Добірка наукової літератури з теми "Convergence of Riemannian manifolds"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Convergence of Riemannian manifolds".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Статті в журналах з теми "Convergence of Riemannian manifolds"

1

Perales, Raquel. "Convergence of manifolds and metric spaces with boundary." Journal of Topology and Analysis 12, no. 03 (November 28, 2018): 735–74. http://dx.doi.org/10.1142/s1793525319500638.

Повний текст джерела
Анотація:
We study sequences of oriented Riemannian manifolds with boundary and, more generally, integral current spaces and metric spaces with boundary. We prove theorems demonstrating when the Gromov–Hausdorff (GH) and Sormani–Wenger Intrinsic Flat (SWIF) limits of sequences of such metric spaces agree. Thus in particular the limit spaces are countably [Formula: see text] rectifiable spaces. From these theorems we derive compactness theorems for sequences of Riemannian manifolds with boundary where both the GH and SWIF limits agree. For sequences of Riemannian manifolds with boundary we only require non-negative Ricci curvature, upper bounds on volume, noncollapsing conditions on the interior of the manifold and diameter controls on the level sets near the boundary.
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Kasue, Atsushi, and Hironori Kumura. "Spectral convergence of Riemannian manifolds." Tohoku Mathematical Journal 46, no. 2 (1994): 147–79. http://dx.doi.org/10.2748/tmj/1178225756.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Greene, Robert, and Hung-Hsi Wu. "Lipschitz convergence of Riemannian manifolds." Pacific Journal of Mathematics 131, no. 1 (January 1, 1988): 119–41. http://dx.doi.org/10.2140/pjm.1988.131.119.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Argyros, Ioannis K., and Santhosh George. "ON THE SEMILOCAL CONVERGENCE OF NEWTON'S METHOD FOR SECTIONS ON RIEMANNIAN MANIFOLDS." Asian-European Journal of Mathematics 07, no. 01 (March 2014): 1450007. http://dx.doi.org/10.1142/s1793557114500077.

Повний текст джерела
Анотація:
We present a semilocal convergence analysis of Newton's method for sections on Riemannian manifolds. Using the notion of a 2-piece L-average Lipschitz condition introduced in [C. Li and J. H. Wang, Newton's method for sections on Riemannian manifolds: Generalized covariant α-theory, J. Complexity24 (2008) 423–451] in combination with the weaker center 2-piece L1-average Lipschitz condition given by us in this paper, we provide a tighter convergence analysis than the one given in [C. Li and J. H. Wang, Newton's method for sections on Riemannian manifolds: Generalized covariant α-theory, J. Complexity24 (2008) 423–451] which in turn has improved the works in earlier studies such as [R. L. Adler, J. P. Dedieu, J. Y. Margulies, M. Martens and M. Shub, Newton's method on Riemannian manifolds and a geometric model for the human spine, IMA J. Numer. Anal.22 (2002) 359–390; F. Alvarez, J. Bolte and J. Munier, A unifying local convergence result for Newton's method in Riemannian manifolds, Found. Comput. Math.8 (2008) 197–226; J. P. Dedieu, P. Priouret and G. Malajovich, Newton's method on Riemannian manifolds: Covariant α-theory, IMA J. Numer. Anal.23 (2003) 395–419].
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Yang, Le. "Riemannian median and its estimation." LMS Journal of Computation and Mathematics 13 (December 2010): 461–79. http://dx.doi.org/10.1112/s1461157020090531.

Повний текст джерела
Анотація:
AbstractIn this paper, we define the geometric median for a probability measure on a Riemannian manifold, give its characterization and a natural condition to ensure its uniqueness. In order to compute the geometric median in practical cases, we also propose a subgradient algorithm and prove its convergence as well as estimating the error of approximation and the rate of convergence. The convergence property of this subgradient algorithm, which is a generalization of the classical Weiszfeld algorithm in Euclidean spaces to the context of Riemannian manifolds, also improves a recent result of P. T. Fletcheret al. [NeuroImage45 (2009) S143–S152].
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Kasue, Atsushi. "A convergence theorem for Riemannian manifolds and some applications." Nagoya Mathematical Journal 114 (June 1989): 21–51. http://dx.doi.org/10.1017/s0027763000001380.

Повний текст джерела
Анотація:
The purpose of the present paper is first to reformulate a Lipschitz convergence theorem for Riemannian manifolds originally introduced by Gromov [17] and secondly to give some applications of the theorem to a class of open Riemannian manifolds.
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Kasue, Atsushi, and Hironori Kumura. "Spectral convergence of Riemannian manifolds, II." Tohoku Mathematical Journal 48, no. 1 (1996): 71–120. http://dx.doi.org/10.2748/tmj/1178225413.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Boumal, Nicolas, P.-A. Absil, and Coralia Cartis. "Global rates of convergence for nonconvex optimization on manifolds." IMA Journal of Numerical Analysis 39, no. 1 (February 7, 2018): 1–33. http://dx.doi.org/10.1093/imanum/drx080.

Повний текст джерела
Анотація:
Abstract We consider the minimization of a cost function f on a manifold $\mathcal{M}$ using Riemannian gradient descent and Riemannian trust regions (RTR). We focus on satisfying necessary optimality conditions within a tolerance ε. Specifically, we show that, under Lipschitz-type assumptions on the pullbacks of f to the tangent spaces of $\mathcal{M}$, both of these algorithms produce points with Riemannian gradient smaller than ε in $\mathcal{O}\big(1/\varepsilon ^{2}\big)$ iterations. Furthermore, RTR returns a point where also the Riemannian Hessian’s least eigenvalue is larger than −ε in $\mathcal{O} \big(1/\varepsilon ^{3}\big)$ iterations. There are no assumptions on initialization. The rates match their (sharp) unconstrained counterparts as a function of the accuracy ε (up to constants) and hence are sharp in that sense. These are the first deterministic results for global rates of convergence to approximate first- and second-order Karush-Kuhn-Tucker points on manifolds. They apply in particular for optimization constrained to compact submanifolds of ${\mathbb{R}^{n}}$, under simpler assumptions.
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Katsuda, Atsushi. "Gromov’s convergence theorem and its application." Nagoya Mathematical Journal 100 (December 1985): 11–48. http://dx.doi.org/10.1017/s0027763000000209.

Повний текст джерела
Анотація:
One of the basic questions of Riemannian geometry is that “If two Riemannian manifolds are similar with respect to the Riemannian invariants, for example, the curvature, the volume, the first eigenvalue of the Laplacian, then are they topologically similar?”. Initiated by H. Rauch, many works are developed to the above question. Recently M. Gromov showed a remarkable theorem ([7] 8.25, 8.28), which may be useful not only for the above question but also beyond the above. But it seems to the author that his proof is heuristic and it contains some gaps (for these, see § 1), so we give a detailed proof of 8.25 in [7]. This is the first purpose of this paper. Second purpose is to prove a differentiable sphere theorem for manifolds of positive Ricci curvature, using the above theorem as a main tool.
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Greene, Robert, and Hung-Hsi Wu. "Addendum to: “Lipschitz convergence of Riemannian manifolds”." Pacific Journal of Mathematics 140, no. 2 (December 1, 1989): 398. http://dx.doi.org/10.2140/pjm.1989.140.398.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Дисертації з теми "Convergence of Riemannian manifolds"

1

Zergänge, Norman [Verfasser]. "Convergence of Riemannian manifolds with critical curvature bounds / Norman Zergänge." Magdeburg : Universitätsbibliothek, 2017. http://d-nb.info/1141230488/34.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Martins, Tiberio Bittencourt de Oliveira. "Newton's methods under the majorant principle on Riemannian manifolds." Universidade Federal de Goiás, 2015. http://repositorio.bc.ufg.br/tede/handle/tede/4847.

Повний текст джерела
Анотація:
Submitted by Cláudia Bueno (claudiamoura18@gmail.com) on 2015-10-29T19:04:41Z No. of bitstreams: 2 Tese - Tiberio Bittencourt de Oliveira Martins.pdf: 1155588 bytes, checksum: add1eac74c4397efc29678341b834448 (MD5) license_rdf: 23148 bytes, checksum: 9da0b6dfac957114c6a7714714b86306 (MD5)
Approved for entry into archive by Luciana Ferreira (lucgeral@gmail.com) on 2015-11-03T14:25:04Z (GMT) No. of bitstreams: 2 Tese - Tiberio Bittencourt de Oliveira Martins.pdf: 1155588 bytes, checksum: add1eac74c4397efc29678341b834448 (MD5) license_rdf: 23148 bytes, checksum: 9da0b6dfac957114c6a7714714b86306 (MD5)
Made available in DSpace on 2015-11-03T14:25:04Z (GMT). No. of bitstreams: 2 Tese - Tiberio Bittencourt de Oliveira Martins.pdf: 1155588 bytes, checksum: add1eac74c4397efc29678341b834448 (MD5) license_rdf: 23148 bytes, checksum: 9da0b6dfac957114c6a7714714b86306 (MD5) Previous issue date: 2015-06-26
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES
Apresentamos, nesta tese, uma an álise da convergência do m étodo de Newton inexato com tolerância de erro residual relativa e uma an alise semi-local de m etodos de Newton robustos exato e inexato, objetivando encontrar uma singularidade de um campo de vetores diferenci avel de nido em uma variedade Riemanniana completa, baseados no princ pio majorante a m invariante. Sob hip oteses locais e considerando uma fun ção majorante geral, a Q-convergância linear do m etodo de Newton inexato com uma tolerância de erro residual relativa xa e provada. Na ausência dos erros, a an alise apresentada reobtem o teorema local cl assico sobre o m etodo de Newton no contexto Riemanniano. Na an alise semi-local dos m etodos exato e inexato de Newton apresentada, a cl assica condi ção de Lipschitz tamb em e relaxada usando uma fun ção majorante geral, permitindo estabelecer existência e unicidade local da solu ção, uni cando previamente resultados pertencentes ao m etodo de Newton. A an alise enfatiza a robustez, a saber, e dada uma bola prescrita em torno do ponto inicial que satifaz as hip oteses de Kantorovich, garantindo a convergência do m etodo para qualquer ponto inicial nesta bola. Al em disso, limitantes que dependem da função majorante para a taxa de convergência Q-quadr atica do m étodo exato e para a taxa de convergência Q-linear para o m etodo inexato são obtidos.
A local convergence analysis with relative residual error tolerance of inexact Newton method and a semi-local analysis of a robust exact and inexact Newton methods are presented in this thesis, objecting to nd a singularity of a di erentiable vector eld de ned on a complete Riemannian manifold, based on a ne invariant majorant principle. Considering local assumptions and a general majorant function, the Q-linear convergence of inexact Newton method with a xed relative residual error tolerance is proved. In the absence of errors, the analysis presented retrieves the classical local theorem on Newton's method in Riemannian context. In the semi-local analysis of exact and inexact Newton methods presented, the classical Lipschitz condition is also relaxed by using a general majorant function, allowing to establish the existence and also local uniqueness of the solution, unifying previous results pertaining Newton's method. The analysis emphasizes robustness, being more speci c, is given a prescribed ball around the point satisfying Kantorovich's assumptions, ensuring convergence of the method for any starting point in this ball. Furthermore, the bounds depending on the majorant function for Q-quadratic convergence rate of the exact method and Q-linear convergence rate of the inexact method are obtained.
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Luckhardt, Daniel [Verfasser], Thomas [Akademischer Betreuer] Schick, Thomas [Gutachter] Schick, Ralf [Gutachter] Meyer, Stephan [Gutachter] Huckemann, Russell [Gutachter] Luke, Viktor [Gutachter] Pidstrygach, and Ingo [Gutachter] Witt. "Benjamini-Schramm Convergence of Normalized Characteristic Numbers of Riemannian Manifolds / Daniel Luckhardt ; Gutachter: Thomas Schick, Ralf Meyer, Stephan Huckemann, Russell Luke, Viktor Pidstrygach, Ingo Witt ; Betreuer: Thomas Schick." Göttingen : Niedersächsische Staats- und Universitätsbibliothek Göttingen, 2020. http://d-nb.info/1209358239/34.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Guevara, Stefan Alberto Gómez. "Unificando o análise local do método de Newton em variedades Riemannianas." Universidade Federal de Goiás, 2017. http://repositorio.bc.ufg.br/tede/handle/tede/6951.

Повний текст джерела
Анотація:
Submitted by Cássia Santos (cassia.bcufg@gmail.com) on 2017-03-16T12:01:01Z No. of bitstreams: 2 Dissertação - Stefan Alberto Gómez Guevara - 2017.pdf: 2201042 bytes, checksum: bd12be92bd41bae24c13758a1fc1a73d (MD5) license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5)
Approved for entry into archive by Luciana Ferreira (lucgeral@gmail.com) on 2017-03-20T13:11:14Z (GMT) No. of bitstreams: 2 Dissertação - Stefan Alberto Gómez Guevara - 2017.pdf: 2201042 bytes, checksum: bd12be92bd41bae24c13758a1fc1a73d (MD5) license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5)
Made available in DSpace on 2017-03-20T13:11:14Z (GMT). No. of bitstreams: 2 Dissertação - Stefan Alberto Gómez Guevara - 2017.pdf: 2201042 bytes, checksum: bd12be92bd41bae24c13758a1fc1a73d (MD5) license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) Previous issue date: 2017-03-08
In this work we consider the problem of finding a singularity of a field of differentiable vectors X on a Riemannian manifold. We present a local analysis of the convergence of Newton's method to find a singularity of field X on an increasing condition. The analysis shows a relationship between the major function and the vector field X. We also present a semi-local Kantorovich type analysis in the Riemannian context under a major condition. The two results allow to unify some previously unrelated results.
Neste trabalho consideramos o problema de encontrar uma singularidade de um campo de vetores diferenciável X sobre uma variedade Riemanniana. Apresentamos uma análise local da convergência do método de Newton para encontrar uma singularidade do Campo X sobre uma condição majorante. A análise mostra uma relação entre a função majorante e o campo de vetores X. Também apresentamos uma análise semi-local do tipo Kantorovich no contexto Riemanniana sob uma condição majorante. Os dois resultados permitem unificar alguns resultados não previamente.
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Erb, Wolfgang. "Uncertainty principles on Riemannian manifolds." kostenfrei, 2010. https://mediatum2.ub.tum.de/node?id=976465.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Dunn, Corey. "Curvature homogeneous pseudo-Riemannian manifolds /." view abstract or download file of text, 2006. http://proquest.umi.com/pqdweb?did=1188874491&sid=3&Fmt=2&clientId=11238&RQT=309&VName=PQD.

Повний текст джерела
Анотація:
Thesis (Ph. D.)--University of Oregon, 2006.
Typescript. Includes vita and abstract. Includes bibliographical references (leaves 146-147). Also available for download via the World Wide Web; free to University of Oregon users.
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Longa, Eduardo Rosinato. "Hypersurfaces of paralellisable Riemannian manifolds." reponame:Biblioteca Digital de Teses e Dissertações da UFRGS, 2017. http://hdl.handle.net/10183/158755.

Повний текст джерела
Анотація:
Introduzimos uma aplicação de Gauss para hipersuperfícies de variedades Riemannianas paralelizáveis e definimos uma curvatura associada. Após, provamos um teorema de Gauss-Bonnet. Como exemplo, estudamos cuidadosamente o caso no qual o espaço ambiente é uma esfera Euclidiana menos um ponto e obtemos um teorema de rigidez topológica. Ele é utilizado para dar uma prova alternativa para um teorema de Qiaoling Wang and Changyu Xia, o qual afirma que se uma hipersuperfície orientável imersa na esfera está contida em um hemisfério aberto e tem curvatura de Gauss-Kronecker nãonula então ela é difeomorfa a uma esfera. Depois, obtemos alguns invariantes topol_ogicos para hipersuperfícies de variedades translacionais que dependem da geometria da variedade e do espaço ambiente. Finalmente, encontramos obstruções para a existência de certas folheações de codimensão um.
We introduce a Gauss map for hypersurfaces of paralellisable Riemannian manifolds and de ne an associated curvature. Next, we prove a Gauss- Bonnet theorem. As an example, we carefully study the case where the ambient space is an Euclidean sphere minus a point and obtain a topological rigidity theorem. We use it to provide an alternative proof for a theorem of Qiaoling Wang and Changyu Xia, which asserts that if an orientable immersed hypersurface of the sphere is contained in an open hemisphere and has nowhere zero Gauss-Kronecker curvature, then it is di eomorphic to a sphere. Later, we obtain some topological invariants for hypersurfaces of translational manifolds that depend on the geometry of the manifold and the ambient space. Finally, we nd obstructions to the existence of certain codimension-one foliations.
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Catalano, Domenico Antonino. "Concircular diffeomorphisms of pseudo-Riemannian manifolds /." [S.l.] : [s.n.], 1999. http://e-collection.ethbib.ethz.ch/show?type=diss&nr=13064.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Afsari, Bijan. "Means and averaging on riemannian manifolds." College Park, Md. : University of Maryland, 2009. http://hdl.handle.net/1903/9978.

Повний текст джерела
Анотація:
Thesis (Ph.D.) -- University of Maryland, College Park, 2009.
Thesis research directed by: Dept. of Mathematics. Title from t.p. of PDF. Includes bibliographical references. Published by UMI Dissertation Services, Ann Arbor, Mich. Also available in paper.
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Popiel, Tomasz. "Geometrically-defined curves in Riemannian manifolds." University of Western Australia. School of Mathematics and Statistics, 2007. http://theses.library.uwa.edu.au/adt-WU2007.0119.

Повний текст джерела
Анотація:
[Truncated abstract] This thesis is concerned with geometrically-defined curves that can be used for interpolation in Riemannian or, more generally, semi-Riemannian manifolds. As in much of the existing literature on such curves, emphasis is placed on manifolds which are important in computer graphics and engineering applications, namely the unit 3-sphere S3 and the closely related rotation group SO(3), as well as other Lie groups and spheres of arbitrary dimension. All geometrically-defined curves investigated in the thesis are either higher order variational curves, namely critical points of cost functionals depending on (covariant) derivatives of order greater than 1, or defined by geometrical algorithms, namely generalisations to manifolds of algorithms from the field of computer aided geometric design. Such curves are needed, especially in the aforementioned applications, since interpolation methods based on applying techniques of classical approximation theory in coordinate charts often produce unnatural interpolants. However, mathematical properties of higher order variational curves and curves defined by geometrical algorithms are in need of substantial further investigation: higher order variational curves are solutions of complicated nonlinear differential equations whose properties are not well-understood; it is usually unclear how to impose endpoint derivative conditions on, or smoothly piece together, curves defined by geometrical algorithms. This thesis addresses these difficulties for several classes of curves. ... The geometrical algorithms investigated in this thesis are generalisations of the de Casteljau and Cox-de Boor algorithms, which define, respectively, polynomial B'ezier and piecewise-polynomial B-spline curves by dividing, in certain ratios and for a finite number of iterations, piecewise-linear control polygons corresponding to finite sequences of control points. We show how the control points of curves produced by the generalised de Casteljau algorithm in an (almost) arbitrary connected finite-dimensional Riemannian manifold M should be chosen in order to impose desired endpoint velocities and (covariant) accelerations and, thereby, piece the curves together in a C2 fashion. A special case of the latter construction simplifies when M is a symmetric space. For the generalised Cox-de Boor algorithm, we analyse in detail the failure of a fundamental property of B-spline curves, namely C2 continuity at (certain) knots, to carry over to M.
Стилі APA, Harvard, Vancouver, ISO та ін.

Книги з теми "Convergence of Riemannian manifolds"

1

Lee, John M. Riemannian Manifolds. New York, NY: Springer New York, 1997. http://dx.doi.org/10.1007/b98852.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Lee, John M. Introduction to Riemannian Manifolds. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-91755-9.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Tondeur, Philippe. Foliations on Riemannian Manifolds. New York, NY: Springer New York, 1988. http://dx.doi.org/10.1007/978-1-4613-8780-0.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Lang, Serge, ed. Differential and Riemannian Manifolds. New York, NY: Springer New York, 1995. http://dx.doi.org/10.1007/978-1-4612-4182-9.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Lang, Serge. Differential and Riemannian manifolds. New York: Springer-Verlag, 1995.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Tondeur, Philippe. Foliations on Riemannian manifolds. New York: Springer-Verlag, 1988.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Riemannian foliations. Boston: Birkhäuser, 1988.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Hebey, Emmanuel. Sobolev Spaces on Riemannian Manifolds. Berlin, Heidelberg: Springer Berlin Heidelberg, 1996. http://dx.doi.org/10.1007/bfb0092907.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Berestovskii, Valerii, and Yurii Nikonorov. Riemannian Manifolds and Homogeneous Geodesics. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-56658-6.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

C, Wood John, ed. Harmonic morphisms between Riemannian manifolds. Oxford: Clarendon Press, 2003.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Частини книг з теми "Convergence of Riemannian manifolds"

1

Godinho, Leonor, and José Natário. "Riemannian Manifolds." In Universitext, 95–122. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-08666-8_3.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

DeWitt, Bryce, and Steven M. Christensen. "Riemannian Manifolds." In Bryce DeWitt's Lectures on Gravitation, 51–62. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-540-36911-0_4.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Saller, Heinrich. "Riemannian Manifolds." In Operational Spacetime, 29–80. New York, NY: Springer New York, 2009. http://dx.doi.org/10.1007/978-1-4419-0898-8_3.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Wells, Raymond O. "Riemannian Manifolds." In Differential and Complex Geometry: Origins, Abstractions and Embeddings, 187–210. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-58184-2_13.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Torres del Castillo, Gerardo F. "Riemannian Manifolds." In Differentiable Manifolds, 115–60. Boston: Birkhäuser Boston, 2012. http://dx.doi.org/10.1007/978-0-8176-8271-2_6.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Burago, Yuriĭ Dmitrievich, and Viktor Abramovich Zalgaller. "Riemannian Manifolds." In Geometric Inequalities, 232–99. Berlin, Heidelberg: Springer Berlin Heidelberg, 1988. http://dx.doi.org/10.1007/978-3-662-07441-1_6.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Berestovskii, Valerii, and Yurii Nikonorov. "Riemannian Manifolds." In Springer Monographs in Mathematics, 1–74. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-56658-6_1.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Torres del Castillo, Gerardo F. "Riemannian Manifolds." In Differentiable Manifolds, 141–202. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-45193-6_6.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Kühnel, Wolfgang. "Riemannian manifolds." In The Student Mathematical Library, 189–224. Providence, Rhode Island: American Mathematical Society, 2005. http://dx.doi.org/10.1090/stml/016/05.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Aubin, Thierry. "Riemannian manifolds." In Graduate Studies in Mathematics, 111–67. Providence, Rhode Island: American Mathematical Society, 2000. http://dx.doi.org/10.1090/gsm/027/06.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Тези доповідей конференцій з теми "Convergence of Riemannian manifolds"

1

OU, YE-LIN. "BIHARMONIC MORPHISMS BETWEEN RIEMANNIAN MANIFOLDS." In Differential Geometry in Honor of Professor S S Chern. WORLD SCIENTIFIC, 2000. http://dx.doi.org/10.1142/9789812792051_0018.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Snoussi, Hichem, and Ali Mohammad-Djafari. "Particle Filtering on Riemannian Manifolds." In Bayesian Inference and Maximum Entropy Methods In Science and Engineering. AIP, 2006. http://dx.doi.org/10.1063/1.2423278.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

KASHANI, S. M. B. "ON COHOMOGENEITY ONE RIEMANNIAN MANIFOLDS." In Proceedings of the Summer School. WORLD SCIENTIFIC, 2001. http://dx.doi.org/10.1142/9789812810571_0010.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Brendle, Simon, and Richard Schoen. "Riemannian Manifolds of Positive Curvature." In Proceedings of the International Congress of Mathematicians 2010 (ICM 2010). Published by Hindustan Book Agency (HBA), India. WSPC Distribute for All Markets Except in India, 2011. http://dx.doi.org/10.1142/9789814324359_0021.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Elworthy, K. D., and Feng-Yu Wang. "Essential spectrum on Riemannian manifolds." In Proceedings of the First Sino-German Conference on Stochastic Analysis (A Satellite Conference of ICM 2002). WORLD SCIENTIFIC, 2004. http://dx.doi.org/10.1142/9789812702241_0010.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Jacobs, H., S. Nair, and J. Marsden. "Multiscale surveillance of Riemannian manifolds." In 2010 American Control Conference (ACC 2010). IEEE, 2010. http://dx.doi.org/10.1109/acc.2010.5531152.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Yi Wu, Bo Wu, Jia Liu, and Hanqing Lu. "Probabilistic tracking on Riemannian manifolds." In 2008 19th International Conference on Pattern Recognition (ICPR). IEEE, 2008. http://dx.doi.org/10.1109/icpr.2008.4761046.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Yang, Hyun Seok. "Riemannian Manifolds and Gauge Theory." In Proceedings of the Corfu Summer Institute 2011. Trieste, Italy: Sissa Medialab, 2012. http://dx.doi.org/10.22323/1.155.0063.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Lee, Sangyul, and Hee-Seok Oh. "Robust Multivariate Regression on Riemannian Manifolds." In 2020 IEEE 7th International Conference on Data Science and Advanced Analytics (DSAA). IEEE, 2020. http://dx.doi.org/10.1109/dsaa49011.2020.00099.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Chazal, Frédéric, Leonidas J. Guibas, Steve Y. Oudot, and Primoz Skraba. "Persistence-based clustering in riemannian manifolds." In the 27th annual ACM symposium. New York, New York, USA: ACM Press, 2011. http://dx.doi.org/10.1145/1998196.1998212.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Звіти організацій з теми "Convergence of Riemannian manifolds"

1

Bozok, Hülya Gün. Bi-slant Submersions from Kenmotsu Manifolds onto Riemannian Manifolds. "Prof. Marin Drinov" Publishing House of Bulgarian Academy of Sciences, March 2020. http://dx.doi.org/10.7546/crabs.2020.03.05.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Chiang, Yuan-Jen. f-biharmonic Maps Between Riemannian Manifolds. GIQ, 2013. http://dx.doi.org/10.7546/giq-14-2013-74-86.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Dušek, Zdenek. Examples of Pseudo-Riemannian G.O. Manifolds. GIQ, 2012. http://dx.doi.org/10.7546/giq-8-2007-144-155.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Chiang, Yuan-Jen. f-biharmonic Maps Between Riemannian Manifolds. Journal of Geometry and Symmetry in Physics, 2012. http://dx.doi.org/10.7546/jgsp-27-2012-45-58.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Mirzaei, Reza. Cohomogeneity Two Riemannian Manifolds of Non-Positive Curvature. GIQ, 2012. http://dx.doi.org/10.7546/giq-13-2012-233-244.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Iyer, R. V., R. Holsapple, and D. Doman. Optimal Control Problems on Parallelizable Riemannian Manifolds: Theory and Applications. Fort Belvoir, VA: Defense Technical Information Center, January 2002. http://dx.doi.org/10.21236/ada455175.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

R. Mirzaie. Topological Properties of Some Cohomogeneity on Riemannian Manifolds of Nonpositive Curvature. GIQ, 2012. http://dx.doi.org/10.7546/giq-3-2002-351-359.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Tanimura, Shogo. Path Integrals on Riemannian Manifolds with Symmetry and Stratified Gauge Structure. GIQ, 2012. http://dx.doi.org/10.7546/giq-3-2002-431-441.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії