Добірка наукової літератури з теми "Continuous damage"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Continuous damage".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Статті в журналах з теми "Continuous damage"
Zhu, Jia Wei, Dan Ting Zhou, and Qiu Wei Yang. "Damage Localization for a Continuous Beam by the Displacement Variation." Applied Mechanics and Materials 744-746 (March 2015): 366–69. http://dx.doi.org/10.4028/www.scientific.net/amm.744-746.366.
Повний текст джерелаYuan-Sheng, Cheng, and Huang Yungbin. "Measurement of continuous damage parameter." Engineering Fracture Mechanics 31, no. 6 (January 1988): 985–92. http://dx.doi.org/10.1016/0013-7944(88)90209-3.
Повний текст джерелаALVANDI, A., J. BASTIEN, E. GRÉGOIRE, and M. JOLIN. "BRIDGE INTEGRITY ASSESSMENT BY CONTINUOUS WAVELET TRANSFORMS." International Journal of Structural Stability and Dynamics 09, no. 01 (March 2009): 11–43. http://dx.doi.org/10.1142/s0219455409002874.
Повний текст джерелаCheng, Qifeng, Xuzhi Ruan, Yize Wang, and Zhiwei Chen. "Serious Damage Localization of Continuous Girder Bridge by Support Reaction Influence Lines." Buildings 12, no. 2 (February 5, 2022): 182. http://dx.doi.org/10.3390/buildings12020182.
Повний текст джерелаCiambella, J., A. Pau, and F. Vestroni. "Modal curvature-based damage localization in weakly damaged continuous beams." Mechanical Systems and Signal Processing 121 (April 2019): 171–82. http://dx.doi.org/10.1016/j.ymssp.2018.11.012.
Повний текст джерелаHuang, Shengnan, Lieping Ye, and Xinzheng Lu. "Damage Identification of Continuous Rigid Frame Concrete Bridge." Open Civil Engineering Journal 8, no. 1 (September 4, 2014): 193–200. http://dx.doi.org/10.2174/1874149501408010193.
Повний текст джерелаPukkala, Timo, Olavi Laiho, and Erkki Lähde. "Continuous cover management reduces wind damage." Forest Ecology and Management 372 (July 2016): 120–27. http://dx.doi.org/10.1016/j.foreco.2016.04.014.
Повний текст джерелаLi, Z. H., and F. T. K. Au. "Damage Detection of a Continuous Bridge from Response of a Moving Vehicle." Shock and Vibration 2014 (2014): 1–7. http://dx.doi.org/10.1155/2014/146802.
Повний текст джерелаSUGIYAMA, Hirofumi, Kazumi MATSUI, Takahiro YAMADA, and Shigenobu OKAZAWA. "Ductile fracture simulations by damage model based on continuous damage mechanics." Proceedings of The Computational Mechanics Conference 2017.30 (2017): 307. http://dx.doi.org/10.1299/jsmecmd.2017.30.307.
Повний текст джерелаChauhan, R. S., and N. E. Dweltz. "Damage to Continuous-filament Yarns during Weaving." Journal of the Textile Institute 79, no. 1 (January 1988): 79–90. http://dx.doi.org/10.1080/00405008808659154.
Повний текст джерелаДисертації з теми "Continuous damage"
DOMINGUES, STELLA MARIS PIRES. "ANALYSIS OF BRITTLE ELASTIC MATERIALS THROUGH A CONTINUOUS DAMAGE MODEL." PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO, 1996. http://www.maxwell.vrac.puc-rio.br/Busca_etds.php?strSecao=resultado&nrSeq=33202@1.
Повний текст джерелаCONSELHO NACIONAL DE DESENVOLVIMENTO CIENTÍFICO E TECNOLÓGICO
Este trabalho lida com uma teoria de dano contínuo, desenvolvida em um contexto termodinâmico, capaz de realizar uma descrição macroscópica da degradação de um material induzida pela deformação em estruturas elásticas frágeis (isto é, falha ocorre sem deformações permanentes). Na modelagem, supõe-se que a energia livre de Helmholtz não depende apenas da deformação e da temperatura absoluta, mas também da variável dano e de seu gradiente. Além disso, para levar em conta os efeitos microscópicos, a potência dos esforços internos não depende apenas da velocidade e de seu gradiente, mas também da taxa de evolução do dano e de seu gradiente. Apesar da sofisticação mecânica da teoria, uma técnica numérica simples, baseada no método dos elementos finitos, é proposta para aproximar a solução dos problemas matemáticos não lineares resultantes. Nestes problemas o acoplamento entre as variáveis dano e deformação é contornado por meio da técnica de partição dos operadores. Para validar o modelo e investigar as características principais do método numérico, diversos exemplos são apresentados para mostrar que os algoritmos utilizados não são sensíveis à malha (mesh dependent).
The present work deals with a continuum damage theory, developed within a thennodynamical framework, able to perform a macroscopic description of material degradation induced by deformation in brittle elastic structures (i.e. failure occurs without permanent deformations). In the modeling, the Helmholtz free energy is supposed to depend not only on the strain and on the absolute temperature but on a damage variable and its gradient as well. Besides, to account for microscopic effects, the power of internal forces depends not only on the velocity and its gradient, but also on the damage velocity and its gradient. Despite the mechanical sophistication of the theory, a simple numerical technique, based on the únite element method, is proposed to approximate the solution of the resulting non linear mathematical problems. The coupling between damage and strain variables in these problems is circumvented by means of a splitting technique. In order to analyse the physical coherence of the model and to access the main features of the numerical method, a number of examples is presented showing that the numerical computations are not mesh dependent.
CHIMISSO, FULVIO ENRICO GIACOMO. "A CONTINUOUS DAMAGE MODEL FOR MATERIALS WITH ELASTIC-PLASTIC BEHAVIOR." PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO, 1994. http://www.maxwell.vrac.puc-rio.br/Busca_etds.php?strSecao=resultado&nrSeq=33238@1.
Повний текст джерелаA Mecânica do Dano Contínuo é uma ferramenta promissora para a análise de vida residual em componentes de máquinas e de estruturas. Todavia, não é uma tarefa simples a de se obter uma descrição fisica realística, associada a uma descrição matemática correta, do acoplamento entre a deformação e o amolecimento causado pela degradação da microestrutura. No caso de barras metálicas, a deformação plástica cíclica causa um endurecimento junto com uma degradação na estrutura (dano de fadiga). Por outro lado, a degradação da estrutura induz o amolecimento observado na curva tensão de engenharia vs. deformação. Logo, torna-se importante a modelagem do acoplamento entre plasticidade e dano para que se possa prever de maneira adequada o tempo de vida (ciclos), de um componente estrutural. Muitas tentativas feitas para descrever este tipo de comportamento mostraram-se insatisfatórias. O problema matemático é, em geral, mal posto e uma aproximação numérica da solução é incorreta do ponto de vista fisico. Nestes casos, o fenômeno de localização da deformação é malha-dependente. No presente trabalho, propõe-se uma nova teoria de dano para materiais elasto-plásticos que supera este problema. A teoria tem uma forte base termodinâmica e leva em conta o fenômeno de amolecimento. Uma diferença básica em relação a outros modelos consiste no fato de que a variável escalar D, associada ao dano, é considerada não apenas uma variável de estado mas também uma variável cinemática independente, com abordagem semelhante à apresentada nas teorias de contínuo com microestrutura. As possibilidades de utilização da teoria apresentada são verificadas através da comparação de simulações numéricas com resultados experimentais, para solicitações cíclicas uniaxiais, em barras de almnínioestrutural e em barras de aço austenitico AISI 316 L.
Continuum Damage Mechanics is a promising tool for the failure prediction of structural components. Nevertheless, it is not a simple task to do a mathematically correct and physically realistic description of the strain-softcning behavior due to the degradation of the microstructure. In the case of metallic bars, the cyclic plastic deformation induces a strain-hardening and also a degradation of the structure (fatigue damage). In the other hand, the degradation of the structure induces a softening behavior in the engineering stress-strain curve. Hence, it is very important to model the coupling between plasticity and damage in order to perform an adequate lifetime prevision. Many attempts to describe this type of behavior have been unsatisfatory. The mathematical problem is, in general, ill posed and a numerical approximation of the solution is incorrect from the physical point of view. In this cases the phenomenon of strain localization due to strain-soflzening is mesh dependent. In the present work a new Damage theory for elasto-plastic materials that overcome this problem is proposed. The theory has a strong thermodynarnic basis and take into account the softening behavior. One basic difference from the others models is that the scalar variable D related with damage is taken as an independent kinematic variable, similarly as in the theories of continua with microstructure. The effectiveness and usefulness of the theory is checked by comparing numerical simulations of cyclic uniaxial tests in Aluminiun bars and 316L stainless steel bars with experimental results.
Chen, Fuh-Sheng. "Damage and failure analysis of continuous fiber-reinforced polymer composites." Case Western Reserve University School of Graduate Studies / OhioLINK, 1992. http://rave.ohiolink.edu/etdc/view?acc_num=case1056554068.
Повний текст джерелаReese, Sven H. "Adaptive methods for continuous and discontinuous damage modeling in fracturing solids /." Hannover : IBNM, 2007. http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&doc_number=016312191&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA.
Повний текст джерелаSalleh, Ramli. "Monitoring of damage in continuous fibre reinforced composites by using acoustic emission." Thesis, University of Manchester, 1996. https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.488255.
Повний текст джерелаYang, Fangtao. "Simulation of continuous damage and fracture in metal-forming processes with 3D mesh adaptive methodology." Thesis, Compiègne, 2017. http://www.theses.fr/2017COMP2385/document.
Повний текст джерелаThis work is part of the research carried out in the framework of a collaboration between the Roberval laboratory of the Compiègne University of Technology and the team within the framework of the project ANR-14-CE07-0035 LASMIS of the Charles Delaunay Institute of Technology University of Troyes. In this work, we present a three-dimensional adaptive Pi-methodology of finite elements to represent the initiation and propagation of cracks in ductile materials. An elastoplastic model coupled with the isotropic damage proposed by the LASMIS / UTT team is used. The targeted applications will mainly concern the metal forming. In this context, an updated Lagrangian formulation is used and frequent remeshing is essential in order to avoid the strong distortion of elements due to large plastic deformations and to follow the modifications of the topology resulting in the creation of cracks. The size of the new mesh must allow at a lower cost to accurately represent the evolution of the gradients of the physical quantities representative of the studied phenomena (plasticity, damage ...). We propose empirical indicators of size of elements based on the plastic deformation as well as on the damage. A piecewise defined curve represents the evolution of the element size according to the severity of the plasticity and, if appropriate, the damage. The cracks are represented by a method of destruction of elements which allows an easy description of the geometry and a simplified treatment of the cracking without any need for additional criteria. On the other hand, to allow a realistic description of the cracks, the latter must be represented by erosion smaller elements. An ABAQUS / Explicit@ solver is used with quadratic tetrahedral elements (C3DIOM), avoiding in particular the problems of numerical locking occurring during the analysis of structures in compressible or quasi-incompressible material. The control of the smaller mesh size is important in an explicit context. In addition, for softening phenomena, the solution depends on the mesh size considered as an intrinsic parameter. A study has shown that when the mesh is sufficiently refined, the effects of mesh dependence are reduced. In the literature, the costs of frequent meshing or remeshing are often considered prohibitive and many authors rely on this argument to introduce, with success, alternative methods that limit the cost of remeshing operations without eliminating them ( XFEM for example). Our work shows that the cost of local remeshing is negligible compared to the calculation. Given the complexity of the geometry and the need to refine the mesh, the only alternative to date is to use a mesh in tetrahedra. The strategy of local remeshing tetrahedron is based on a bisection method followed if necessary by a local optimization of the grid proposed by A. Rassineux in 2003. The remeshing, even local, must be accompanied by field transfer procedures on both nodal variables and integration points. Node variables are, as most authors do, transferred using finite element shape functions. The 3D field transfer at Gauss points and the many underlying problems have been relatively untouched in the literature. The main difficulties to be solved in order to ensure the "quality" of the transfer concern the limitation of numerical diffusion, the lack of information near borders, the respect of boundary conditions, the equilibrium, the calculation costs, the filtering of the information points, crucial problems in 3D where the number of Gauss points used is several hundred. We propose a so-called "hybrid" method which consists, initially, in extrapolating the data at the Gauss points, in the nodes by diffuse interpolation and then in using the finite element form functions to obtain the value at the point considered
Thiriot, Kathleen Nichole. "The Effect of Photobiomodulation Therapy on Exercise-Induced Muscle Damage." BYU ScholarsArchive, 2018. https://scholarsarchive.byu.edu/etd/6743.
Повний текст джерелаDATTA, SAURABH. "ACTIVE FIBER COMPOSITE CONTINUOUS SENSORS FOR STRUCTURAL HEALTH MONITORING." University of Cincinnati / OhioLINK, 2003. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1061293378.
Повний текст джерелаGundmi, Satish Sajjan. "Continuous Time Fatigue Modelling for Non-proportional Loading." Thesis, Linköpings universitet, Mekanik och hållfasthetslära, 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-164950.
Повний текст джерелаDenaux, Matthieu. "Simulation numérique de la criticité à amorçage de fissure de fretting induit par un chargement vibratoire : Application aux liaisons pale/disque de turbomachine." Thesis, Lyon, 2018. http://www.theses.fr/2018LYSEI012.
Повний текст джерелаFretting is a damage induced by small cyclic slip of two bodies in contact. It is characterized by surface crack initiation, which can then propagate, thus leading to failure. Fretting is present in many industrial environments where it is a more or less severe resistance criterion. This work focuses on the fretting cracks that appear in blade/disk roots of turboshaft engines. In this case, the cyclic contact loading is the result of the combination of a static loading and a high frequency vibratory loading (some thousands of Hertz). Being able to estimate the lifetime of the root under such a solicitation is essential for flight safety. The lack of knowledge of certain input parameters, the non-proportionality of the solicitation as well as the high stress gradient involved, make this phenomenon difficult to predict. This work proposes a numerical method allowing the computation of a fretting crack initiation criterion. First, stresses and deformations fields are computed with finite element method. Then, the post-processing of the fields is done woth Dang Van criterion. The model is developed with the support of an innovative test bench which makes it possible to reproduce the loadings sustained by a a blade/disk root. An intensive use of the computation process developed makes it possible to draw conclusions and provides better understanding of the phenomenon involved in this type of damage. The different numerical studies carried out make it possible to compare the representativeness of the experimental means with respect to the actual engine configurations
Книги з теми "Continuous damage"
Johnson, W. S. Fatigue damage growth mechanisms in continuous fiber reinforced titanium matrix composites. Hampton, Va: National Aeronautics and Space Administration, Langley Research Center, 1990.
Знайти повний текст джерелаRobinson, David N. A continuous damage model based on stepwise-stress creep rupture tests. [Washington, D.C.]: National Aeronautics and Space Administration, 1985.
Знайти повний текст джерелаJohnson, W. S. Fatigue damage growth mechanisms in continuous fiber reinforced titanium matrix composites. Hampton, Va: National Aeronautics and Space Administration, Langley Research Center, 1990.
Знайти повний текст джерелаJohnson, W. S. Fatique testing and damage development in continuous fiber reinforced metal matrix composites. Hampton, Va: National Aeronautics and Space Administration, Langley Research Center, 1988.
Знайти повний текст джерелаSalleh, R. Monitoring of damage in continuous fibre reinforced composites by using acoustic emission. Manchester: UMIST, 1996.
Знайти повний текст джерелаMurakami, Sumio. Continuum Damage Mechanics. Dordrecht: Springer Netherlands, 2012. http://dx.doi.org/10.1007/978-94-007-2666-6.
Повний текст джерелаKrajcinovic, Dusan. Damage mechanics. Amsterdam: Elsevier, 1996.
Знайти повний текст джерелаKrajcinovic, D. Damage mechanics. Amsterdam: Elsevier, 1996.
Знайти повний текст джерелаKachanov, L. M. Introduction to continuum damage mechanics. Dordrecht: Springer Netherlands, 1986.
Знайти повний текст джерелаKachanov, L. M. Introduction to continuum damage mechanics. Dordrecht: M. Nijhoff, 1986.
Знайти повний текст джерелаЧастини книг з теми "Continuous damage"
Najar, Jerzy. "Continuous Damage of Brittle Solids." In Continuum Damage Mechanics Theory and Application, 233–94. Vienna: Springer Vienna, 1987. http://dx.doi.org/10.1007/978-3-7091-2806-0_7.
Повний текст джерелаLoget, Olivier, Camélia Nanuel, Jean-François Le Bigot, and Roy Forster. "Corneal Damage Following Continuous Infusion in Rats." In Advances in Ocular Toxicology, 55–62. Boston, MA: Springer US, 1997. http://dx.doi.org/10.1007/978-1-4615-5937-5_6.
Повний текст джерелаBodgi, Johanna, Silvano Erlicher, and Pierre Argoul. "Lateral Vibration of Footbridges under Crowd-Loading: Continuous Crowd Modeling Approach." In Damage Assessment of Structures VII, 685–90. Stafa: Trans Tech Publications Ltd., 2007. http://dx.doi.org/10.4028/0-87849-444-8.685.
Повний текст джерелаLimongelli, Maria Pina, Emil Manoach, Said Quqa, Pier Francesco Giordano, Basuraj Bhowmik, Vikram Pakrashi, and Alfredo Cigada. "Vibration Response-Based Damage Detection." In Structural Health Monitoring Damage Detection Systems for Aerospace, 133–73. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-72192-3_6.
Повний текст джерелаLee, K. S., and Chang Sik Choi. "Discrete-Continuous Configuration Optimization Methods for Structures Using the Harmony Search Algorithm." In Fracture and Damage Mechanics V, 1293–96. Stafa: Trans Tech Publications Ltd., 2006. http://dx.doi.org/10.4028/0-87849-413-8.1293.
Повний текст джерелаMazars, J., G. Pijaudier-Cabot, and C. Saouridis. "Size effect and continuous damage in cementitious materials." In Current Trends in Concrete Fracture Research, 159–73. Dordrecht: Springer Netherlands, 1991. http://dx.doi.org/10.1007/978-94-011-3638-9_11.
Повний текст джерелаHerrmann, G. "Thermodynamic Aspects of Continuous Damage in Brittle Solids." In Patterns, Defects and Microstructures in Nonequilibrium Systems, 287–99. Dordrecht: Springer Netherlands, 1987. http://dx.doi.org/10.1007/978-94-009-3559-4_17.
Повний текст джерелаBauer, Erich. "Simulation of the Influence of Grain Damage on the Evolution of Shear Strain Localization." In Continuous Media with Microstructure 2, 231–44. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-28241-1_16.
Повний текст джерелаKogut, Peter I., and Günter Leugering. "On Existence of Optimal Solutions to Boundary Control Problem for an Elastic Body with Quasistatic Evolution of Damage." In Continuous and Distributed Systems, 265–86. Cham: Springer International Publishing, 2013. http://dx.doi.org/10.1007/978-3-319-03146-0_19.
Повний текст джерелаJirásek, M. "Modeling of localized damage and fracture in quasibrittle materials." In Continuous and Discontinuous Modelling of Cohesive-Frictional Materials, 17–29. Berlin, Heidelberg: Springer Berlin Heidelberg, 2001. http://dx.doi.org/10.1007/3-540-44424-6_2.
Повний текст джерелаТези доповідей конференцій з теми "Continuous damage"
Qi, Chaojie, and Yufeng Sun. "Multi-damage life assessment under continuous damage mechanics." In 2016 Prognostics and System Health Management Conference (PHM-Chengdu). IEEE, 2016. http://dx.doi.org/10.1109/phm.2016.7819925.
Повний текст джерелаTaylor, L. N., and J. J. Talghader. "Ring-like damage morphologies produced by continuous-wave laser irradiation." In SPIE Laser Damage, edited by Gregory J. Exarhos, Vitaly E. Gruzdev, Joseph A. Menapace, Detlev Ristau, and MJ Soileau. SPIE, 2014. http://dx.doi.org/10.1117/12.2067956.
Повний текст джерелаO'Rourke, Michael. "Wave Propagation Damage to Continuous Pipe." In Technical Council on Lifeline Earthquake Engineering Conference (TCLEE) 2009. Reston, VA: American Society of Civil Engineers, 2009. http://dx.doi.org/10.1061/41050(357)76.
Повний текст джерелаMoon, Ralph E. "Interpreting Continuous v. Repeated Water Damage." In Sixth Congress on Forensic Engineering. Reston, VA: American Society of Civil Engineers, 2012. http://dx.doi.org/10.1061/9780784412640.028.
Повний текст джерелаShan, Haiyang, Xueke Xu, Hongbo He, Shijie Liu, Chaoyang Wei, Kui Yi, and Jianda Shao. "The figure simulation of the polishing pad in the continuous polishing process." In Pacific-rim Laser Damage, edited by Takahisa Jitsuno, Jianda Shao, and Wolfgang Rudolph. SPIE, 2014. http://dx.doi.org/10.1117/12.2073492.
Повний текст джерелаPapernov, S., A. A. Kozlov, J. B. Oliver, T. J. Kessler, and B. Marozas. "Near-ultraviolet absorption-annealing effects in HfO2thin films subjected to continuous-wave laser irradiation at 355 nm." In SPIE Laser Damage, edited by Gregory J. Exarhos, Vitaly E. Gruzdev, Joseph A. Menapace, Detlev Ristau, and MJ Soileau. SPIE, 2013. http://dx.doi.org/10.1117/12.2031640.
Повний текст джерелаSancho, Alexander, Paul A. Hooper, and Catrin M. Davies. "Ductile Damage Assessment Using Continuum Damage Mechanics and Methodology for High Strain-Rate Damage Analysis." In ASME 2017 Pressure Vessels and Piping Conference. American Society of Mechanical Engineers, 2017. http://dx.doi.org/10.1115/pvp2017-65097.
Повний текст джерелаWang, Xiang-Jian, En-Dong Guo, Tian-Yang Yu, and Qian Li. "Earthquake damage estimation of gas continuous buried pipelines." In 2017 3rd International Forum on Energy, Environment Science and Materials (IFEESM 2017). Paris, France: Atlantis Press, 2018. http://dx.doi.org/10.2991/ifeesm-17.2018.336.
Повний текст джерелаPuttick, Keith E., Rune Holm, Detlev Ristau, Urs Natzschka, George Kiriakidis, Nirmal Garawal, Eddie Judd, et al. "Continuous-wave CO2-laser-induced damage thresholds in optical components." In Laser-Induced Damage in Optical Materials: 1997, edited by Gregory J. Exarhos, Arthur H. Guenther, Mark R. Kozlowski, and M. J. Soileau. SPIE, 1998. http://dx.doi.org/10.1117/12.307045.
Повний текст джерелаBrown, Andrew, Albert Ogloza, Kyle Olson, and Joseph Talghader. "Contamination mediated continuous-wave laser damage of optical materials." In 2016 IEEE Photonics Conference (IPC). IEEE, 2016. http://dx.doi.org/10.1109/ipcon.2016.7831178.
Повний текст джерелаЗвіти організацій з теми "Continuous damage"
Krajcinovic, D. [Continuous damage mechanics: Critical states: Technical progress report]. Office of Scientific and Technical Information (OSTI), June 1992. http://dx.doi.org/10.2172/10147276.
Повний текст джерелаAllen, D. H. Research on Damage Models for Continuous Fiber Composites. Fort Belvoir, VA: Defense Technical Information Center, July 1988. http://dx.doi.org/10.21236/ada200771.
Повний текст джерелаKrajcinovic, D. (Continuous damage mechanics: Critical states: Technical progress report). Office of Scientific and Technical Information (OSTI), January 1992. http://dx.doi.org/10.2172/5272669.
Повний текст джерелаAllen, D. H., and C. E. Harris. Research on Damage Models for Continuous Fiber Composites. Fort Belvoir, VA: Defense Technical Information Center, February 1986. http://dx.doi.org/10.21236/ada175017.
Повний текст джерелаAllen, D. H., W. E. Haisler, and C. E. Harris. Research on Damage Models for Continuous Fiber Composites. Fort Belvoir, VA: Defense Technical Information Center, February 1985. http://dx.doi.org/10.21236/ada164121.
Повний текст джерелаKinra, Vikram K. Ultrasonic Nondestructive Evaluation of Damage in Continuous Fiber Composites. Fort Belvoir, VA: Defense Technical Information Center, November 1987. http://dx.doi.org/10.21236/ada205713.
Повний текст джерелаKinra, Vikram K. Ultrasonic Nondestructive Evaluation of Damage in Continuous Fiber Composites. Fort Belvoir, VA: Defense Technical Information Center, April 1985. http://dx.doi.org/10.21236/ada164056.
Повний текст джерелаKrajcinovic, D. Continuum damage mechanics -- Critical states. Final report. Office of Scientific and Technical Information (OSTI), February 1998. http://dx.doi.org/10.2172/584930.
Повний текст джерелаEnglish, Shawn Allen, and Arthur A. Brown. A 3D Orthotropic Elastic Continuum Damage Material Model. Office of Scientific and Technical Information (OSTI), August 2013. http://dx.doi.org/10.2172/1113865.
Повний текст джерелаLambert, D. E., J. Weiderhold, M. V. Hopson, and J. Osborn. Controlled Loading Fragmentation: Experiments and Continuum Damage Modeling. Fort Belvoir, VA: Defense Technical Information Center, July 2010. http://dx.doi.org/10.21236/ada538370.
Повний текст джерела