Добірка наукової літератури з теми "Control low strength material"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Control low strength material".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Статті в журналах з теми "Control low strength material"

1

Juárez Alvarado, César Antonio, Javier Rodrigo Gonzalez Lopez, José Manuel Mendoza, and Antonio Alberto Zaldivar Cadena. "Low impact fiber reinforced material composite." Revista ALCONPAT 7, no. 2 (May 31, 2017): 135–47. http://dx.doi.org/10.21041/ra.v7i2.189.

Повний текст джерела
Анотація:
Low impact fiber reinforced material compositeABSTRACTThis article investigates the mechanical behavior of fiber-reinforced cementitious composites using moderate to high contents of fly ash (FA) as a replacement for cement; the goal is to create primary building elements with low environmental impact. The experimental results showed that the compressive strength, modulus of elasticity, and post-cracking flexural strength for specimens with w/cm = 0.60 and 20% FA substitution increased with respect to the control. Moreover, the specimens with high FA substitutions had significantly lower mechanical strength values and elastic modulus values. The results indicate that it is feasible to use fiber-reinforced concrete composites as an alternative for low-environmental impact primary construction.Keywords: fiber; cementitous; composites; fly ash, impact material.
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Nan, Senlin, Wentao Li, Weiming Guan, Huabin Liu, Hongchao Zhao, Yingyuan Wen, and Junhui Yao. "Research on the Rapid Strengthening Mechanism of Microwave Field-Controlled Gypsum-Cemented Analog Materials." Minerals 11, no. 12 (November 30, 2021): 1348. http://dx.doi.org/10.3390/min11121348.

Повний текст джерела
Анотація:
Various geotechnical experiments have used gypsum-cemented analog geotechnical materials. However, this material needs a long curing time, and the target strength is not easy to control. Therefore, this research adopted microwave heating as the curing method for this kind of material. Objectively, the authors investigated the variations in the material strength versus heating power and heating time. On this basis, we clarified the influence mechanism of microwaves on the strength of analog materials by analyzing material temperature, moisture content, and microstructure, which eventually led to an experimental control method for rapid strengthening of microwave field-controlled gypsum-cemented analog materials. Consequently, we drew the following conclusions. The stable strength of the material under high-power microwave curing was much lower than that under natural curing, while the material strength under low-power microwave curing was the closest to the material under natural curing.
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Shi, Yaobin, Yicheng Ye, Nanyan Hu, Xu Huang, and Xianhua Wang. "Experiments on Material Proportions for Similar Materials with High Similarity Ratio and Low Strength in Multilayer Shale Deposits." Applied Sciences 11, no. 20 (October 15, 2021): 9620. http://dx.doi.org/10.3390/app11209620.

Повний текст джерела
Анотація:
It is important to systematically investigate the similar materials with high similarity ratio and low strength in multilayer shale deposits, to provide a scientific basis and experimental basis for the research of underground mining of multilayer shale deposits. In this paper, using an orthogonal experimental method, the physical and mechanical parameters of different material proportions were analyzed with four control factors of mica powder/standard sand, filling material/bonding material, Portland cement/gypsum, silicone oil ratio. Twenty-five groups of material proportioning schemes were designed, and the density, porosity, compressive strength, and elastic modulus of each group of materials were measured. Through the range analysis and significance analysis, the influence of control factors on the material parameters was explored, and multivariate linear regression analysis of test results was carried to eliminate outliers. The result showed that the physical and mechanical parameters of similar materials prepared according to the proportioning scheme were widely distributed, which can meet the preparation requirements of similar materials with different lithologies. The density and compressive strength were most affected by the ratio of Portland cement/gypsum, the porosity was most affected by the ratio of filling material/bonding material, and the elastic modulus was mainly controlled by the silicone oil ratio. The proportioning scheme was applied to three similar prepared shale materials with large lithology differences. The error between actual similar constant and design similar constant of low strength similar material was less than 1.62%. The physical and mechanical parameters of similar materials were in good agreement with the original rock.
Стилі APA, Harvard, Vancouver, ISO та ін.
4

IVANNIKOV, Sergei I., Yana A. VAHTEROVA, Yuri A. UTKIN, and Ying SUN. "Calculation of strength, rigidity, and stability of the aircraft fuselage frame made of composite materials." INCAS BULLETIN 13, S (August 3, 2021): 77–86. http://dx.doi.org/10.13111/2066-8201.2021.13.s.8.

Повний текст джерела
Анотація:
Carbon-carbon composite materials (CCCM) are characterized by high heat resistance and thermostability for which they, in most of their physical and mechanical characteristics, can be attributed to the most promising materials. Approximately 81% of all carbon-carbon composite materials are used for the manufacture of brake rotors for aircraft, 18% – in space rocket technology, and only 1% – for all other areas of application. This study discusses calculations of the strength, rigidity, and stability of a frame made of carbon-carbon composite materials. It is known that the strength of CCCM based on high-strength carbon fibers is higher than the strength of a composite material based on high-modulus carbon fibers obtained at various processing temperatures. The stress-strain behaviour (SSB) of the material is carried out. Among the special properties of CCCM are low porosity, low coefficient of thermal expansion, maintaining a stable structure and properties, as well as product dimensions.
Стилі APA, Harvard, Vancouver, ISO та ін.
5

P N, Ojha, Suresh Kumar, Brijesh Singh, and Mohapatra B N. "Pervious concrete, plastic concrete and controlled low strength material- a special applications concrete." Journal of Building Materials and Structures 7, no. 2 (December 7, 2020): 221–35. http://dx.doi.org/10.34118/jbms.v7i2.777.

Повний текст джерела
Анотація:
The paper presents the study carried out for three special concretes like Pervious Concrete, Plastic Concrete and Controlled Low Strength Materials (CLSM) using locally available materials. Pervious concrete is a concrete with high porosity. It is used in a wide range of applications including pervious pavements and helps in improving pavement skid resistance and reducing hydroplaning. This concrete was designed to meet the requirement of 28-day compressive strength of 10 MPa and water permeability of 0.50 cm/sec. Plastic concrete has low compressive strength but higher ductility and lower permeability. It is used for creating an impermeable barrier (cut-off wall) for containment of contaminated sites or seepage control in highly permeable dam foundations. This concrete was designed to meet the requirement of 28-day unconfined compressive strength of 1.5 to 2.5 MPa and confined compressive strength of 2.5 to 3.5 Mpa at confining pressure of 4 Kg/cm2. Controlled Low Strength Material (CLSM) or flowable fill mixtures are typically specified and used in place of compacted fill especially for backfill, utility bedding, void fill and bridge approaches. CLSM is a self-compacting, flowable, low strength cementitious material which suits the requirement of different applications such as excavatable backfill and structural backfill. The properties of CLSM that were investigated included bleeding, density of hardened CLSM, permeability and unconfined compressive strength at 7 days and 28 days age.
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Mansori, Mohamed El, and Barney E. Klamecki. "Magnetic Field Effects in Machining Processes and on Manufactured Part Mechanical Characteristics." Journal of Manufacturing Science and Engineering 128, no. 1 (July 20, 2005): 136–45. http://dx.doi.org/10.1115/1.2113007.

Повний текст джерела
Анотація:
A review of research results demonstrating that magnetic fields applied to machining processes and mechanically manufactured parts can have beneficial effects is presented, an explanatory mechanistic model is described, and the model is used to interpret some results. The magnetic field-material interaction model shows an exponential dependence of material behavior and mechanical property changes on applied field strength and material magnetostrictive characteristics. Implications for use of magnetic fields to manipulate tribological processes, control machining processes, and alter material properties are that low field strengths can be useful for treating materials that have large magnetostrictive stain and high magnetic saturation level.
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Sun, Jing, Jing Shun Yuan, Xiao Hong Cong, and Hong Bo Liu. "Experimental Study on Quality Control of Moderate-Strength Commercial Concrete." Applied Mechanics and Materials 174-177 (May 2012): 460–63. http://dx.doi.org/10.4028/www.scientific.net/amm.174-177.460.

Повний текст джерела
Анотація:
For the quality control of commercial concrete, it is important to choose correct raw- material and mixture ratio. C40 and C50 concrete were prepared in dry and cold climate environment, using local raw materials and a large amount of fly ash. Specific researches were made about different kinds and dosage of superplasticizers on the slump of concrete, slump loss and the intensity of the impact. The results show that naphthalene series superplasticizer JK-2 and 30% of fly ash can ensure that slump of the mixture concrete reach more than 180mm, slump loss is less than 30mm in an hour, strength of hardened paste will not be reduced, and concrete can be prepared with low costs.
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Saithongkum, Nathathai, and Karuna Tuchinda. "Study of Properties of 3D Printed Short Carbon Fiber Composite." Key Engineering Materials 841 (May 2020): 182–87. http://dx.doi.org/10.4028/www.scientific.net/kem.841.182.

Повний текст джерела
Анотація:
The properties of composite materials do not depend only on the properties of raw materials but also other parameters such as volume fraction, geometry, dimension and material distribution etc. Carbon fiber reinforced polymer is one of the top choices of composite material because carbon fiber has light weigh with high tensile strength. For fiber-based composite such as carbon fiber composite, directions of carbon fiber with respect to loading direction could also affect to the strength of composite material under load. In this work, the properties of short carbon fiber-resin composite were investigated (fiber length of 0.2 mm.) with two different fiber orientations, i.e. 0 and 90 degrees to applied load. The 3D printing technique was employed in order to control carbon fiber direction and minimize material loss leading to material cost reduction. It was found that 3D printing technique could control direction of fiber in most case. However, at area with high curvature, the unexpected fiber direction was observed due to post hot process during which material flow was expected. It should also be noted that fiber path during 3D printing process may be very crucial as it could result in low strength local area due to low fiber density. This area could promote stress concentration leading to final fracture.
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Bodek, Sophie, and Douglas J. Jerolmack. "Breaking down chipping and fragmentation in sediment transport: the control of material strength." Earth Surface Dynamics 9, no. 6 (December 6, 2021): 1531–43. http://dx.doi.org/10.5194/esurf-9-1531-2021.

Повний текст джерела
Анотація:
Abstract. As rocks are transported, they primarily undergo two breakdown mechanisms: fragmentation and chipping. Fragmentation is catastrophic breakup by fracture in the bulk – either by subcritical crack growth under repeated collisions, or from a single high-energy (supercritical) collision – and produces angular shards. Chipping is a distinct low-energy mechanism of impact attrition that involves shallow cracking; this process rounds river pebbles in a universal manner under bed-load transport. Despite its geophysical significance, the transition from chipping to fragmentation is not well studied. Here, we examine this transition experimentally by measuring the shape and mass evolution of concrete particles of varying strength, subject to repeated collisions in a rotating drum. For sufficiently strong particles, chipping occurred and was characterized by the following: attrition products were orders of magnitude smaller than the parent; attrition rate was insensitive to material strength; and particles experienced monotonic rounding toward a spherical shape. As strength decreased, we observed the onset of a subcritical cracking regime associated with fragmentation: mass of attrition products became larger and more varied; attrition rate was inversely proportional to material strength; and shape evolution fluctuated and became non-monotonic. Our results validate conceptual and numerical models for impact attrition: chipping follows “Sternberg's law” of exponential mass loss through time; for fragmentation, the lifetime of particles increases nonlinearly with material strength, consistent with “Basquin's law” of fatigue failure. We suggest that bedrock erosion models must be clarified to incorporate distinct attrition mechanisms, and that pebble or bedrock-channel shape may be utilized to deduce the operative mechanism in a given environment.
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Solikin, Mochamad. "Compressive Strength Development of High Strength High Volume Fly Ash Concrete by Using Local Material." Materials Science Forum 872 (September 2016): 271–75. http://dx.doi.org/10.4028/www.scientific.net/msf.872.271.

Повний текст джерела
Анотація:
This paper presents a research to produce high strength concrete incorporated with fly ash as cement replacement up to 50% (high volume fly ash concrete) by using local material. The research is conducted by testing the strength development of high volume fly ash concrete at the age of 14 days, 28 days and 56 days. As a control mix, the compressive strength of Ordinary Portland Cement (OPC) concrete without fly ash is used. Both concrete mixtures use low w/c. consequently, they lead to the use of 1 % superplasticizer to reach sufficient workability in the process of casting. The specimens are concrete cubes with the dimension of 15 cm x15 cm x 15 cm. The totals of 24 cubes of HVFA concrete and OPC concrete are used as specimens of testing. The compressive strength design of concrete is 45 MPa and the slump design is ± 10 cm. The result shows that the compressive strengths of OPC concrete at the age of 14 days, 28 days, and 56 days are 38 MPa, 40 MPa, and 42 MPa. Whereas the compressive strength of HVFA concrete in the same age of immersing sequence are 29 MPa, 39 MPa, and 42 MPa. The result indicates that HVFA concrete can reach the similar compressive strength as that of normal concrete especially at the age of 56 days by deploying low water cement ratio.
Стилі APA, Harvard, Vancouver, ISO та ін.

Дисертації з теми "Control low strength material"

1

Du, Lianxiang. "Laboratory investigations of controlled low-strength material." Access restricted to users with UT Austin EID Full text (PDF) from UMI/Dissertation Abstracts International, 2001. http://wwwlib.umi.com/cr/utexas/fullcit?p3031045.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Wagstaff, Kevin Bjorn. "Evaluation of Passive Force on Skewed Bridge Abutments with Controlled Low-Strength Material Backfill." BYU ScholarsArchive, 2016. https://scholarsarchive.byu.edu/etd/5824.

Повний текст джерела
Анотація:
Although its use has become more widespread, controlled low-strength material, or CLSM, has fallen through the crack between geotechnical engineering and materials engineering research. The National Ready Mix Association states that CLSM is not a low strength concrete, and geotechnical engineers do not consider it as a conventional aggregate backfill. The use of CLSM as a bridge abutment backfill material brings up the need to understand the passive force versus backwall displacement relationship for this application. To safely account for forces generated due to seismic activity and thermal expansion in bridge design, it is important to understand the passive force versus backwall displacement relationship. Previous researchers have pointed out the fallacy of designing skewed bridges the same as non-skewed bridges. They observed that as the bridge skew angle increases, the peak passive force is significantly diminished which could lead to poor or even unsafe performance. The literature agrees that a displacement of 3-5% of the wall height is required to mobilize the peak passive resistance. The shape of the passive force displacement curve is best represented as hyperbolic in shape, and the Log Spiral method has been confirmed to be the most accurate at predicting the peak passive force and the shape of the failure plane. All of the previous research on this topic, whether full-scale field tests or large-scale laboratory tests, has been done with dense compacted sand, dense granular backfill, or computer modeling of these types of conventional backfill materials. However, the use of CLSM is increasing because of the product's satisfactory performance as a conventional backfill replacement and the time saving, or economic, benefits. To determine the relationship of passive force versus backwall displacement for a CLSM backfilled bridge abutment, two laboratory large-scale lateral load tests were conducted at skew angles of 0 and 30°. The model backwall was a 4.13 ft (1.26 m) wide and 2 ft (0.61 m) tall reinforced concrete block skewed to either 0 or 30°. The passive force-displacement curves for the two tests were hyperbolic in shape, and the displacement required to reach the peak passive resistance was approximately 0.75-2% of the wall height. The effect of skew angle on the magnitude of passive resistance in the CLSM backfill was much less significant than for conventional backfill materials. However, within displacements of 4-5% of the backwall height, the passive force-displacement curve reached a relatively constant residual or ultimate strength. The residual strength ranged from 20-40% of the measured peak passive resistance. The failure plane did not follow the logarithmic spiral pattern as the conventional backfill materials did. Instead, the failure plane was nearly linear and the failed wedge was displaced more like a block with very low compressive strains.
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Laws, Paul. "Corrosion fatigue performance of welded high strength low alloy steels for use offshore." Thesis, Cranfield University, 1993. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.359541.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Das, Shagata. "Performance Enhancement Of Controlled Low-Strength Grout Material (CLSM) For Annulus Voids Of Sliplined Culverts." University of Akron / OhioLINK, 2021. http://rave.ohiolink.edu/etdc/view?acc_num=akron162828626290938.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Cawood, Gareth James. "Design of a low-cost autonomous guided cart for material handling." Thesis, Nelson Mandela Metropolitan University, 2015.

Знайти повний текст джерела
Анотація:
This dissertation covers the design and manufacture of an autonomous guided cart (AGC) for use in the material handling industry. General Motors South Africa (GMSA) requires a low-cost AGC for use in their Struandale plant. A budget of R35 000 per unit was proposed. The researcher, in collaboration with staff at GM, compiled a list of engineering requirements for the AGC. After research into the unique problems of the project, an examination of a previous design attempt by staff of GM Thailand, the researcher developed a new design, the subject of this report. Different solutions for each design problem were investigated before the design was finalised. A three-wheeled vehicle was designed making use of two motors in a differential-drive setup to control motion. Navigation is via a line-following mechanism, using an induction sensor-array in conjunction with a pre-laid metallic strip. To aid the design, the system was modelled to understand the different control elements at play. The researcher developed software for several aspects of the design: for the PLC controlling the system and motors; for a microcontroller that communicates with the PLC and a wireless module; for a computer server that communicates with a second wireless device, receiving information from the PLC; and a web interface to view this information. These form the SCADA integration of the project. The final product meets the GMSA specifications. It is a robot capable of towing a trolley of mass not exceeding 350 kg. While the robot is able to navigate a pre-laid route, it cannot reliably stop at marked locations. It is possible to monitor the system via a web-interface. The robot is capable of operating for an entire 8-hour shift before the batteries need to be recharged. The total cost of the prototype was R26 340.
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Black, Rebecca Eileen. "Large-Scale Testing of Low-Strength Cellular Concrete for Skewed Bridge Abutments." BYU ScholarsArchive, 2018. https://scholarsarchive.byu.edu/etd/7708.

Повний текст джерела
Анотація:
Low-strength cellular concrete is a type of controlled low-strength material (CLSM) which is increasingly being used for various modern construction applications. Benefits of the material include its ease of placement due to the ability of cellular concrete to self-level and self-compact. It is also extremely lightweight compared to traditional concrete, enabling the concrete to be used in fill applications as a compacted soil would customarily be used. Testing of this material is not extensive, especially in the form of large-scale tests. Additionally, effects of skew on passive force resistance help to understand performance of a material when it is used in an application where skew is present. Two passive force-deflection tests were conducted in the structures lab of Brigham Young University. A 4-ft x 4-ft x 12-ft framed box was built with a steel reaction frame on one end a 120-kip capacity actuator on the other. For the first test a non-skewed concrete block, referred to as the backwall, was placed in the test box in front of the actuator. For the second test a backwall with a 30° skew angle was used. To evaluate the large-scale test a grid was painted on the concrete surface and each point was surveyed before and after testing. The large-scale sample was compressed a distance of approximately three inches, providing a clear surface failure in the sample. The actuator provided data on the load applied, enabling the creation of the passive force-deflection curves. Several concrete cylinders were cast with the same material at the time of pouring for each test and tested periodically to observed strength increase.The cellular concrete for the 0° skew test had an average wet density of 29 pounds per cubic foot and a 28-day compressive strength of 120 pounds per square inch. The cellular concrete for the 30° skew test had an average wet density of 31 pounds per cubic foot and a 28-day compressive strength of 132 pounds per square inch. It was observed from the passive force deflection curves of the two tests that skew decreased the peak passive resistance by 29%, from 52.1 kips to 37 kips. Various methods were used to predict the peak passive resistance and compared with observed behavior to verify the validity of each method.
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Remund, Tyler Kirk. "Large-Scale Testing of Low-Strength Cellular Concrete for Skewed Bridge Abutments." BYU ScholarsArchive, 2017. https://scholarsarchive.byu.edu/etd/7213.

Повний текст джерела
Анотація:
Low-strength cellular concrete consists of a cement slurry that is aerated prior to placement. It remains a largely untested material with properties somewhere between those of soil, geofoam, and typical controlled low-strength material (CLSM). The benefits of using this material include its low density, ease of placement, and ability to self-compact. Although the basic laboratory properties of this material have been investigated, little information exists about the performance of this material in the field, much less the passive resistance behavior of this material in the field.In order to evaluate the use of cellular concrete as a backfill material behind bridge abutments, two large-scale tests were conducted. These tests sought to better understand the passive resistance, the movement required to reach this resistance, the failure mechanism, and skew effects for a cellular concrete backfill. The tests used a pile cap with a backwall face 5.5 ft (1.68 m) tall and 11 ft (3.35 m) wide. The backfill area had walls on either side running parallel to the sides of the pile cap to allow the material to fail in a 2D fashion. The cellular concrete backfill for the 30° skew test had an average wet density of 29.6 pcf (474 kg/m3) and a compressive strength of 57.6 psi (397 kPa). The backfill for the 0° skew test had an average wet density of 28.6 pcf (458 kg/m3) and a compressive strength of 50.9 psi (351 kPa). The pile cap was displaced into the backfill area until failure occurred. A total of two tests were conducted, one with a 30° skew wedge attached to the pile cap and one with no skew wedge attached.It was observed that the cellular concrete backfill mainly compressed under loading with no visible failure at the surface. The passive-force curves showed the material reaching an initial peak resistance after movement equal to 1.7-2.6% of the backwall height and then remaining near this strength or increasing in strength with any further deflection. No skew effects were observed; any difference between the two tests is most likely due to the difference in concrete placement and testing.
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Shah, Jigar. "Laboratory Characterization of controlled low-strength material and its application to construction of flexible pipe drainage system." Ohio University / OhioLINK, 2000. http://rave.ohiolink.edu/etdc/view?acc_num=ohiou1172866182.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Drury, J. A. "An investigation into the fatigue and corrosion fatigue properties of two high strength low alloy steels and their HAZ's." Thesis, Cranfield University, 1992. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.332936.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Aigbomian, Eboziegbe Patrick. "Development of wood-crete building material." Thesis, Brunel University, 2013. http://bura.brunel.ac.uk/handle/2438/13445.

Повний текст джерела
Анотація:
Main concerns in the building industry includes the development of alternative building materials that reduces the amount of energy spent during manufacturing process and easier to work with. Wood-crete is a composite material developed in this study, made up of wood waste (sawdust), paper, tradical lime and water. Wood-crete is developed to provide an alternative material in construction solving problems associated with the delivery of low-cost housing across all income earners, reducing the amount of energy spent during manufacturing process of construction materials and the ease with which these construction materials are developed and solve issues related to waste management. This thesis presents the processing technologies, factors which affect the performance and properties of wood-crete. Wood-crete properties were found to be closely related to the composition of the constituent elements though compressive strength and modulus of elasticity were low when compared to other building materials like concrete and steel. In a bid to improve the strength of the developed wood-crete, the properties were investigated based on the modification of sawdust by hot water boiling and alkaline treatments which help to modify cellulose fibre surface to reduce the hydrophilic nature of sawdust thereby improving the sawdust-matrix bonding. It was found that the surface modification, processing of cellulosic fibril and the extraction of lignin and hemi-cellulosic compounds with alkali had an effect on the compressive strength of wood-crete, with treating sawdust with 4% NaOH at 140mins of boiling time achieving the highest compressive strength and boiling sawdust from 100mins to 140mins had a gradual increase in compressive strength but reduced at higher boiling time. Furthermore, treating sawdust with NaOH more than 4% weakened the individual wood particles thus leading to poor strength of wood-crete. Additionally, the properties of wood-crete were investigated based on the type of wood sawdust – hardwood (beech and oak) and softwood (pine and cedar). Apart from individual wood density having a significant effect on the density of wood-crete, other factors such as lignin, cellulose, hemicellulose contents including fibre length of individual wood species affect the strength properties of wood-crete. The compressive strength of wood-crete was closely related to the wood species, with highest compressive strength of 3.93MPa recorded for hardwood wood-crete compared to 1.37MPa and 0.26MPa of wood-crete from softwood and mixed wood respectively. Results from thermal conductivity tests on wood-crete also show that wood-crete blocks can be produced with good insulating properties for building construction. Addition of different types of paper fibres to reduce the density of wood-crete and improve the insulating properties of composite developed also had a dominant influence on both strength and thermal conductivity, reflecting its effect on the structure of composite and contribution of self strength of paper fibres. The addition of various percentages of waste paper (de-fibred) had a significant influence on the thermal conductivity of wood-crete with 75% addition of waste paper achieving a thermal conductivity value of 0.046W/mK performed with the TCi thermal conductivity analyser. Thermal conductivity results for wood-crete made from hardwood and softwood sawdust was closely related to the chemical composition of various wood species, with softwood wood-crete having about 20% lower thermal conductivity compared to hardwood wood-crete. The developed wood-crete was able to withstand impact load and considered, like hempcrete, most suitable for wall panelling or other non- and semi-structural applications with good thermal insulating properties. Findings of this study provides an alternative new material for the construction industry and an important background for achieving better strength of wood-crete, choosing what type of sawdust to be used for development of wood-crete and for directing a better use of this potential material with very small embodied energy and carbon negative.
Стилі APA, Harvard, Vancouver, ISO та ін.

Книги з теми "Control low strength material"

1

W, Farrar Jerry, and Geological Survey (U.S.), eds. Report on the U.S. Geological Survey's evaluation program for standard reference samples distributed in May 1995: T-135 (trace constituents), M-134 (major constituents), N-45 (nutrients), N-46 (nutrients), P-24 (low ionic strength), Hg-20 (mercury), and SED-5 (bed material). Golden, Colo: U.S. Dept. of the Interior, U.S. Geological Survey, 1995.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

W, Farrar Jerry, and Geological Survey (U.S.), eds. Report on the U.S. Geological Survey's evaluation program for standard reference samples distributed in May 1995: T-135 (trace constituents), M-134 (major constituents), N-45 (nutrients), N-46 (nutrients), P-24 (low ionic strength), Hg-20 (mercury), and SED-5 (bed material). Golden, Colo: U.S. Dept. of the Interior, U.S. Geological Survey, 1995.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

W, Farrar Jerry, and Geological Survey (U.S.), eds. Report on the U.S. Geological Survey's evaluation program for standard reference samples distributed in May 1995: T-135 (trace constituents), M-134 (major constituents), N-45 (nutrients), N-46 (nutrients), P-24 (low ionic strength), Hg-20 (mercury), and SED-5 (bed material). Golden, Colo: U.S. Dept. of the Interior, U.S. Geological Survey, 1995.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

W, Farrar Jerry, and Geological Survey (U.S.), eds. Report on the U.S. Geological Survey's evaluation program for standard reference samples distributed in May 1995: T-135 (trace constituents), M-134 (major constituents), N-45 (nutrients), N-46 (nutrients), P-24 (low ionic strength), Hg-20 (mercury), and SED-5 (bed material). Golden, Colo: U.S. Dept. of the Interior, U.S. Geological Survey, 1995.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

W, Farrar Jerry, and Geological Survey (U.S.), eds. Report on the U.S. Geological Survey's evaluation program for standard reference samples distributed in May 1995: T-135 (trace constituents), M-134 (major constituents), N-45 (nutrients), N-46 (nutrients), P-24 (low ionic strength), Hg-20 (mercury), and SED-5 (bed material). Golden, Colo: U.S. Dept. of the Interior, U.S. Geological Survey, 1995.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

W, Farrar Jerry, and Geological Survey (U.S.), eds. Report on the U.S. Geological Survey's evaluation program for standard reference samples distributed in May 1995: T-135 (trace constituents), M-134 (major constituents), N-45 (nutrients), N-46 (nutrients), P-24 (low ionic strength), Hg-20 (mercury), and SED-5 (bed material). Golden, Colo: U.S. Dept. of the Interior, U.S. Geological Survey, 1995.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

W, Farrar Jerry, and Geological Survey (U.S.), eds. Report on the U.S. Geological Survey's evaluation program for standard reference samples distributed in May 1995: T-135 (trace constituents), M-134 (major constituents), N-45 (nutrients), N-46 (nutrients), P-24 (low ionic strength), Hg-20 (mercury), and SED-5 (bed material). Golden, Colo: U.S. Dept. of the Interior, U.S. Geological Survey, 1995.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

W, Farrar Jerry, and Geological Survey (U.S.), eds. Report on the U.S. Geological Survey's evaluation program for standard reference samples distributed in May 1995: T-135 (trace constituents), M-134 (major constituents), N-45 (nutrients), N-46 (nutrients), P-24 (low ionic strength), Hg-20 (mercury), and SED-5 (bed material). Golden, Colo: U.S. Dept. of the Interior, U.S. Geological Survey, 1995.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Hitch, JL, AK Howard, and WP Baas, eds. Innovations in Controlled Low-Strength Material (Flowable Fill). 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959: ASTM International, 2004. http://dx.doi.org/10.1520/stp1459-eb.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Weber, L. Controlled density low strength material backfill in Illinois. S.l: s.n, 1987.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Частини книг з теми "Control low strength material"

1

Das, Bijaya Kumar, S. K. Das, and Benu Gopal Mohapatra. "Red Mud as a Controlled Low Strength Material." In Recent Developments in Sustainable Infrastructure, 831–40. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-4577-1_70.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Singh, Suresh Prasad, K. Bhagya, and Manaswini Mishra. "Properties of Fly Ash-Based Controlled Low Strength Material." In Lecture Notes in Civil Engineering, 229–44. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-6086-6_19.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Uchibagle, Minakshi, and B. Ram Rathan Lal. "Strength and Flow Characteristics of Controlled Low Strength Material by Using Industrial Byproduct." In Lecture Notes in Civil Engineering, 287–96. Singapore: Springer Nature Singapore, 2022. http://dx.doi.org/10.1007/978-981-19-4731-5_27.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Dev, K. Lini, and R. G. Robinson. "Cyclic Behaviour of Pond Ash-Based Controlled Low Strength Material." In Lecture Notes in Civil Engineering, 609–21. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-6086-6_50.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Zhao, Wen, Yingbiao Wu, Jinjin Shi, and Jinyan Liu. "Properties of Low Strength and High Fluidity Recycled Aggregates." In Infrastructure Sustainability Through New Developments in Material, Design, Construction, Maintenance, and Testing of Pavements, 47–56. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-79644-0_5.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Singh, Vinay Kumar, and Sarat Kumar Das. "Engineering Properties of Industrial By-Products-Based Controlled Low-Strength Material." In Lecture Notes in Civil Engineering, 277–94. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-6237-2_24.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Ohta, Akihiko, Naoyuki Suzuki, and Yoshio Maeda. "Doubled Fatigue Strength of Box Welds by Using Low Transformation Temperature Welding Material." In Properties of Complex Inorganic Solids 2, 401–8. Boston, MA: Springer US, 2000. http://dx.doi.org/10.1007/978-1-4615-1205-9_29.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Esderts, Alfons, Volker Wesling, Rainer Masendorf, A. Schram, and Tim Medhurst. "Low Heat Joining – Manufacture and Fatigue of Soldered Locally Strengthened Structures." In Creation of High-Strength Structures and Joints by Setting up Local Material Properties, 101–11. Stafa: Trans Tech Publications Ltd., 2007. http://dx.doi.org/10.4028/0-87849-455-3.101.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Jiang, Min, and Xinhua Wang. "Influence of Refractory Material on the Formation Low-Melting-Point Inclusions." In Slag-Steel Reaction and Control of Inclusions in Al Deoxidized Special Steel, 139–56. Singapore: Springer Nature Singapore, 2022. http://dx.doi.org/10.1007/978-981-19-3463-6_6.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Wesling, Volker, and T. Rekersdrees. "Material Aligned Process Control for the Welding Technology of Locally Hardened Materials." In Creation of High-Strength Structures and Joints by Setting up Local Material Properties, 77–82. Stafa: Trans Tech Publications Ltd., 2007. http://dx.doi.org/10.4028/0-87849-455-3.77.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Тези доповідей конференцій з теми "Control low strength material"

1

Vargas, Pedro M. "Tensile Strength of a Girth Weld With a Low-Strength AWSR45 Buttering Layer." In ASME 2005 Pressure Vessels and Piping Conference. ASMEDC, 2005. http://dx.doi.org/10.1115/pvp2005-71507.

Повний текст джерела
Анотація:
A four-metal connection, in which a carbon steel pipe is welded to duplex stainless steel pipe, is analyzed. The four metals are shown in Table 1. A106B and 2205 Duplex are the two different pipe materials, 2209 is the weld filler material, and AWSR45 is the buttering layer that is used to control the cracking susceptibility of the welded girth joint. (Butter and buttering refer to the welding of a layer of low strength material, AWSR45 in this case, and are commonly used terms within the welding community). Due to the lower strength of the AWSR45 material, the question arises whether this joint performance would affect pressure containment capacity and meet the B31.3 code (and API 1104) tensile strength requirements. Nonlinear FEA [1] was used to determine the girth weld joint pressure containment capacity and evaluate tensile strength requirements. This study found that: 1. The butter layer has no effect on burst capacity for typical weld dimensions.2. The acceptable butter layer may approach approximately 70% of the wall thickness for approximated real material properties. However, a full pipe cross-section test will be required to show that the weld joint has the necessary strength.3. If this is impractical, a lower butter limit of 25% of wall thickness would be necessary for the API-1104 recommended 1-inch wide tensile specimen to show that the weld joint has the necessary strength assuming approximated real material properties.4. Strains exceeding 50% in the soft AWRS45 layer are possible in the root, face or side bend test. This may cause tearing making the code requirements difficult to meet.5. The AWRS45 material must exhibit a smooth continuously increasing hardening behavior. If the soft AWRS45 layer exhibits lu¨der-band type tensile instabilities, the recommendations in this study may need to be revisited. In this study analyses is limited to the single-slope bevel and the double-slope bevel geometries recommended in [2] (See Figure 1). Any significant deviation from the specific materials and geometry may justify follow-up FEA analyses efforts prior to weld qualification. In particular, it may be possible to increase the allowable butter length for different weld geometries (e.g. J-bevel) than the two explored in this study. Also, for the full cross-section tensile case, additional 3-dimensional analyses may be needed to ensure that all possible modes of strain localization (e.g. non-axisymmetric deformation modes) have been addressd.
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Cameron, Kimberly, and Alfred M. Pettinger. "Effectiveness of Hydrostatic Testing for High Strength Pipe Material." In 2010 8th International Pipeline Conference. ASMEDC, 2010. http://dx.doi.org/10.1115/ipc2010-31426.

Повний текст джерела
Анотація:
Pipeline systems are typically subjected to hydrostatic testing to help ensure pipeline integrity. It can be desirable to use the highest feasible test pressure to eliminate as many defects as possible. It is widely accepted that safe control of yielding can be achieved during hydrostatic testing and that the hydrostatic testing does not create a stress state that is less safe from the standpoint of pre-existing flaws. For a small percentage of cases, however, hydrostatic testing can produce flaws that were longer than the ones removed. In these few cases, the flaws can then fail at a lower test pressure than the original hydrostatic test. The low probability of these events, however, means that the effectiveness of the hydrostatic test is not significantly diminished in this case. Because crack growth from a pre-existing flaw is retarded in a plastically deformed material, it is also typically assumed that hydrostatic testing should not lead to accelerated crack growth. However, this does not take into account that the hydrostatic testing itself can cause some increment in crack growth and that for many higher strength pipe materials significantly large defects can survive hydrostatic testing. These longer defects can potentially grow after surviving a hydrostatic test. This paper discusses this difference in crack growth rates for cracks that have survived hydrostatic testing in different grade pipeline steels and the implications for hydrostatic testing.
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Jiao, Shuangjian, Mengyang Cao, and Yanjun Li. "Impact research of solid waste on the strength of low carbon building materials." In 2011 International Conference on Electrical and Control Engineering (ICECE). IEEE, 2011. http://dx.doi.org/10.1109/iceceng.2011.6058160.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Loganayagan, S. "Study on Controlled Low Strength Materials using GGBS with Dredged Soil and M-Sand." In Sustainable Materials and Smart Practices. Materials Research Forum LLC, 2022. http://dx.doi.org/10.21741/9781644901953-39.

Повний текст джерела
Анотація:
Abstract. In general, CLSM mixtures contain common ingredients such as Portland cement, fly ash, good mixing and water. CLSM is forced to fill in the back material and not low-strength concrete, rather it can best be described as property which is designed as concrete and strength flow and strength as per requirement and used as a backfill to avoid soil issues. CLSM can be built with a variety of strengths and sizes, taking into account costs future requirements, low power CLSM will be required to allow future excavation, and if there is no space for future digging the energy can be high on the other hand, furthering the size of CLSM can be adjusted according to the cost and material requirements. However, some industrial products and recycled products are also accepted and promoted as long as they are available, costing a particular use and the necessary characteristics of a combination such as flow, power, extraction, and quantity are acceptable. The aim of this study was to test whether it was possible to apply red mud such as placing a portion of Portland cement in a low-power controlled (CLSM) component made of industrial-grade products. The control mixture was initially made from the Portland cement, fly ash, and water. Bleeding, flow, the initial time for the setting of new CLSM compounds is measured and subsequent complications include compression. Results-They performed well and complied with CLSM requirements at ACI 229 levels in terms of flow, bleeding rate, initial set-up time, uncompressed compression strength. Low power control devices (CLSM) remove the problems of ground receding to provide the strength of the supporting structure.
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Hasenhütl, Andre, Marion Erdelen-Peppler, Christoph Kalwa, Martin Pant, and Andreas Liessem. "Crack Arrest Testing of High Strength Steels." In 2012 9th International Pipeline Conference. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/ipc2012-90120.

Повний текст джерела
Анотація:
Fracture propagation is a major concern for the safe operation of gas transmission pipelines. Ductile fracture resistance, which is required according to line pipe standards, is commonly assessed by Charpy impact testing. If fracture occurs during pipe operation, fracture propagation is required to appear in ductile manner. The prerequisite for this is the demonstration of sufficient shear fracture in the BDWT test and minimum required Charpy impact energy. A combination of both requirements ensures avoidance of brittle fracture as well as control of ductile fracture propagation. The experimental chain of evidence and the Battelle-Two-Curve (BTC) model which is the most widely applied model to predict resistance against fracture propagation have been developed on basis of welded pipes of grade ≤ X70. The model has been calibrated against test data obtained from pipes with Charpy impact energy values below 100 J. In recent years, new material concepts were developed to increase material strength and material toughness. On the one hand, increase in material toughness, which is evaluated by Charpy impact testing, is often achieved by an increase in crack initiation resistance. On the other hand, crack propagation resistance, which is determined by BDWT testing with an instrumented striker, can remain on the same level. Increased material toughness and crack initiation resistance can be manifested by incomplete fracture of Charpy impact specimens in the upper shelf (ductile fracture). Actual Charpy impact test standards for metallic materials do not coincide with each other regarding the validity of Charpy energy of unbroken specimens. Increased crack initiation resistance also affects fracture initiation mechanism in BDWT tests, leading to invalid test results according test standards. Invalidity can be expressed by inverse fracture appearance. To avoid inverse fracture, crack initiation energy can be reduced by changing notch type and therefore changing the constraint in the root of the notch. BDWT test standards also do not agree with each other concerning allowable notch types. While the pressed notch type is the preferred one for low toughness steels and the Chevron notch type for higher toughness steels according some test standards, other test standards allow only for a pressed notch type. Being semi-empirical by nature, the BTC concept strongly depends on the input parameters derived from different material tests. Changing test conditions can have a direct impact on the assessment results.
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Yasui, Toshiaki, Yuki Ogura, Xu Huilin, F. Farrah Najwa, Daichi Sugimoto, Atsushi Ito, and Masahiro Fukumoto. "Control of Material Flow During Friction Stir Welding Between Aluminum and Steel by Welding Tool Shape." In JSME 2020 Conference on Leading Edge Manufacturing/Materials and Processing. American Society of Mechanical Engineers, 2020. http://dx.doi.org/10.1115/lemp2020-8594.

Повний текст джерела
Анотація:
Abstract For the Friction stir welding (FSW) between aluminum and steel is important to fabricate vehicles with light weight and high strength for safety at low cost. For the fabrication of sound weld, it is necessary to control the material flow during FSW. In this study, the material flow during FSW was elucidated by numerical simulation by computational fluid dynamics (CFD) analysis and simulation experiment by transparent Poly-vinyle chloride (PVC) as simulant of aluminum and tracer material. Based on this material flow analysis, several shapes of welding tool were examined for control of material flow during FSW. Scroll shoulder is effective for enhancement of stirring zone by increasing material velocity around the probe. Flute and fine screw probe promote the material flow in depth and horizontal direction. The welding tool with scroll shoulder and flute and fine screw probe achieved sound weld with highest tensile strength of 120.4 MPa.
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Van den Abeele, F., J. Peirs, P. Verleysen, F. Oikonomides, and J. Van Wittenberghe. "Dynamic Behaviour of High Strength Pipeline Steel." In 2012 9th International Pipeline Conference. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/ipc2012-90224.

Повний текст джерела
Анотація:
The occurrence of a longitudinal crack propagating along a gas pipeline is a catastrophic event, which involves both economic losses and environmental damage. Hence, the fracture propagation control is essential to ensure pipeline integrity. The commonly used ductile fracture control strategy for the design of high pressure pipelines is the Battelle Two Curve Method. This approach stipulates that if there is a crack speed at a given pressure that exceeds the gas decompression velocity at the same pressure, propagation will occur. However, for high strength pipeline steels, this method does not yield conservative predictions, as the absorbed impact energy during a Charpy test no longer reflects the actual burst behaviour of the pipe. Enhanced toughness measures, like Crack Tip Opening Angle and instrumented Battelle Drop Weight Tear test are being proposed as alternative options. These emerging toughness tests are complemented by numerical simulations of ductile crack propagation and arrest. Most of these models are based on the computation of void growth, and account for the local softening of the material due to void growth and subsequent coalescence. The constitutive behaviour of the sound pipeline steel is often modelled as merely an elastoplastic law, measured under quasi-static conditions. However, both Charpy tests and Battelle tests are dynamic events, which require knowledge of the strain rate sensitivity of the pipeline material. In addition, very high strain rates can occur in the vicinity of a running crack in a high pressure gas pipeline. Hence, the constitutive model for the pipeline steel has to account for strain rate sensitivity. In this paper, Split Hopkinson Tensile Bar (SHTB) experiments are reported on high strength pipeline steel. Notched tensile tests are performed at high strain rates, to assess the influence of both strain rate sensitivity and triaxiality on the response of the material. In addition, dynamic experiments are conducted at low temperatures (−70°C) to evaluate the ductility of pipeline steel under such severe conditions. The results allow discriminating between the effects of strain rate, triaxiality and temperature, and provide reliable experimental data to accurately model the constitutive behaviour of high strength pipeline steel.
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Rudland, D., Y. Chen, T. Zhang, G. Wilkowski, J. Broussard, and G. White. "Comparison of Welding Residual Stress Solutions for Control Rod Drive Mechanism Nozzles." In ASME 2007 Pressure Vessels and Piping Conference. ASMEDC, 2007. http://dx.doi.org/10.1115/pvp2007-26045.

Повний текст джерела
Анотація:
In the last 7 years, the incidences of cracking in Alloy 600 control rod drive mechanism (CRDM) tubes and their associated welds have increased significantly. The cracking mechanism has been attributed to pressurized water stress corrosion cracking (PWSCC) and has been shown to be driven by welding residual stresses and operational stresses in the weld region. During this time period, both the industry and the US Nuclear Regulatory Commission have been conducting detailed welding simulation analyses to predict the magnitude of these stresses in both the weld and tube material. To this point, a direct comparison of these analysis methodologies and results has not been made. In this paper, weld residual stress results from U.S. industry (conducted by Dominion Engineering) and the U.S. NRC (conducted by Engineering Mechanics Corporation of Columbus) for a steep angle (53 degrees) CRDM nozzle are compared. This comparison was performed for different yield strength tube materials, however only the low yield strength results are presented in this paper. The comparison illustrates the effect of weld analyses assumptions and suggests that simplifications in the analyses, i.e., lumping weld passes or material property assumptions, may lead to high predicted weld residual stresses.
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Wijeyeratne, Navindra, Firat Irmak, and Ali P. Gordon. "Crystal Visco-Plastic Model for Directionally Solidified Ni-Base Superalloys Under Monotonic and Low Cycle Fatigue." In ASME Turbo Expo 2021: Turbomachinery Technical Conference and Exposition. American Society of Mechanical Engineers, 2021. http://dx.doi.org/10.1115/gt2021-59581.

Повний текст джерела
Анотація:
Abstract Nickel-base superalloys (NBSAs) are extensively utilized as the design materials to develop turbine blades in gas turbines due to their excellent high-temperature properties. Gas turbine blades are exposed to extreme loading histories that combine high mechanical and thermal stresses. Both directionally solidified (DS) and single crystal NBSAs are used throughout the industry because of their superior tensile and creep strength, excellent low cycle fatigue (LCF), high cycle fatigue (HCF), and thermomechanical fatigue (TMF) capabilities. Directional solidification techniques facilitated the solidification structure of the materials to be composed of columnar grains in parallel to the <001> direction. Due to grains being the sites of failure initiation the elimination of grain boundaries compared to polycrystals and the alignment of grain boundaries in the normal to stress axis increases the strength of the material at high temperatures. To develop components with superior service capabilities while reducing the development cost, simulating the material’s performance at various loading conditions is extremely advantageous. To support the mechanical design process, a framework consisting of theoretical mechanics, numerical simulations, and experimental analysis is required. The absence of grain boundaries transverse to the loading direction and crystallographic special orientation cause the material to exhibit anisotropic behavior. A framework that can simulate the physical attributes of the material microstructure is crucial in developing an accurate constitutive model. The plastic flow acting on the crystallographic slip planes essentially controls the plastic deformation of the material. Crystal Visco-Plasticity (CVP) theory integrates this phenomenon to describe the effects of plasticity more accurately. CVP constitutive models can capture the orientation, temperature, and rate dependence of these materials under a variety of conditions. The CVP model is initially developed for SX material and then extended to DS material to account for the columnar grain structure. The formulation consists of a flow rule combined with an internal state variable to describe the shearing rate for each slip system. The model presented includes the inelastic mechanisms of kinematic and isotropic hardening, orientation, and temperature dependence. The crystallographic slip is accounted for by including the required octahedral, cubic, and cross slip systems. The CVP model is implemented through a general-purpose finite element analysis software (i.e., ANSYS) as a User-Defined Material (USERMAT). Uniaxial experiments were conducted in key orientations to evaluate the degree of elastic and inelastic anisotropy. The temperature-dependent modeling parameter is developed to perform non-isothermal simulations. A numerical optimization scheme is utilized to develop the modeling constant to improve the calibration of the model. The CVP model can simulate material behavior for DS and SX NBSAs for monotonic and cyclic loading for a range of material orientations and temperatures.
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Al-Hulwah, Khalid I., and Reza Kashani. "Floor Vibration Control Using Three-Degree-of-Freedom Tuned Mass Dampers." In ASME 2004 International Mechanical Engineering Congress and Exposition. ASMEDC, 2004. http://dx.doi.org/10.1115/imece2004-60106.

Повний текст джерела
Анотація:
The use of high-strength material in buildings has resulted in the use of less building materials and, consequently, a high level of flexibility in buildings, making them vibration prone. For example, high-strength concrete has lowered the thickness of concrete slabs used in the floors of steel/concrete buildings, such as office buildings and shopping centers, resulting in excessive floor vibration stemming from heavy traffic and normal human activity. Although not dangerous, such vibration is highly annoying to the occupants of the building. The authors have been working on the use of three-degree-of-freedom (3-DOF) tuned mass dampers (TMD) to abate floor vibration. Such TMDs can provide improved effectiveness over a traditional one-degree-of-freedom TMD and yet possess all of the attractive features of a traditional TMD; namely, simplicity and low cost. As in a 1-DOF TMD, this device will be installed on a concrete floor slab, at an optimally designed/chosen location.
Стилі APA, Harvard, Vancouver, ISO та ін.

Звіти організацій з теми "Control low strength material"

1

Langton, C. A. Bleed water testing program for controlled low strength material. Office of Scientific and Technical Information (OSTI), November 1996. http://dx.doi.org/10.2172/561101.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Langton, C. A., and N. Rajendran. Utilization of SRS pond ash in controlled low strength material. Technical report. Office of Scientific and Technical Information (OSTI), December 1995. http://dx.doi.org/10.2172/501571.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

GE Fryxell, KL Alford, KL Simmons, RD Voise, and WD Samuels. FY98 Final Report Initial Interfacial Chemical Control for Enhancement of Composite Material Strength. Office of Scientific and Technical Information (OSTI), October 1999. http://dx.doi.org/10.2172/13781.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Pauul J. Tikalsky. Excess Foundry Sand Characterization and Experimental Investigation in Controlled Low-Strength Material and Hot-Mixing Asphalt. Office of Scientific and Technical Information (OSTI), October 2004. http://dx.doi.org/10.2172/839309.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Tikalsky, Paul J., Hussain U. Bahia, An Deng, and Thomas Snyder. Excess Foundry Sand Characterization and Experimental Investigation in Controlled Low-Strength Material and Hot-Mixing Asphalt. Office of Scientific and Technical Information (OSTI), October 2004. http://dx.doi.org/10.2172/861001.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Joy, D. R. Acceptable standard format and content for the fundamental nuclear material control (FNMC) plan required for low-enriched uranium facilities. Revision 2. Office of Scientific and Technical Information (OSTI), December 1995. http://dx.doi.org/10.2172/197146.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Moran, B., W. Belew, G. Hammond, and L. Brenner. Recommendations to the NRC on acceptable standard format and content for the Fundamental Nuclear Material Control (FNMC) Plan required for low-enriched uranium enrichment facilities. Office of Scientific and Technical Information (OSTI), November 1991. http://dx.doi.org/10.2172/5978296.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Thornell, Travis, Charles Weiss, Sarah Williams, Jennifer Jefcoat, Zackery McClelland, Todd Rushing, and Robert Moser. Magnetorheological composite materials (MRCMs) for instant and adaptable structural control. Engineer Research and Development Center (U.S.), November 2020. http://dx.doi.org/10.21079/11681/38721.

Повний текст джерела
Анотація:
Magnetic responsive materials can be used in a variety of applications. For structural applications, the ability to create tunable moduli from relatively soft materials with applied electromagnetic stimuli can be advantageous for light-weight protection. This study investigated magnetorheological composite materials involving carbonyl iron particles (CIP) embedded into two different systems. The first material system was a model cementitious system of CIP and kaolinite clay dispersed in mineral oil. The magnetorheological behaviors were investigated by using parallel plates with an attached magnetic accessory to evaluate deformations up to 1 T. The yield stress of these slurries was measured by using rotational and oscillatory experiments and was found to be controllable based on CIP loading and magnetic field strength with yield stresses ranging from 10 to 104 Pa. The second material system utilized a polystyrene-butadiene rubber solvent-cast films with CIP embedded. The flexible matrix can stiffen and become rigid when an external field is applied. For CIP loadings of 8% and 17% vol %, the storage modulus response for each loading stiffened by 22% and 74%, respectively.
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Chefetz, Benny, Baoshan Xing, Leor Eshed-Williams, Tamara Polubesova, and Jason Unrine. DOM affected behavior of manufactured nanoparticles in soil-plant system. United States Department of Agriculture, January 2016. http://dx.doi.org/10.32747/2016.7604286.bard.

Повний текст джерела
Анотація:
The overall goal of this project was to elucidate the role of dissolved organic matter (DOM) in soil retention, bioavailability and plant uptake of silver and cerium oxide NPs. The environmental risks of manufactured nanoparticles (NPs) are attracting increasing attention from both industrial and scientific communities. These NPs have shown to be taken-up, translocated and bio- accumulated in plant edible parts. However, very little is known about the behavior of NPs in soil-plant system as affected by dissolved organic matter (DOM). Thus DOM effect on NPs behavior is critical to assessing the environmental fate and risks related to NP exposure. Carbon-based nanomaterials embedded with metal NPs demonstrate a great potential to serve as catalyst and disinfectors. Hence, synthesis of novel carbon-based nanocomposites and testing them in the environmentally relevant conditions (particularly in the DOM presence) is important for their implementation in water purification. Sorption of DOM on Ag-Ag₂S NPs, CeO₂ NPs and synthesized Ag-Fe₃O₄-carbon nanotubebifunctional composite has been studied. High DOM concentration (50mg/L) decreased the adsorptive and catalytic efficiencies of all synthesized NPs. Recyclable Ag-Fe₃O₄-carbon nanotube composite exhibited excellent catalytic and anti-bacterial action, providing complete reduction of common pollutants and inactivating gram-negative and gram-positive bacteria at environmentally relevant DOM concentrations (5-10 mg/L). Our composite material may be suitable for water purification ranging from natural to the industrial waste effluents. We also examined the role of maize (Zeamays L.)-derived root exudates (a form of DOM) and their components on the aggregation and dissolution of CuONPs in the rhizosphere. Root exudates (RE) significantly inhibited the aggregation of CuONPs regardless of ionic strength and electrolyte type. With RE, the critical coagulation concentration of CuONPs in NaCl shifted from 30 to 125 mM and the value in CaCl₂ shifted from 4 to 20 mM. This inhibition was correlated with molecular weight (MW) of RE fractions. Higher MW fraction (> 10 kDa) reduced the aggregation most. RE also significantly promoted the dissolution of CuONPs and lower MW fraction (< 3 kDa) RE mainly contributed to this process. Also, Cu accumulation in plant root tissues was significantly enhanced by RE. This study provides useful insights into the interactions between RE and CuONPs, which is of significance for the safe use of CuONPs-based antimicrobial products in agricultural production. Wheat root exudates (RE) had high reducing ability to convert Ag+ to nAg under light exposure. Photo-induced reduction of Ag+ to nAg in pristine RE was mainly attributed to the 0-3 kDa fraction. Quantification of the silver species change over time suggested that Cl⁻ played an important role in photoconversion of Ag+ to nAg through the formation and redox cycling of photoreactiveAgCl. Potential electron donors for the photoreduction of Ag+ were identified to be reducing sugars and organic acids of low MW. Meanwhile, the stabilization of the formed particles was controlled by both low (0-3 kDa) and high (>3 kDa) MW molecules. This work provides new information for the formation mechanism of metal nanoparticles mediated by RE, which may further our understanding of the biogeochemical cycling and toxicity of heavy metal ions in agricultural and environmental systems. Copper sulfide nanoparticles (CuSNPs) at 1:1 and 1:4 ratios of Cu and S were synthesized, and their respective antifungal efficacy was evaluated against the pathogenic activity of Gibberellafujikuroi(Bakanae disease) in rice (Oryza sativa). In a 2-d in vitro study, CuS decreased G. fujikuroiColony- Forming Units (CFU) compared to controls. In a greenhouse study, treating with CuSNPs at 50 mg/L at the seed stage significantly decreased disease incidence on rice while the commercial Cu-based pesticide Kocide 3000 had no impact on disease. Foliar-applied CuONPs and CuS (1:1) NPs decreased disease incidence by 30.0 and 32.5%, respectively, which outperformed CuS (1:4) NPs (15%) and Kocide 3000 (12.5%). CuS (1:4) NPs also modulated the shoot salicylic acid (SA) and Jasmonic acid (JA) production to enhance the plant defense mechanisms against G. fujikuroiinfection. These results are useful for improving the delivery efficiency of agrichemicals via nano-enabled strategies while minimizing their environmental impact, and advance our understanding of the defense mechanisms triggered by the NPs presence in plants.
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Hunter, Fraser, and Martin Carruthers. Iron Age Scotland. Society for Antiquaries of Scotland, September 2012. http://dx.doi.org/10.9750/scarf.09.2012.193.

Повний текст джерела
Анотація:
The main recommendations of the panel report can be summarised under five key headings:  Building blocks: The ultimate aim should be to build rich, detailed and testable narratives situated within a European context, and addressing phenomena from the longue durée to the short-term over international to local scales. Chronological control is essential to this and effective dating strategies are required to enable generation-level analysis. The ‘serendipity factor’ of archaeological work must be enhanced by recognising and getting the most out of information-rich sites as they appear. o There is a pressing need to revisit the archives of excavated sites to extract more information from existing resources, notably through dating programmes targeted at regional sequences – the Western Isles Atlantic roundhouse sequence is an obvious target. o Many areas still lack anything beyond the baldest of settlement sequences, with little understanding of the relations between key site types. There is a need to get at least basic sequences from many more areas, either from sustained regional programmes or targeted sampling exercises. o Much of the methodologically innovative work and new insights have come from long-running research excavations. Such large-scale research projects are an important element in developing new approaches to the Iron Age.  Daily life and practice: There remains great potential to improve the understanding of people’s lives in the Iron Age through fresh approaches to, and integration of, existing and newly-excavated data. o House use. Rigorous analysis and innovative approaches, including experimental archaeology, should be employed to get the most out of the understanding of daily life through the strengths of the Scottish record, such as deposits within buildings, organic preservation and waterlogging. o Material culture. Artefact studies have the potential to be far more integral to understandings of Iron Age societies, both from the rich assemblages of the Atlantic area and less-rich lowland finds. Key areas of concern are basic studies of material groups (including the function of everyday items such as stone and bone tools, and the nature of craft processes – iron, copper alloy, bone/antler and shale offer particularly good evidence). Other key topics are: the role of ‘art’ and other forms of decoration and comparative approaches to assemblages to obtain synthetic views of the uses of material culture. o Field to feast. Subsistence practices are a core area of research essential to understanding past society, but different strands of evidence need to be more fully integrated, with a ‘field to feast’ approach, from production to consumption. The working of agricultural systems is poorly understood, from agricultural processes to cooking practices and cuisine: integrated work between different specialisms would assist greatly. There is a need for conceptual as well as practical perspectives – e.g. how were wild resources conceived? o Ritual practice. There has been valuable work in identifying depositional practices, such as deposition of animals or querns, which are thought to relate to house-based ritual practices, but there is great potential for further pattern-spotting, synthesis and interpretation. Iron Age Scotland: ScARF Panel Report v  Landscapes and regions:  Concepts of ‘region’ or ‘province’, and how they changed over time, need to be critically explored, because they are contentious, poorly defined and highly variable. What did Iron Age people see as their geographical horizons, and how did this change?  Attempts to understand the Iron Age landscape require improved, integrated survey methodologies, as existing approaches are inevitably partial.  Aspects of the landscape’s physical form and cover should be investigated more fully, in terms of vegetation (known only in outline over most of the country) and sea level change in key areas such as the firths of Moray and Forth.  Landscapes beyond settlement merit further work, e.g. the use of the landscape for deposition of objects or people, and what this tells us of contemporary perceptions and beliefs.  Concepts of inherited landscapes (how Iron Age communities saw and used this longlived land) and socal resilience to issues such as climate change should be explored more fully.  Reconstructing Iron Age societies. The changing structure of society over space and time in this period remains poorly understood. Researchers should interrogate the data for better and more explicitly-expressed understandings of social structures and relations between people.  The wider context: Researchers need to engage with the big questions of change on a European level (and beyond). Relationships with neighbouring areas (e.g. England, Ireland) and analogies from other areas (e.g. Scandinavia and the Low Countries) can help inform Scottish studies. Key big topics are: o The nature and effect of the introduction of iron. o The social processes lying behind evidence for movement and contact. o Parallels and differences in social processes and developments. o The changing nature of houses and households over this period, including the role of ‘substantial houses’, from crannogs to brochs, the development and role of complex architecture, and the shift away from roundhouses. o The chronology, nature and meaning of hillforts and other enclosed settlements. o Relationships with the Roman world
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії