen. Materials for Energy Conversion: Materials for Energy Conversion and Storage. Office of Scientific and Technical Information (OSTI), March 2017. http://dx.doi.org/10.2172/1349091.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Hennessy, Daniel, Rodica Sibisan, and Mike Rasmussen. Solid State Energy Conversion Energy Alliance (SECA). Office of Scientific and Technical Information (OSTI), September 2011. http://dx.doi.org/10.2172/1084473.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Hennessy, Daniel, Rodica Sibisan, and Mike Rasmussen. Solid State Energy Conversion Energy Alliance (SECA). Office of Scientific and Technical Information (OSTI), September 2011. http://dx.doi.org/10.2172/1084477.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Fayer, M. D. Energy transfer processes in solar energy conversion. Office of Scientific and Technical Information (OSTI), January 1987. http://dx.doi.org/10.2172/6369309.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Fayer, M. D. Energy transfer processes in solar energy conversion. Office of Scientific and Technical Information (OSTI), January 1988. http://dx.doi.org/10.2172/6020364.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Fayer, M. D. Energy transfer processes in solar energy conversion. Office of Scientific and Technical Information (OSTI), November 1989. http://dx.doi.org/10.2172/6020379.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Fayer, M. D. Energy transfer processes in solar energy conversion. Office of Scientific and Technical Information (OSTI), November 1986. http://dx.doi.org/10.2172/6022834.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Fayer, M. D. Energy transfer processes in solar energy conversion. Office of Scientific and Technical Information (OSTI), January 1992. http://dx.doi.org/10.2172/5118367.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Cairns, E. J. Energy Conversion and Storage Program. Office of Scientific and Technical Information (OSTI), March 1992. http://dx.doi.org/10.2172/7148265.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Hutchinson, R. A. Turbulence and energy conversion research. Office of Scientific and Technical Information (OSTI), July 1985. http://dx.doi.org/10.2172/6345659.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії