Добірка наукової літератури з теми "Control system guidance"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Control system guidance".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Статті в журналах з теми "Control system guidance"

1

Chen, X. L., X. H. Fan, Y. Wang, H. M. Long, T. Jiang, J. Shi, Q. Y. Song, and X. D. Yang. "Control guidance system for sintering burn through point." Ironmaking & Steelmaking 36, no. 3 (April 2009): 209–11. http://dx.doi.org/10.1179/174328107x155367.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Barua, Arindam, M. P. Premchand, R. Vishnu, Prabhat Kumar Dubey, Anon Jayachitra, Ambili K. Gopinath, S. Anitha, et al. "Integrated Navigation, Guidance and Control System and Validation." Current Science 114, no. 01 (January 10, 2018): 109. http://dx.doi.org/10.18520/cs/v114/i01/109-122.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Yakimenko, O., V. Dobrokhodov, J. Johnson, I. Kaminer, S. Delliker, and R. Benney. "GUIDANCE AND CONTROL OF AFFORDABLE GUIDED AIRDROP SYSTEM." IFAC Proceedings Volumes 35, no. 1 (2002): 13–18. http://dx.doi.org/10.3182/20020721-6-es-1901.01228.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Natale, Ciro. "Kinematic Control of Robots with Noisy Guidance System." IFAC Proceedings Volumes 44, no. 1 (January 2011): 6937–44. http://dx.doi.org/10.3182/20110828-6-it-1002.02932.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Moreiras, Daniel Viúdez, and Juan M. Martín Sánchez. "Guidance system for control periods under modelling threshold." International Journal of Automation and Control 10, no. 3 (2016): 215. http://dx.doi.org/10.1504/ijaac.2016.077587.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Chao, Tao, Denghui Zhang, Songyan Wang, and Ping Ma. "Integrated guidance and control design considering system uncertainty." Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering 233, no. 6 (May 24, 2018): 2278–90. http://dx.doi.org/10.1177/0954410018776512.

Повний текст джерела
Анотація:
The hypersonic vehicle has the characteristics of strong coupling, high uncertainty and complex nonlinearity, leading to an unsatisfactory control performance with the traditional design method. In this paper, an integrated guidance and control design approach is proposed to cope with this problem. A time-varying longitudinal integrated guidance and control model is first formulated, and then the overall uncertainty consisting of the un-modeled dynamic, parameter uncertainty and external disturbance is taken into account. A novel finite-time extended state observer is developed to estimate and compensate it in real time. Furthermore, an integrated guidance and control algorithm utilizing back-stepping method and the dynamic inverse is put forward. It has been theoretically proved that the finite-time extended state observer system and the cascade system are globally finite-time stable. Numerical simulation results under different kinds of uncertainty with different amplitude and frequency are presented to illustrate the effectiveness and feasibility of the proposed approach. The proposed integrated guidance and control possesses a better convergence performance and stronger disturbance rejection property in existence of the mismatched uncertainty and parameter uncertainty.
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Nagasawa, Takashi, Masayuki Hamano, Shinji Shimano, Chihiro Fukui, and Toshiyuki Fujikawa. "Development of restoration guidance system for control centres." International Journal of Electrical Power & Energy Systems 14, no. 2-3 (April 1992): 181–88. http://dx.doi.org/10.1016/0142-0615(92)90043-9.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Binazadeh, T., and M.-J. Yazdanpanah. "Robust partial control design for non-linear control systems: a guidance application." Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering 226, no. 2 (September 16, 2011): 233–42. http://dx.doi.org/10.1177/0959651811413013.

Повний текст джерела
Анотація:
In this paper, a general approach for robust partial stabilization of uncertain non-linear systems is presented. In this approach, the non-linear dynamic system is divided into two subsystems, called the first and the second subsystems. This division is done based on the required stability properties of the system’s states. The reduced input vector (the vector that includes components of the input vector appearing in the first subsystem) is designed to asymptotically stabilize the first subsystem. The proposed scheme is then applied for designing a guidance law as a potential application. Indeed, the paper presents a new approach to the missile guidance problem and shows that asymptotic stability behaviour is not realistic for all states of the guidance system. The effectiveness of the proposed guidance law in interception of manoeuvring targets is demonstrated analytically and through computer simulations.
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Wang, Yexing, Humin Lei, Jikun Ye, and Xiangwei Bu. "Backstepping Sliding Mode Control for Radar Seeker Servo System Considering Guidance and Control System." Sensors 18, no. 9 (September 3, 2018): 2927. http://dx.doi.org/10.3390/s18092927.

Повний текст джерела
Анотація:
This paper investigates the design of a missile seeker servo system combined with a guidance and control system. Firstly, a complete model containing a missile seeker servo system, missile guidance system, and missile control system (SGCS) was creatively proposed. Secondly, a designed high-order tracking differentiator (HTD) was used to estimate states of systems in real time, which guarantees the feasibility of the designed algorithm. To guarantee tracking precision and robustness, backstepping sliding-mode control was adopted. Aiming at the main problem of projectile motion disturbance, an adaptive radial basis function neural network (RBFNN) was proposed to compensate for disturbance. Adaptive RBFNN especially achieves online adjustment of residual error, which promotes estimation precision and eliminates the “chattering phenomenon”. The boundedness of all signals, including estimation error of high-order tracking differentiator, was especially proved via the Lyapunov stability theory, which is more rigorous. Finally, in considered scenarios, line of sight angle (LOSA)-tracking simulations were carried out to verify the tracking performance, and a Monte Carlo miss-distance simulation is presented to validate the effectiveness of the proposed method.
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Sun, Rong Chun, Yan Piao, Yu Wang, and Han Wang. "Parking Guidance Control System Based on Internet of Things." Applied Mechanics and Materials 273 (January 2013): 641–45. http://dx.doi.org/10.4028/www.scientific.net/amm.273.641.

Повний текст джерела
Анотація:
To help drivers to quickly find a spare parking, a parking guidance control system was proposed. The principle of ultrasonic ranging was used to detect the state of a parking space, and through the internet of things the parking detector transmits the real-time information to the control center. The control center mainly is an industrial computer and is responsible for dealing with the real-time information and sending the control command by internet of things. The guidance signs at each crossroad receive the wireless commands and execute them, by which the guidance function is performed. The internet of things was realized by ZigBee star network, in which the control center is a coordinator and other parts are routers or terminal equipments. The simulation experiment results show that the parking guidance system works well, and has the value of application and promotion to some extent.
Стилі APA, Harvard, Vancouver, ISO та ін.

Дисертації з теми "Control system guidance"

1

Febbo, Marco. "Advanced 4DT flight guidance and control software system." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2016. http://amslaurea.unibo.it/11239/.

Повний текст джерела
Анотація:
The work presented in this thesis has been part of a Cranfield University research project. This thesis aims to design a flight control law for large cargo aircraft by using predictive control, which can assure flight motion along the flight path exactly and on time. In particular this work involves the modelling of a Boeing C-17 Globemaster III 6DOF model (used as study case), by using DATCOM and Matlab Simulink software. Then a predictive control algorithm has been developed. The majority of the work is done in a Matlab/Simulink environment. Finally the predictive control algorithm has been applied on the aircraft model and its performances, in tracking given trajectory optimized through a 4DT Research Software, have been evaluated.
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Moon, Jongki. "Mission-based guidance system design for autonomous UAVs." Diss., Atlanta, Ga. : Georgia Institute of Technology, 2009. http://hdl.handle.net/1853/31797.

Повний текст джерела
Анотація:
Thesis (Ph.D)--Aerospace Engineering, Georgia Institute of Technology, 2010.
Committee Chair: Prasad, JVR; Committee Member: Costello, Mark; Committee Member: Johnson, Eric; Committee Member: Schrage, Daniel; Committee Member: Vela, Patricio. Part of the SMARTech Electronic Thesis and Dissertation Collection.
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Cloutier, Michael John. "Guidance and control system for an Autonomous Underwater Vehicle." Thesis, Monterey, California. Naval Postgraduate School, 1990. http://hdl.handle.net/10945/30635.

Повний текст джерела
Анотація:
Approved for public release, distribution is unlimited
The Naval Postgraduate School (NPS) is currently involved in a long-term project to investigate and develop real-time control software, artificial intelligence, computer architecture and control systems theory as they pertain to U.S. Navy autonomous vehicle programs. In support of this goal, the NPS is currently designing and fabricating a testbed autonomous underwater vehicle. This work describes the design, development, and testing of a Guidance Subsystem for this testbed vehicle which uses portions of cubic spirals as the desired path to follow between waypoints. In addition, data translation firmware and real-time software for the control surfaces and main motors is designed, implemented and tested. The process of selecting and implementing an appropriate computer architecture in support of these goals is also discussed and detailed, along with the choice of associated computer hardware and real-time operating system software.
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Bouzid, Yasser. "Guidance and control system for autonomous aerial vehicles navigation." Thesis, Université Paris-Saclay (ComUE), 2018. http://www.theses.fr/2018SACLE014.

Повний текст джерела
Анотація:
Cette thèse traite du guidage et du pilotage de véhicules aériens qui peuvent assurer des missions dans des lieux particulièrement hostiles, dangereux ou inaccessibles avec des véhicules conventionnels. Nous sommes tout d'abord motivés par le scénario de couverture, qui est généralement un processus long pouvant utiliser un grand nombre de personnes et d'équipements. Or, la nature de la couverture nécessite un véhicule aérien avec des capacités de vol stationnaire. Pour cela, nous nous intéressons alors aux multirotors, qui sont considérés comme une bonne étude de cas pour concevoir, analyser et mettre en œuvre des stratégies de contrôle de vol.En réalité, de nombreux défis sont encore ouverts pour ce qui concerne le scénario de couverture comme la faisabilité, l’optimalité en visitant tous les points d’intérêts. De plus, un système de contrôle robuste est indispensable pour contrer des effets néfastes tel le vent. Par ailleurs, la conception d'un algorithme de contrôle répondant à certaines exigences (structure simple, précision, énergie minimale consommée) constitue un défi supplémentaire. Ensuite, notre travail introduit un modèle mathématique générique pour les multi-rotors en considérant l’effet du vent.Dans la première partie du manuscrit, nous proposons des planificateurs en utilisant comme base l'algorithme RRT* (optimal Rapidly-exploring Random Tree). En fait, dans les grands espaces, un grand nombre de nœuds est généré augmentant alors le temps de calcul et la mémoire consommée. Pour y remédier, une procédure de suppression est impliquée pendant le processus « ReWire » pour les réduire. De plus, un planificateur multidirectionnel qui renvoie un ensemble de chemins optimaux à partir d'un point de départ et d'un ensemble de points objectifs est proposé. Notre travail introduit également une stratégie CPP (Coverage path-planning) optimale dans un espace contraint. Celle-ci consiste à procéder par un algorithme en deux phases. Dans la première, un planificateur multidirectionnel est utilisé pour définir les chemins les plus courts de chaque point à ses voisins. Dans la seconde phase, au moyen des coûts entre les points, le chemin global le plus court est obtenu en résolvant un problème de voyageur en utilisant des algorithmes génétiques. Puis, compte tenu de l'énergie embarquée limitée, un problème de routage est adapté et est résolu par la méthode de savings. Dans une seconde partie, nous nous sommes penchés sur la conception d'un système de pilotage efficace permettant au véhicule de suivre une trajectoire paramétrée dans le temps. D’une part nous proposons une extension de la commande par modèle interne au non-linéaire (NLIMC). Notre technique repose sur l’utilisation du principe de base IMC pour synthétiser un contrôleur non linéaire qui fait intervenir la propriété de platitude. D’autre part, nous proposons une autre forme de contrôleur dont la structure apparente est un PID mais dans lequel est incorporée la technique des modes glissants que l'on appellera aussi PID non linéaire bien qu’il diffère de l’existant. Cette combinaison a l’avantage de conduire à un bon niveau de robustesse fourni par les modes glissants et en même temps à un bon comportement spécifié par la structure PID. En outre, en guise de complément, nous proposons deux contrôleurs redondants basés sur deux principes distincts afin de booster et d’améliorer les capacités de tout contrôleur. Le premier est basé sur l’approche MFC (Model-Free Control) tandis que le second est basé sur les modes glissants dynamiques DSMC (Dynamic Sliding Mode Controller). Enfin, pour montrer les performances de ces contrôleurs, nous avons effectué une série de tests avec plusieurs illustrations et scénarios, nous avons dressé un tableau de comparaison avec les approches conventionnelles. Les résultats issus des simulations numériques et ceux des tests expérimentaux réalisés sur un drone quadrotor se sont avérés cohérents et semblent bien prometteurs
This thesis deals with the guidance and control of aerial vehicles, which can also ensure missions in hostile, dangerous environments, or inaccessible workspaces with conventional vehicles. First, we are motivated by the coverage scenario, which is in general a long process, requiring a large number of individuals and specific equipment. However, the nature of sensing coverage requires an aerial vehicle with hovering capabilities. For this purpose, we are interested in multirotors that are considered as a good case study to design, analyze and implement flight control strategies.As matter of fact, many challenges are still open with respect to the coverage scenario such as for instance the feasibility and the optimality when passing through the Points of Interest. In addition, a robust control system is essential to mitigate the adverse effects such as the wind. Moreover, designing a control algorithm, which meet some requirements (simplicity, accuracy, consumed energy, etc.) constitutes a complementary challenge. Then, our work introduces a generic mathematical model for multirotors flying under the effect of wind.In a first part, we propose planners using as a basis the optimal Rapidly-exploring Random Tree (RRT*) algorithm. In fact, in large workspaces, a large number of nodes is generated and then increasing the computation time and the consumed memory. To counter these latter, a removal procedure is involved during the rewiring process. In addition, a multidirectional planner that returns a set of optimal paths from a starting point and a set of objective points is proposed. Our work also introduces an optimal Coverage path-planning (CPP) strategy in a constrained workspace. This one proceeds through a two-phases algorithm. In the first one, a Connected Multi-directional planner is used to define the shortest paths from each point to its neighbors. In the second phase, by means of the pair-wise costs between points, the overall shortest path is obtained by solving a Traveling Salesman Problem using Genetic Algorithms. Then, taking into account the limited on-board energy, a Capacitated-Vehicle Routing Problem is adapted and solved by the savings approach.In a second part, we study the design of an effective control system allowing the vehicle to track a trajectory parameterized in time. On the one hand, we propose an extension to nonlinear systems of the Internal Model Control (NLIMC). Our technique is based on the use of the basic IMC principle to synthesize a nonlinear controller that involves the property of flatness. On the other hand, we propose another form of controller whose apparent structure is a PID but in which the technique of sliding modes is incorporated that will also call the nonlinear PID (NLPID). This combination has the advantage to lead to a good level of robustness provided by the sliding modes and at the same time to a good behavior specified by the PID structure. Besides, as a complement, we present two redundant controllers based on two distinct principles in order to boost and to improve the capabilities of any controller. The first one is based on the Model-Free Control (MFC) approach while the second one is based on Dynamic Sliding Mode Controller (DSMC).Finally, to highlight the performance of these controllers, we have performed a series of tests with several illustrations and scenarios and we have drawn up a comparison table with conventional approaches. The results of both the numerical simulations and the experimentation that are performed on a quadrotor are consistent and seem to be quite promising
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Li, Ming-Yan. "Performance analysis and enhancement of proportional navigation guidance systems /." Title page, table of contents and abstract only, 1999. http://web4.library.adelaide.edu.au/theses/09ENS/09ensl693.pdf.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Roddy, D. J. "Application of optimal control to bank-to-turn CLOS guidance." Thesis, Queen's University Belfast, 1985. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.373543.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Richter, Ralph. "A predictive fuzzy-neural autopilot for the guidance of small motorised marine craft." Thesis, University of Plymouth, 2000. http://hdl.handle.net/10026.1/2665.

Повний текст джерела
Анотація:
This thesis investigates the design and evaluation of a control system, that is able to adapt quickly to changes in environment and steering characteristics. This type of controller is particularly suited for applications with wide-ranging working conditions such as those experienced by small motorised craft. A small motorised craft is assumed to be highly agile and prone to disturbances, being thrown off-course very easily when travelling at high speed 'but rather heavy and sluggish at low speeds. Unlike large vessels, the steering characteristics of the craft will change tremendously with a change in forward speed. Any new design of autopilot needs to be to compensate for these changes in dynamic characteristics to maintain near optimal levels of performance. This study identities the problems that need to be overcome and the variables involved. A self-organising fuzzy logic controller is developed and tested in simulation. This type of controller learns on-line but has certain performance limitations. The major original contribution of this research investigation is the development of an improved self-adaptive and predictive control concept, the Predictive Self-organising Fuzzy Logic Controller (PSoFLC). The novel feature of the control algorithm is that is uses a neural network as a predictive simulator of the boat's future response and this network is then incorporated into the control loop to improve the course changing, as well as course keeping capabilities of the autopilot investigated. The autopilot is tested in simulation to validate the working principle of the concept and to demonstrate the self-tuning of the control parameters. Further work is required to establish the suitability of the proposed novel concept to other control.
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Vural, Ozgur Ahmet. "Fuzzy Logic Guidance System Design For Guided Missiles." Master's thesis, METU, 2003. http://etd.lib.metu.edu.tr/upload/1026715/index.pdf.

Повний текст джерела
Анотація:
This thesis involves modeling, guidance, control, and flight simulations of a canard controlled guided missile. The autopilot is designed by a pole placement technique. Designed autopilot is used with the guidance systems considered in the thesis. Five different guidance methods are applied in the thesis, one of which is the famous proportional navigation guidance. The other four guidance methods are different fuzzy logic guidance systems designed considering different types of guidance inputs. Simulations are done against five different target types and the performances of the five guidance methods are compared and discussed.
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Brake, Nicholas J. "Control System Development for small UAV Gimbal." DigitalCommons@CalPoly, 2012. https://digitalcommons.calpoly.edu/theses/838.

Повний текст джерела
Анотація:
The design process of unmanned ISR systems has typically driven in the direction of increasing system mass to increase stabilization performance and imagery quality. However, through the use of new sensor and processor technology high performance stabilization feedback is being made available for control on new small and low mass stabilized platforms that can be placed on small UAVs. This project develops and implements a LOS stabilization controller design, typically seen on larger gimbals, onto a new small stabilized gimbal, the Tigereye, and demonstrates the application on several small UAV aircraft. The Tigereye gimbal is a new 2lb, 2-axis, gimbal intended to provided high performance closed loop LOS stabilization through the utilization of inertial rate gyro, electronic video stabilization, and host platform state information. Ground and flight tests results of the LOS stabilization controller on the Tigereye gimbal have shown stabilization performance improvements over legacy systems. However, system characteristics identified in testing still limit stabilization performance, these include: host system vibration, gimbal joint friction and backlash, joint actuation compliance, payload CG asymmetry, and gyro noise and drift. The control system design has been highly modularized in anticipation of future algorithm and hardware upgrades to address the remaining issues and extend the system's capabilities.
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Ding, Ting. "Advanced surface movement guidance and control system investigation and implementation in simulation." Thesis, Cranfield University, 2010. http://dspace.lib.cranfield.ac.uk/handle/1826/6767.

Повний текст джерела
Анотація:
The Surface Movement Guidance and Control System (SMGCS) is a system providing the surveillance, routing, guidance and control supports to the airport traffic. The moving objects being managed include all the aircraft and vehicles in the interested area on the surface; the personnel making use of this system are the pilots, vehicle drivers, and ground controllers. The airport surface traffic management has long been discussed because of the operational challenges; this includes the increasing complexity of the field movement management and the density of airport traffic. To improve airport operation qualities, the Advanced Surface Movement Control and Guidance System (A-SMGCS) was introduced. In terms of architecture and capability differences, there are two levels of the A-SMGCS, which are A-SMGCS I & II. The positive impacts on the airport surface operation are: safety, capacity, efficiency, human factor conditions, and economic issues. This project deals with an investigation on SMGCS baseline and the A-SMGCS, covering the system conception, background, current developments and relative technologies. The applications in practical operations are discussed as well. There is also an analysis about the airport surface incursion classification and severity. Based on this, a simulation is presented to illustrate the practical applications of the A-SMGCS. The simulation results show the functions of Human Machine Interface (HMI) in A-SMGCS, including the designation and diversion for clearance, the real-time view of surface target movements and the indications for contracted incursions. Over all, the research aims are to work on an investigation and explanation of A-SMGCS, and to implement a simulation of the system functions. The implementation includes the image processing, system architecture definition in Simulink, Graphical User Interface (GUI) design for the HMI, and the corresponding Matlab programming for simulation environment establishment.
Стилі APA, Harvard, Vancouver, ISO та ін.

Книги з теми "Control system guidance"

1

FEDERAL AVIATION ADMINISTRATION. Surface movement guidance and control system. [Washington, D.C.]: U.S. Dept. of Transportation, Federal Aviation Administration, 1996.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

North Atlantic Treaty Organization. Advisory Group for Aerospace Research and Development. Missile interceptor guidance system technology. Neuilly-sur-Seine, France: AGARD, 1990.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

North Atlantic Treaty Organization. Advisory Group for Aerospace Research and Development. Knowledge based system applications for guidance and control. Neuilly sur Seine, France: AGARD, 1991.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Allen, Cheryl L. Guidance, navigation, and control subsystem equipment selection algorithm using expert system methods. Hampton, Va: Langley Research Center, 1991.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Anderson, Donna L. A laser-based continuous miner guidance system. Washington, D.C: U.S. Dept. of the Interior, Bureau of Mines, 1991.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Stephenson, Robert William. Manpower, personnel, training, and safety guidance and control for weapon system acquisitions. Brooks Air Force Base, Tex: Air Force Human Resources Laboratory, Air Force Systems Command, 1987.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Flandro, G. A. Dynamic interactions between hypersonic vehicle aerodynamics and propulsion system performance: Final report to Aircraft Guidance and Controls Branch, Guidance and Control Division ... [Washington, DC: National Aeronautics and Space Administration, 1992.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Hallberg, Eric N. Design of a GPS aided guidance, navigation, and control system for trajectory control of an air vehicle. Monterey, Calif: Naval Postgraduate School, 1994.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Williams, Timothy Alphonzo. Optimal parachute guidance, navigation, and control for the Affordable Guided Airdrop System (AGAS). Monterey, Calif: Naval Postgraduate School, 2000.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Onken, Reiner. System-ergonomic design of cognitive automation: Dual-mode cognitive design of vehicle guidance and control work systems. Berlin: Springer, 2010.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Частини книг з теми "Control system guidance"

1

Suresh, B. N., and K. Sivan. "Navigation Guidance and Control System." In Integrated Design for Space Transportation System, 581–661. New Delhi: Springer India, 2015. http://dx.doi.org/10.1007/978-81-322-2532-4_14.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Wu, Sentang. "Member Flight Control System (MFCS)." In Cooperative Guidance & Control of Missiles Autonomous Formation, 261–81. Singapore: Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-13-0953-3_6.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Wu, Sentang. "Flight Control System of MAF (FCSM)." In Cooperative Guidance & Control of Missiles Autonomous Formation, 195–260. Singapore: Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-13-0953-3_5.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Żugaj, Marcin. "UAV Control System Reconfiguration Under Physical Constrains." In Advances in Aerospace Guidance, Navigation and Control, 241–56. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-65283-2_13.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

van Kampen, E., Q. P. Chu, and J. A. Mulder. "Interval Analysis as a System Identification Tool." In Advances in Aerospace Guidance, Navigation and Control, 333–43. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-19817-5_26.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Jouhaud, Frank. "Flight Path Management System of EOLE UAV." In Advances in Aerospace Guidance, Navigation and Control, 119–34. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-17518-8_8.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Lambregts, Antonius A. "TECS Generalized Airplane Control System Design – An Update." In Advances in Aerospace Guidance, Navigation and Control, 503–34. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-38253-6_30.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Onken, Reiner, and Axel Schulte. "Introductory Survey on Operational Guidance and Control Systems." In System-Ergonomic Design of Cognitive Automation, 7–16. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-03135-9_2.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Bergamasco, Marco, and Marco Lovera. "Rotorcraft System Identification: An Integrated Time-Frequency Domain Approach." In Advances in Aerospace Guidance, Navigation and Control, 161–81. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-38253-6_11.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Jenie, Yazdi Ibrahim, Erik-Jan van Kampen, and Bart Remes. "Cooperative Autonomous Collision Avoidance System for Unmanned Aerial Vehicle." In Advances in Aerospace Guidance, Navigation and Control, 387–405. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-38253-6_24.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Тези доповідей конференцій з теми "Control system guidance"

1

HORAK, D. "Isolation of unstructured system failures in dynamic systems." In Guidance, Navigation and Control Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1989. http://dx.doi.org/10.2514/6.1989-3508.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Gorder, Peter, and Ramkumar Ramani. "Health monitoring system for advanced general aviation flight systems." In Guidance, Navigation, and Control Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1996. http://dx.doi.org/10.2514/6.1996-3712.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Singh, S., M. Steinberg, and R. DiGirolamo. "Nonlinear predictive control of feedback linearizable systems and flight control system design." In Guidance, Navigation, and Control Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1995. http://dx.doi.org/10.2514/6.1995-3292.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

PARK, S., and M. NAGATI. "Approximate decoupling flight control system design with output feedback for nonlinear systems." In Guidance, Navigation and Control Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1993. http://dx.doi.org/10.2514/6.1993-3880.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

LAM, QUANG, RICHARD CHIPMAN, TSAY-HSIN HU, ERIC HOLMES, and JOHN SUNKEL. "Adaptive control applied to Space Station attitude control system." In Guidance, Navigation and Control Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1992. http://dx.doi.org/10.2514/6.1992-4483.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

WILK, LEONARD, and TODD HAMILTON. "Dynamic attitude measurement system." In Guidance, Navigation and Control Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1993. http://dx.doi.org/10.2514/6.1993-3801.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Qin Jin, Shi Feng, and Hou Guirong. "Vehicle-based hybrid route guidance system." In 2008 Chinese Control Conference (CCC). IEEE, 2008. http://dx.doi.org/10.1109/chicc.2008.4604908.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

BAUER, FRANK, and JOHN DOWNING. "Control system design and analysis using the INteractive Controls Analysis (INCA) program." In Guidance, Navigation and Control Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1987. http://dx.doi.org/10.2514/6.1987-2517.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Desai, S., S. Bhaskaran, W. Bollman, C. Halsell, J. Riedel, S. Synnott, S. Desai, et al. "The DS-1 autonomous navigation system - Autonomous control of low thrust propulsion system." In Guidance, Navigation, and Control Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1997. http://dx.doi.org/10.2514/6.1997-3819.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Guo, Jian-guo, and Zhou Jun. "Integrated Guidance-Control System Design Based on ∞ Control." In 2010 International Conference on Electrical and Control Engineering (ICECE 2010). IEEE, 2010. http://dx.doi.org/10.1109/icece.2010.300.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Звіти організацій з теми "Control system guidance"

1

Thomas Ulrich, Ronald Boring, William Phoenix, Emily Dehority, Tim Whiting, Jonathan Morrell, and Rhett Backstrom. Applying Human Factors Evaluation and Design Guidance to a Nuclear Power Plant Digital Control System. Office of Scientific and Technical Information (OSTI), August 2012. http://dx.doi.org/10.2172/1082368.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

O'Hara, J. M., and G. Martinez-Guridi W. Gunther. The Effects of Degraded Digital Instrumentation and Control Systems on Human-system Interfaces and Operator Performance: HFE Review Guidance and Technical Basis. Office of Scientific and Technical Information (OSTI), February 2010. http://dx.doi.org/10.2172/1013463.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

R. Fink, D. Hill, J. O'Hara. Human Factors Guidance for Control Room and Digital Human-System Interface Design and Modification, Guidelines for Planning, Specification, Design, Licensing, Implementation, Training, Operation and Maintenance. Office of Scientific and Technical Information (OSTI), November 2004. http://dx.doi.org/10.2172/835085.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Johnson, Billy, and Zhonglong Zhang. The demonstration and validation of a linked watershed-riverine modeling system for DoD installations : user guidance report version 2.0. Engineer Research and Development Center (U.S.), April 2021. http://dx.doi.org/10.21079/11681/40425.

Повний текст джерела
Анотація:
A linked watershed model was evaluated on three watersheds within the U.S.: (1) House Creek Watershed, Fort Hood, TX; (2) Calleguas Creek Watershed, Ventura County, CA; and (3) Patuxent River Watershed, MD. The goal of this demonstration study was to show the utility of such a model in addressing water quality issues facing DoD installations across a variety of climate zones. In performing the demonstration study, evaluations of model output with regards to accuracy, predictability and meeting regulatory drivers were completed. Data availability, level of modeling expertise, and costs for model setup, validation, scenario analysis, and maintenance were evaluated in order to inform installation managers on the time and cost investment needed to use a linked watershed modeling system. Final conclusions were that the system evaluated in this study would be useful for answering a variety of questions posed by installation managers and could be useful in developing management scenarios to better control pollutant runoff from installations.
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Menon, P. K., and Ernest J. Ohlmeyer. Integrated Guidance-Control Systems for Fixed-Aim Warhead Missiles. Fort Belvoir, VA: Defense Technical Information Center, November 2000. http://dx.doi.org/10.21236/ada389283.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Mahan, Robert E., Jerry D. Fluckiger, Samuel L. Clements, Cody W. Tews, John R. Burnette, Craig A. Goranson, and Harold Kirkham. Secure Data Transfer Guidance for Industrial Control and SCADA Systems. Office of Scientific and Technical Information (OSTI), September 2011. http://dx.doi.org/10.2172/1030885.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Corban, J. E., Cole Gilbert, Anthony J. Calise, and Allen R. Tannenbaum. Biological Inspired Direct Adaptive Guidance and Control for Autonomous Flight Systems. Fort Belvoir, VA: Defense Technical Information Center, September 2004. http://dx.doi.org/10.21236/ada433221.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Gebre-Egziabher, Demoz. An Integrated Design Methodology for Nanosat Navigation Guidance and Control Systems. Fort Belvoir, VA: Defense Technical Information Center, August 2007. http://dx.doi.org/10.21236/ada474558.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Corban, Eric, Cole Gilbert, Anthony Calise, and Allen Tannenbaum. Biologically Inspired Direct Adaptive Guidance and Control for High-Bandwidth Flight Systems. Fort Belvoir, VA: Defense Technical Information Center, July 2001. http://dx.doi.org/10.21236/ada415546.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Ni, Jiachun, Qiong Jiang, Gang Mao, Yi Yang, Qin Wei, Changcheng Hou, Xiangdong Yang, Wenbin Fan, and Zengjin Cai. The effectiveness and safety of acupuncture for constipation associated with Parkinson’s disease: Protocol for a systematic review and meta-analysis. INPLASY - International Platform of Registered Systematic Review and Meta-analysis Protocols, February 2022. http://dx.doi.org/10.37766/inplasy2022.2.0091.

Повний текст джерела
Анотація:
Review question / Objective: Is acupuncture a safe and effective therapy for constipation associated with Parkinson’s disease? Our aim is to assess the effectiveness and safety of acupuncture for constipation associated with PD and give guidance to future research direction. Condition being studied: Parkinson’s disease (PD) is a prevalent degenerative disease of nervous system characterized mainly by static tremor, bradykinesia, myotonia, postural gait disorders and other non-motor symptoms. According to variations on race, ethnicity, age and sex, the incidence of PD ranges from 8 to 20.5 per 100, 000 individuals annually. One global research shows that there were 6.1 million individuals suffer from PD in 2016 and will be 12 million patients around the world. According to several outcomes of case-control studies, the prevalence of constipation in PD varies from 28% to 61%. Constipation, as a common gastrointestinal disease which refers to the clinical presentation of reduced spontaneous complete bowel movement, dyschezia, feeling of incomplete defecation and outlet obstruction, is demonstrated to antedate the motor symptom and it's severity is related to the progression of PD. Acupuncture has been proved to act on the pathogenesis of constipation associated with PD. The proposed systematic review we're about to present is the first advanced evidence-based medical evidence in this area.
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії