Добірка наукової літератури з теми "Contact heat and mass transfer"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Contact heat and mass transfer".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Статті в журналах з теми "Contact heat and mass transfer"

1

Phattaranawik, Jirachote, and Ratana Jiraratananon. "Direct contact membrane distillation: effect of mass transfer on heat transfer." Journal of Membrane Science 188, no. 1 (June 2001): 137–43. http://dx.doi.org/10.1016/s0376-7388(01)00361-1.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Brauner, N., D. Moalem Maron, and S. Sideman. "Heat and mass transfer in direct contact hygroscopic condensation." Wärme- und Stoffübertragung 21, no. 4 (July 1987): 233–45. http://dx.doi.org/10.1007/bf01004026.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Madyshev, Ilnur N., Oksana S. Dmitrieva, and Andrey V. Dmitriev. "Determination of heat-mass transfer coefficients within the apparatuses with jet-film contact devices." MATEC Web of Conferences 194 (2018): 01013. http://dx.doi.org/10.1051/matecconf/201819401013.

Повний текст джерела
Анотація:
One of the ways of intensifying the heat and mass transfer processes in gas-fluid systems is designing jet-film contact devices with a developed surface of phase contact at high flow velocities. A contact jet-film device has been developed. The results of numerical investigation of the operation of this device are presented. There were determined the coefficients of heat transfer to the air from the surface of liquid inside of the drain cup of contact device. The criterion equations of convective heat transfer for engineering calculations of jet-film contact devices is corrected.
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Fair, James R. "Direct Contact Gas-Liquid Heat Exchange for Energy Recovery." Journal of Solar Energy Engineering 112, no. 3 (August 1, 1990): 216–22. http://dx.doi.org/10.1115/1.2930482.

Повний текст джерела
Анотація:
Energy from hot gas discharge streams can be recovered by transfer directly to a coolant liquid in one of several available gas-liquid contacting devices. The design of the device is central to the theme of this paper, and experimental work has verified that the analogy between heat transfer and mass transfer can be used for design purposes. This enables the large amount of available mass transfer data for spray, packed, and tray columns to be used for heat transfer calculations. Recommended methods for designing the several types of gas-liquid contacting device are summarized.
Стилі APA, Harvard, Vancouver, ISO та ін.
5

OLIVER, J. M., J. P. WHITELEY, M. A. SAXTON, D. VELLA, V. S. ZUBKOV, and J. R. KING. "On contact-line dynamics with mass transfer." European Journal of Applied Mathematics 26, no. 5 (August 10, 2015): 671–719. http://dx.doi.org/10.1017/s0956792515000364.

Повний текст джерела
Анотація:
We investigate the effect of mass transfer on the evolution of a thin, two-dimensional, partially wetting drop. While the effects of viscous dissipation, capillarity, slip and uniform mass transfer are taken into account, other effects, such as gravity, surface tension gradients, vapour transport and heat transport, are neglected in favour of mathematical tractability. Our focus is on a matched-asymptotic analysis in the small-slip limit, which reveals that the leading-order outer formulation and contact-line law depend delicately on both the sign and the size of the mass transfer flux. This leads, in particular, to novel generalisations of Tanner's law. We analyse the resulting evolution of the drop on the timescale of mass transfer and validate the leading-order predictions by comparison with preliminary numerical simulations. Finally, we outline the generalisation of the leading-order formulations to prescribed non-uniform rates of mass transfer and to three dimensions.
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Aliev, E. K., V. V. Volodin, V. V. Golub, A. Yu Mikushkin, G. G. Timerbaev, and O. V. Chagin. "Comparative Heat and Mass Transfer Tests of Structured Packings with Film and Droplet Flow." Herald of the Bauman Moscow State Technical University. Series Natural Sciences, no. 4 (85) (August 2019): 4–21. http://dx.doi.org/10.18698/1812-3368-2019-4-4-21.

Повний текст джерела
Анотація:
The paper focuses on comparative studies of heat and mass transfer and hydraulic characteristics of two structured packings which provide heat and mass transfer of contacting media in the film flow of liquid Mellapak 250.X and with fluid dispersion in the gas volume PVN.22. The experiments were carried out in a heat-mass exchange column of 400 mm in diameter and of 1 m in height of a packed bed. The method of evaporative cooling of water in the air flow was adapted to obtain heat and mass exchange characteristics of packed contact devices. Findings of research show the effect of irrigation density and gas flow on heat and mass transfer and hydraulic characteristics of packings which provide heat and mass transfer of contacting media in film and droplet flows. A criterion for estimating the efficiency of contact devices is proposed.
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Qtaishat, M., T. Matsuura, B. Kruczek, and M. Khayet. "Heat and mass transfer analysis in direct contact membrane distillation." Desalination 219, no. 1-3 (January 2008): 272–92. http://dx.doi.org/10.1016/j.desal.2007.05.019.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Sadykov, R. A., and L. R. Sadikova. "BOUND MOISTURE REMOVAL: HEAT AND MASS TRANSFER IN CONTACT DRYING." Drying Technology 16, no. 8 (January 1998): 1627–47. http://dx.doi.org/10.1080/07373939808917483.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Ajaev, Vladimir S., and Oleg A. Kabov. "Heat and mass transfer near contact lines on heated surfaces." International Journal of Heat and Mass Transfer 108 (May 2017): 918–32. http://dx.doi.org/10.1016/j.ijheatmasstransfer.2016.11.079.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Voinov, Nikolai A., Anastasiya V. Bogatkova, and Denis A. Zemtsov. "Intensification of Heat and Mass Transfer in a Diabatic Column with Vortex Trays." ChemEngineering 6, no. 2 (April 12, 2022): 29. http://dx.doi.org/10.3390/chemengineering6020029.

Повний текст джерела
Анотація:
We used vortex contact devices that we developed and investigated to make a new design of an alcohol diabatic distillation column with heat exchange pipes (as the reflux condenser) passing through concentrating section trays. In the column, ascending vapors partially condensed on the surface of vertically installed heat exchange tubes, forming a reflux. The reflux was then mixed with the draining liquid flow in the vortex contact devices placed on the trays. Heat was removed from the column through the boiling of the draining water film along the inner surface of the heat exchange pipes. We compared both diabatic and adiabatic columns fitted with the developed vortex contact devices on the trays. The proposed innovative contact system allows increasing productivity, reducing column dimensions and steam- and heat-transfer medium consumption, and increasing separation efficiency. Dependences for calculating the gas content, hydraulic resistance, and interphase surface required for designing the vortex contact devices of the proposed unit trays are presented.
Стилі APA, Harvard, Vancouver, ISO та ін.

Дисертації з теми "Contact heat and mass transfer"

1

Tseitlin, Musii, and Valentina Raiko. "Ratio between heat and mass transfer when concentrating the solution in a cooling tower." Thesis, Lviv Polytechnic National University, 2019. http://repository.kpi.kharkov.ua/handle/KhPI-Press/42106.

Повний текст джерела
Анотація:
The ratio between the intensity of the mass transfer in gas and the heat transfer in liquid during the evaporative solution concentration has been studied. It was determined that the share of liquid resistance in the total resistance to enthalpy transfer increases in the temperature range from 30 to 50°C by almost 2 times, and reaches 40 %. The technique has been developed for the separate determination of the mass transfer coefficients in gas and heat transfer in liquid.
Досліджено співвідношення між інтенсивністю масопереносу в газі та передачею тепла в рідині під час концентрації випарного розчину. Встановлено, що частка опору рідини в загальному опорі переносу ентальпії зростає в діапазоні температур від 30 до 50 ° С майже в 2 рази, досягає 40%. Розроблена методика для окремого визначення коефіцієнтів масопереносу в газі і теплопередачі в рідині.
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Bratuta, E. G., R. G. Akmen, T. I. Jaroshenko, and O. V. Krugliakova. "The influence of interaction surface structure and irrigation scheme on heat and mass transfer in direct contact condenser." Thesis, Országos Sugárbiológiai és Sugáregészségügyi Kutató Intézet (OSSKI), 1997. http://repository.kpi.kharkov.ua/handle/KhPI-Press/23120.

Повний текст джерела
Анотація:
The contact condensation of saturated steam on liquid spray has been studied. The mathematical model of heat and mass transfer processes between dispersed liquid and steam has been usin one-parameter drop distribution function has been worked out. The rational degree of liquid dispersing and optimál irrigation scheme has been defined.
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Maani, Nazanin. "A MODEL FOR THE PREDICTION OF THERMAL RESPONSE OF BONE IN SURGICAL DRILLING." OpenSIUC, 2013. https://opensiuc.lib.siu.edu/theses/1245.

Повний текст джерела
Анотація:
This Thesis develops a mathematical model for predicting the thermal response in the surgical drilling of bone. The model accounts for the bone, chip and drill bit interactions by providing a detailed account of events within a cylindrical control volume enveloping the drill, the cut bone chip within the drill bit flute and the solid bone. Lumped parameter approach divides the control volume into a number of cells and cells within the sub-volumes representing the drill solid, the bone chip and the bone solid are allowed to interact. The contact mechanics of rough surfaces is used to model chip-flute and chip-bone frictional interaction. In this way not only the quantification of friction due to sliding contact of chip-flute and chip-bone rough surface contact are treated, but also the contact thermal resistances between the rubbing surfaces are included in the model. A mixed combination of constant and adaptive mesh is employed to permit the simulation of the heat transfer as the drill bit penetrates deeper into the bone during a drilling process. Using the model the effect of various parameters on the temperature rise in bone, drill and the chip are investigated. It is found that maximum temperature within the bone occurs at the location adjacent to the corner of the drill-tip and drill body. The results of the model are found to agree favorably with the experimental measurements reported in the existing literature on surgical drilling.
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Frackiewicz-Kaczmarek, Joanna. "Determination of the air gap thickness and the contact area under wearing conditions." Thesis, Mulhouse, 2013. http://www.theses.fr/2013MULH5151/document.

Повний текст джерела
Анотація:
Le transfert de masse et de chaleur dans les vêtements est un phénomène faisant appel àdifférents mécanismes physiques : les échanges de chaleurs sèches et les transferts de vapeur etde liquide. Ces mécanismes sont fortement influencés par les facteurs liés à la construction, laforme du vêtement par rapport à celle du corps et l’utilisation du vêtement. Ces facteurs peuventêtre optimisés en changeant la taille et la forme des différentes couches d’air emprisonnées entrela peau et les vêtements. La plupart des modèles mathématiques de vêtements font l’hypothèse que l’épaisseur d’air entrela peau et l’étoffe est uniforme, ou alors ils l’ignorent. La non-uniformité et de la non-linéaritédes transferts de chaleur et d’eau ne sont alors pas prises en compte. En effet, le processus detranspiration dépend non seulement de l’aire de contact et de l’épaisseur d’air emprisonnée entrela peau et le vêtement mais également de la région du corps. Nous proposons une méthode permettant de déterminer, avec une plus grande précision que lestechniques existantes, l’épaisseur d’air et l’aire de contact entre le corps et un vêtement à l’aided’une analyse avancée de scans 3D d’un mannequin homme nu et habillé. L’effet du tauxd’humidité sur l’aire de contact et l’épaisseur du film d’air a été étudié en fonction de la zone ducorps et ceci pour différentes tailles, structures de l’étoffe et fibres. Cette méthode contribue àévaluer de façon plus réaliste les échanges de masse et de chaleur au travers de plusieurs couchesde vêtements et ainsi de fournir des données d’entrée précises aux modèles pour la conception devêtements avec prise en compte du confort et de l’ergonomie
The heat and mass transfer within the clothing system is a composition of a number of physicalprocesses, such as: dry heat and vapour and liquid water transfer. Factors associated with theconstruction and use of the garment, such as body posture and movement, and clothing fitinfluence these processes significantly. This is achieved mainly by changing the size and theshape of the different layers of air trapped between the skin and clothing. Most existing mathematical clothing models assume uniform air gap between the body and fabric layers or ignore it. However, this approach disregards the non-uniform and non-linear heat,vapour and liquid water transfer, which depend on presence of contact between surfaces and onthe shape of the air layers trapped within clothing and the body regions which are not equivalentin terms of sweating process. In this study, we propose a method to accurately determine the air gap thickness and the contactarea between clothing and the human body through an advanced analysis of 3D body scans of thenude and dressed body of a male manikin. This method allowed more accurate measurement ofthe air gap thickness and the contact area than other existing methods. Additionally, in two casestudies the effect of garment design and moisture gain in fabric combined with effects of bodypart, garment type and its overall and regional fit, fabric structure and fibre type were determined.Consequently, this method will contribute to a more realistic evaluation of heat and massexchange rates through clothing systems and provide more accurate input for ergonomic andcomfort design of clothing
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Sobac, Benjamin. "Evaporation de gouttes sessiles : des fluides purs aux fluides complexes." Thesis, Aix-Marseille, 2012. http://www.theses.fr/2012AIXM4801/document.

Повний текст джерела
Анотація:
Cette thèse présente une étude expérimentale sur l'évaporation de gouttes reposant sur un substrat solide. Dans une première partie, nous nous sommes intéressés à la description de l'évaporation d'une goutte liquide en regardant notamment l'influence du substrat. Le problème est approché sous un angle nouveau : en contrôlant avec précision les différentes propriétés du substrat que sont sa rugosité, son énergie de surface et ses propriétés thermiques. Cette méthode a permis de découpler les différentes influences du substrat et d'étudier l'évaporation pour différentes dynamiques de ligne triple et une large gamme d'angles de contact, de conductivités thermiques et de températures de substrat. Les résultats expérimentaux sont comparés au modèle classique d'évaporation. Ce modèle considère l'évaporation comme un processus contrôlé par la diffusion de la vapeur dans l'atmosphère. L'étude révèle les domaines de validité de ce modèle et met en évidence les différents mécanismes additionnels pouvant se développer ainsi que leur contribution. L'utilisation d'une caméra infrarouge dévoile le développement d'un motif hydrodynamique complexe non-axisymétrique. L'origine de cette instabilité, ces dynamiques spatiales et temporelles sont également explorées. Dans une seconde partie, l'étude a été étendue à l'évaporation d'une goutte de suspension biologique : le sang. Le séchage de ce fluide conduit à la formation d'un motif complexe dépendant de la mouillabilité du substrat. Alors qu'une situation mouillante met en évidence un dépôt de type annulaire accompagné de fractures radiales, une situation non-mouillante révèle une forme complexe composée de fractures et de plis
This thesis presents an experimental study on the evaporation of droplets on a solid substrate. In the first part we describe the evaporation of a liquid droplet, taking a particular interest in the influence of the substrate. The problem is approached from a new angle by ensuring that the various properties of the substrate, such as its roughness, surface energy and thermal properties, are controlled precisely. Thanks to this method it is possible to decouple the different influences of the substrate and to study evaporation in relation to various dynamics of triple lines and a wide range of contact angles, thermal conductivities and temperatures of the substrate. Experimental results are compared with the classic evaporation model, which considers evaporation as a process determined by the diffusion of vapor into the atmosphere. The study reveals the range of validity of this model and highlights the different additional mechanisms which may develop as well as their contribution. The use of an infrared camera reveals the development of a complex hydrodynamic non-axisymmetric pattern. The origin of this instability and its spatial and temporal dynamics are also explored. In the second part, the study is extended to the evaporation of a dropl of a biological suspension: human blood. As this fluid dries a complex pattern is formed which is dependent on the wettability of the substrate. Whereas a wetting situation leads to a ring-like deposit with radial cracks, a non-wetting situation reveals a complex shape composed of cracks and folds. The study focuses on the understanding of the physical mechanisms leading to these patterns and of the role of biology
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Viné, Thibaut. "Caractérisation expérimentale et modélisation des transferts de matière et d’énergie lors des opérations culinaires de cuisson par contact." Thesis, université Paris-Saclay, 2020. http://www.theses.fr/2020UPASB015.

Повний текст джерела
Анотація:
La cuisson des aliments est une des opérations de transformation les plus courantes aussi bien à l’échelle domestique, en restauration hors-foyer, qu’à l’échelle industrielle. Parmi les nombreux modes de cuisson existants, la cuisson par contact n’a fait l’objet que d’une attention très réduite dans la littérature, plus particulièrement en ce qui concerne les transferts de matière et d’énergie dans l’aliment et entre l’aliment et son environnement. Cette situation s’explique en grande du fait des difficultés métrologiques et théoriques qu’entraîne l’étude des transferts thermiques par contact dans le cas des procédés alimentaires. Cette thèse a pour objectif de contribuer à mieux comprendre et prédire les transferts de matière et d’énergie et d’apporter des nouveaux outils (notamment numériques) permettant d’améliorer le dimensionnement et la conduite de ce type d’opération. Pour atteindre cet objectif, une démarche associant étude expérimentale et modélisation des phénomènes de transfert a été conduite. Un dispositif de cuisson instrumenté a été conçu afin de réaliser une large campagne expérimentale visant à étudier l’impact de plusieurs conditions opératoires de chauffage sur la cuisson de trois produits : la pomme de terre, la crêpe et l’omelette. Les résultats obtenus ont permis de développer et valider plusieurs modèles capables de prédire avec justesse les montées en température et les pertes en eau des produits étudiés au cours de la cuisson. Ces modèles sont suffisamment génériques pour être facilement adaptables d’un produit à un autre et transposables à différents procédés de cuisson par contact
Cooking is one of the most common food processing operations at both domestic and industrial scale. Among the many cooking methods, contact cooking has received very little attention in the literature, particularly with regard to the transfers of mass and energy within the food and between the food and its environment. This is mostly due to the metrological and theoretical difficulties involved in the study of contact heat transfer in food processes. The aim of this thesis is to contribute to a better understanding and prediction of mass and energy transfers during contact cooking and to provide new tools (especially numerical ones) to better dimension and monitor this operation. To achieve this objective, an approach combining experimental study and modelling of transfer phenomena has been achieved. An instrumented cooking device was designed in order to carry out a large experimental campaign aimed at studying the impact of several heating conditions on the cooking of three products: potato, pancake and omelet. The results enabled the development and validation of several models capable of accurately predicting the temperature rises and water losses of these products during cooking. These models are generic enough to be easily adaptable from one product to another and transposable to different contact cooking processes
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Никольский, Валерий Евгеньевич. "Синергетические реакционно-массообменные процессы в газожидкостных аппаратах и топливных агрегатах химической технологии". Thesis, Украинский государственный химико-технологический университет, 2016. http://repository.kpi.kharkov.ua/handle/KhPI-Press/24524.

Повний текст джерела
Анотація:
Диссертация на соискание ученой степени доктора технических наук по специальности 05.17.08 – процессы и оборудование химической технологии. – Национальный технический университет "Харьковский политехнический институт" Министерства образования и науки Украины, Харьков, 2016 г. Диссертационная работа посвящена решению актуальной инжиниринговой научно-технической проблемы: разработать современные энергоэффективные экологически чистые технологии, средства генерирования и потребления тепловой энергии с применением систем рекуперации теплоты на основе синергетического единства аппаратурно-технологического оформления процессов и системного подхода. В работе разработаны научно-методологические основы и практические способы повышения эффективности использования топлива в газожидкостных аппаратах и топливных агрегатах химической технологии за счет интенсификации тепловых процессов в их рабочем пространстве. С позиции совершенствования топливо– и материалосберегающих техники и технологий созданы новые конструкции газожидкостных аппаратов и топливных агрегатов. На их основе синтезированы экологически чистые энергоэффективные технологические системы (ЭТС), приемлемые для химической технологии и других сфер промышленности, коммунального, сельского хозяйства, отвечающие современным энергетическим и экологическим требованиям. Систематизированы методы интенсификации гетерогенных процессов в теплотехнологических аппаратах; предложены новые перспективные РТ и АК методы интенсификации и обоснована целесообразность их практического использования при синтезе новых ЭТС на базе синергетически совмещенных реакционно-разделительных процессов (обеспечение неоднофазности, наложение электрических и магнитных полей на контактирующие фазы, оптимизация параметров пульсаций в гетерогенных системах, одно- и многотипное комбинирование теплогенерирующих аппаратов, обеспечение многократных входных и концевых эффектов, соударения, закручивания, взаимной эжекции контактирующих фаз и их осциллирования, циклический подвод энергии). Разработанные и приведенные в диссертации аппараты, технологические процессы и оборудование широко внедрены на предприятиях Минхимпрома, Минметаллургии, Минавтопрома, Минкоммунхоза Украины и стран СНГ.
A thesis for Doctor of Technical degree, specialty 05.17.08 – process and equipments of chemical technology. – National Technical University "Kharkiv Polytechnic Institute" Ministry of Education and Science of Ukraine, Kharkiv, 2016. The thesis deals with the improvement of actual engineering science-technical problem: the development of the modern energy effective ecological technologies, the means of energy generation and consumption using the heat recuperation systems on the base of synergetic unity of hardware implementation of the processes and system approach. For that the methodological fundamentals and practical methods of increasing of fuel utilization efficiency in the gas-liquid apparatuses and in the fuel combustion units of chemical technology at the expense of heat processes intensification were developed. Looking for improvements in fuel efficiency and materials saving the new constructions of gas-liquid apparatuses and fuel combustion units were created. On this base the ecological and energy efficiency technological systems were synthesized. They confirm to the requirements of modern power engineering and they are acceptable for the chemical technology and the other industries, as well as for communal services and agriculture. The high-effective contact-module system was developed. It was equipped with the immersion combustion apparatuses with multiple phase inversion and oscillation modulating of contacted phases. The system can be used for heat supply of industrial and agricultural buildings, apartment houses without using boilers with heat utilization of combustion products, when heat rating of 200, 400, 600, 1000, 2000 kWt is assumed, depending a need for generated heat. The expenses for complex structures and buildings’ heating using the development are decreased by 2,5 – 2,8 times in comparison with the traditional means. Contact-module system has stood the government heat-ecological test, which confirmed its high efficiency, ecological compatibility, serviceability. Construction standard specifications for serial production in the different branches of economy were obtained. The developed and presented in the thesis apparatuses, technological processes and equipments were applied in chemistry, metallurgy, motor-car industries and in communal services in Ukraine and CIS countries.
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Нікольський, Валерій Євгенович. "Синергетичні реакційно-масообмінні процеси в газорідинних апаратах і паливних агрегатах хімічної технології". Thesis, НТУ "ХПІ", 2016. http://repository.kpi.kharkov.ua/handle/KhPI-Press/24517.

Повний текст джерела
Анотація:
Дисертація на здобуття наукового ступеня доктора технічних наук за спеціальністю 05.17.08 – процеси та обладнання хімічної технології. – Національний технічний університет "Харківський політехнічний інститут" Міністерства освіти і науки України, Харків, 2016 р. Дисертаційна робота присвячена вирішенню актуальної інжинірингової науково-технічної проблеми: розробити сучасні енергоефективні екологічно чисті технології, засоби генерування та споживання теплової енергії із застосуванням систем рекуперації теплоти на основі синергетичної єдності апаратурно-технологічного оформлення процесів і системного підходу. У роботі розроблено науково-методологічні основи та практичні способи підвищення ефективності використання палива в газорідинних апаратах і паливних агрегатах хімічної технології за рахунок інтенсифікації теплових процесів в їх робочому просторі. З позиції вдосконалення паливо- і матеріалозберігаючих техніки і технологій створено нові конструкції газорідинних апаратів і паливних агрегатів. На їх основі синтезовано екологічно чисті енергоефективні технологічні системи (ЕТС), прийнятні для хімічної технології та інших сфер промисловості, комунального, сільського господарства, які відповідають сучасним енергетичним та екологічним вимогам. Розроблено високоефективну контактно-модульну систему (КМС), обладнану апаратами зануреного горіння (АЗГ) з багатократною інверсією і модуляцією коливань контактуючих фаз для потреб теплопостачання промислових будівель і споруд, житлових і сільськогосподарських комплексів, яка виключає використання котельних і бойлерних установок з утилізацією теплоти продуктів згоряння, тепловою потужністю 200, 400, 600, 1000, 2000 кВт і вище залежно від потреби в генерованій теплоті. Витрати на обігрівання будівель і споруд при використанні пристрою знижуються в 2,5-2,8 рази в порівнянні з традиційними способами обігрівання. КМС пройшла державні тепло-екологічні випробування, які підтвердили її високу енергоефективність, екологічність, надійність в роботі. Отримано технічні умови на серійне її виготовлення і експлуатацію в різних галузях народного господарства. Розроблені і наведені в дисертації апарати, технологічні процеси і устаткування широко впроваджені на підприємствах Мінхімпрому, Мінметалургіі, Мінавтопрому, Мінкомунгоспу України та країн СНД.
A thesis for Doctor of Technical degree, specialty 05.17.08 – process and equipments of chemical technology. – National Technical University "Kharkiv Polytechnic Institute" Ministry of Education and Science of Ukraine, Kharkiv, 2016. The thesis deals with the improvement of actual engineering science-technical problem: the development of the modern energy effective ecological technologies, the means of energy generation and consumption using the heat recuperation systems on the base of synergetic unity of hardware implementation of the processes and system approach. For that the methodological fundamentals and practical methods of increasing of fuel utilization efficiency in the gas-liquid apparatuses and in the fuel combustion units of chemical technology at the expense of heat processes intensification were developed. Looking for improvements in fuel efficiency and materials saving the new constructions of gas-liquid apparatuses and fuel combustion units were created. On this base the ecological and energy efficiency technological systems were synthesized. They confirm to the requirements of modern power engineering and they are acceptable for the chemical technology and the other industries, as well as for communal services and agriculture. The high-effective contact-module system was developed. It was equipped with the immersion combustion apparatuses with multiple phase inversion and oscillation modulating of contacted phases. The system can be used for heat supply of industrial and agricultural buildings, apartment houses without using boilers with heat utilization of combustion products, when heat rating of 200, 400, 600, 1000, 2000 kWt is assumed, depending a need for generated heat. The expenses for complex structures and buildings’ heating using the development are decreased by 2,5 – 2,8 times in comparison with the traditional means. Contact-module system has stood the government heat-ecological test, which confirmed its high efficiency, ecological compatibility, serviceability. Construction standard specifications for serial production in the different branches of economy were obtained. The developed and presented in the thesis apparatuses, technological processes and equipments were applied in chemistry, metallurgy, motor-car industries and in communal services in Ukraine and CIS countries.
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Abada, Fella. "Transport d'humidité en matériaux poreux en présence d'un gradient de température : caractérisation expérimentale." Université Joseph Fourier (Grenoble), 1994. http://www.theses.fr/1994GRE10135.

Повний текст джерела
Анотація:
Ce travail de these porte sur des etudes experimentales relatives aux transferts monodimensionnels d'humidite sous differents gradients thermiques dans des materiaux poreux qui sont: le beton autoclave non expanse, la vermiculite, deux roches extraites de carrieres (rouffach et rorschach) servant a la restauration de monuments historiques. Un dispositif experimental est utilise pour le suivi continu des evolutions de teneurs en eau (methode gammametrique) et de temperatures (sondes thermiques) durant des essais de condensation et de sechage. L'objectif principal de ce travail est la determination des coefficients de transfert pour chaque materiau, determination basee sur la theorie classique du transfert de masse et de chaleur de de vries. Les coefficients de transfert sont calcules par un procede de regression entre les variables mesurees: flux de masse, gradient de temperature et gradient de teneur en eau, on donne leurs evolutions avec la teneur en eau et pour differentes temperatures. D'autres experiences sont aussi realisees donnant les conductivites thermiques et les isothermes d'adsorption permettant, ainsi, d'acquerir des informations sur le comportement des materiaux vis a vis du transfert de chaleur et de vapeur d'eau
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Nadim, Pedram. "Irreversibility of combustion, heat and mass transfer." Thesis, Norges teknisk-naturvitenskapelige universitet, Institutt for energi- og prosessteknikk, 2011. http://urn.kb.se/resolve?urn=urn:nbn:no:ntnu:diva-13651.

Повний текст джерела
Анотація:
Combustion is by far the most commonly used technology for energy conversion. The analysis of entropy generation and exergy loss is normally used to optimize thermal energy technologies such as gas turbines. The loss of exergy in the combustor is the largest of all component losses in gas turbine systems. The exergy efficiency of gas turbine combustors is typically 20-30%. In recent years the focus on reduction of climate gas and pollutant emissions from combustion has been a driving factor for research on combustion efficiency. The emphasis on fuel economy and pollution reduction from combustion motivates a study of the exergy efficiency of a combustion process. A bulk exergy analysis of the combustor does not take into account the complexity of the combustion process. The spatial dimensions of the flame must be accounted for in order gain detailed information about the entropy generation. This motivates a study of the local entropy production in a flame and quantifying the mechanisms that reduce the exergetic efficiency. The entropy production in combustion is also believed to have an effect on the stability of the flame. As most combustors operate with turbulent flow the emphasis of this report is on turbulent combustion.The source of exergy destruction or irreversibility in combustion is generally attributed to four different mechanisms: chemical reaction, internal heat transfer, mass diffusion of species, and viscous dissipation. The irreversibilities from the first three sources have been computed for a turbulent hydrogen H2 jet diffusion flame using prescribed probability density functions and data from experiments. The contribution of each source of exergy destruction is locally quantifed in the flame. Two different modeling assumptions are made, one based on a fast chemistry assumption and the other based on curve fitted relations from experimental data. The second law efficiency of the flame was found to be 98.7% when assuming fast chemistry, and 76.0% when curve fits from experimental data where used.The contribution from viscous dissipation has in previous studies been found to be negligible, and in order to simplify the modeling of the turbulent flow its contribution to the total entropy production has not been studied in this report.
Стилі APA, Harvard, Vancouver, ISO та ін.

Книги з теми "Contact heat and mass transfer"

1

Kreith, Frank, and R. F. Boehm, eds. Direct-Contact Heat Transfer. Berlin, Heidelberg: Springer Berlin Heidelberg, 1988. http://dx.doi.org/10.1007/978-3-662-30182-1.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Baehr, H. D. Heat and mass transfer. Berlin: Springer, 1998.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Baehr, H. D. Heat and Mass Transfer. Berlin, Heidelberg: Springer-Verlag Berlin Heidelberg, 2011.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Baehr, Hans Dieter, and Karl Stephan. Heat and Mass Transfer. Berlin, Heidelberg: Springer Berlin Heidelberg, 2006. http://dx.doi.org/10.1007/3-540-29527-5.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Karwa, Rajendra. Heat and Mass Transfer. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-3988-6.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Baehr, Hans Dieter, and Karl Stephan. Heat and Mass Transfer. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-20021-2.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Karwa, Rajendra. Heat and Mass Transfer. Singapore: Springer Singapore, 2017. http://dx.doi.org/10.1007/978-981-10-1557-1.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Baehr, Hans Dieter, and Karl Stephan. Heat and Mass Transfer. Berlin, Heidelberg: Springer Berlin Heidelberg, 1998. http://dx.doi.org/10.1007/978-3-662-03659-4.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Mills, Anthony F. Heat and mass transfer. Burr Ridge, Ill: Irwin, 1995.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

White, Frank M. Heat and mass transfer. Reading, Mass: Addison-Wesley, 1988.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Частини книг з теми "Contact heat and mass transfer"

1

Perona, J. J. "Mass Transfer Effects in Heat Transfer Processes." In Direct-Contact Heat Transfer, 67–81. Berlin, Heidelberg: Springer Berlin Heidelberg, 1988. http://dx.doi.org/10.1007/978-3-662-30182-1_5.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Marschall, E. "Discussion of Mass Transfer Effects and Liquid-Liquid Transport." In Direct-Contact Heat Transfer, 119–25. Berlin, Heidelberg: Springer Berlin Heidelberg, 1988. http://dx.doi.org/10.1007/978-3-662-30182-1_7.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Borghi, Roland, and Fabien Anselmet. "Modeling of Cauchy Tensor of Sliding Contacts." In Turbulent Multiphase Flows with Heat and Mass Transfer, 349–61. Hoboken, USA: John Wiley & Sons, Inc., 2014. http://dx.doi.org/10.1002/9781118790052.ch14.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Dmitriev, A. V., I. N. Madyshev, and O. S. Dmitrieva. "Separation Efficiency of the Heat–Mass Transfer Apparatuses with Jet-Film Contact Devices." In Proceedings of the 4th International Conference on Industrial Engineering, 1903–9. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-95630-5_204.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Madyshev, I. N., O. S. Dmitrieva, and A. V. Dmitriev. "Development of New Types of Contact Devices for Heat-Mass Transfer Apparatuses, Used at Petrochemical Enterprises." In Lecture Notes in Mechanical Engineering, 95–101. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-22063-1_11.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Kluitenberg, Gerard J., and Joshua L. Heitman. "Effect of forced convection on soil water content measurement with the dual-probe heat-pulse method." In Environmental Mechanics: Water, Mass and Energy Transfer in the Biosphere, 275–83. Washington, D. C.: American Geophysical Union, 2002. http://dx.doi.org/10.1029/129gm23.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Karwa, Rajendra. "Mass Transfer." In Heat and Mass Transfer, 929–48. Singapore: Springer Singapore, 2016. http://dx.doi.org/10.1007/978-981-10-1557-1_15.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Karwa, Rajendra. "Mass Transfer." In Heat and Mass Transfer, 1041–66. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-3988-6_15.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Dmitriev, A., I. Madyshev, and A. Khafizova. "The Study of Influence of Hole Diameter Within the Inclined-Corrugated Contact Elements on the Hydraulic and Heat-Mass Transfer Characteristics of Cooling Toweraper." In Lecture Notes in Mechanical Engineering, 874–82. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-54817-9_101.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Bharathan, D. "Direct-Contact Evaporation." In Direct-Contact Heat Transfer, 203–22. Berlin, Heidelberg: Springer Berlin Heidelberg, 1988. http://dx.doi.org/10.1007/978-3-662-30182-1_11.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Тези доповідей конференцій з теми "Contact heat and mass transfer"

1

Brauner, Neima, David Moalem-Maron, and Samuel Sideman. "SIMULTANEOUS MASS AND HEAT TRANSFER IN DIRECT CONTACT HYGROSCOPIC CONDENSATION." In International Heat Transfer Conference 8. Connecticut: Begellhouse, 1986. http://dx.doi.org/10.1615/ihtc8.80.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Yoo, Seong-Yeon, Hwa-Kil Kwon, and Kwang-Young Kim. "A Study on Heat and Mass Transfer for Air/Water Direct-Contact Air Conditioning System." In International Heat Transfer Conference 12. Connecticut: Begellhouse, 2002. http://dx.doi.org/10.1615/ihtc12.4760.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Queiroz, E. M. "ON THE TRANSIENT HEAT AND MASS TRANSFER MODELING OF DIRECT CONTACT EVAPORATORS." In International Symposium on Transient Convective Heat Transfer. New York: Begellhouse, 1996. http://dx.doi.org/10.1615/ichmt.1996.transientconvheattransf.180.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Liu, Qingquan, and Norman C. Tien. "Design and Modeling of Liquid Gallium Contact RF MEMS Switch." In ASME 2009 Second International Conference on Micro/Nanoscale Heat and Mass Transfer. ASMEDC, 2009. http://dx.doi.org/10.1115/mnhmt2009-18257.

Повний текст джерела
Анотація:
Due to the high power density and local temperature increase on nanoscopic asperities of solid metal contacts, traditional MEMS contact switches suffer from contact welding, pitting, electromigration and oxidation. Particularly, when MEMS switches are used to handle high power, solid metal contacts pose serious limitation on the contact reliability. A self-healing RF MEMS switch, which utilizes liquid gallium contacts to take the place of the traditional solid metal-to-metal contacts, is proposed in this paper. Electrostatic actuation is used to drive a silicon nitride bridge with upper electrodes. When the bridge is pulled down, liquid gallium droplets work as an interface between the upper and lower contact electrodes. The loss of the gallium droplets can be avoided due to the unwettability of the material surrounding the contact electrodes. The switch is fabricated using a surface micromachining process. A coupled-field finite element analysis (FEA) is used to model the electric current, heating and thermal conduction of the contacts. The model includes deformable gallium droplets with 4 μm base diameter. The two sides of the droplets are connected to the upper and lower solid metal contact electrodes, respectively. By using the FEA models, the electric and thermal characteristics of the gallium droplets featuring a variety of geometric parameters have been studied. 1 A current handling capability of the liquid gallium contact is verified by the FEA models.
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Tachon, Loi¨c, Stephan Guignard, and Loune`s Tadrist. "Experimental Investigation of a Contact Line Dynamic Induced by Liquid Evaporation Heat and Mass Transfer." In 2010 14th International Heat Transfer Conference. ASMEDC, 2010. http://dx.doi.org/10.1115/ihtc14-22562.

Повний текст джерела
Анотація:
The aim of the present study is to propose an original method to compute the shape of the interface in the vicinity of a contact line after a film break. The principle of the experiment consists in a controlled volume of evaporating liquid (HFE7100) deposited in a millimetric cylindrical vertical well. During the evaporation process, the liquid-gas interface takes a toroidal shape delimiting an axisymmetric film with the well bottom and side walls. At the beginning, the evaporation process occurs without triple line on the bottom. Then a circular triple line appears on the bottom. The meniscus interface shape and the triple line location are instantaneously measured by laser sheet sounding from underneath and numerical inversion: This technique analyses the variation of the light intensity along a laser sheet due to its refraction trough consecutive interfaces (solid-liquid-vapor).The laser sheet impacts intensity on a perpendicular screen is inverted. The inversion result is the shape of the interface and the position of the triple line during the evaporation process.
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Höhne, Thomas, Stasys Gasiunas, and Marijus Šeporaitis. "Numerical Modelling of a Direct Contact Condensation Experiment." In The 2nd World Congress on Momentum, Heat and Mass Transfer. Avestia Publishing, 2017. http://dx.doi.org/10.11159/icmfht17.102.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Kaya, Vildan Girişta, Vedat Temiz, Zeynep Parlar, and Levent Kavurmacıoğlu. "Design of A New Non-Contact Screw Seal and Determination of Performance Characteristics." In The World Congress on Momentum, Heat and Mass Transfer. Avestia Publishing, 2016. http://dx.doi.org/10.11159/enfht16.114.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

De Salve, Mario, Bruno Panella, and G. Scorta. "HEAT AND MASS TRANSFER DURING THE DEPRESSURIZATTON INDUCED BY DIRECT CONTACT CONDENSATION OF STEAM ON A SUBCOOLED LIQUID JET." In International Heat Transfer Conference 9. Connecticut: Begellhouse, 1990. http://dx.doi.org/10.1615/ihtc9.3690.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Abdulrahman, Mohammed W. "CFD Analysis of Temperature Distributions in a Slurry Bubble Column with Direct Contact Heat Transfer." In International Conference of Fluid Flow, Heat and Mass Transfer. Avestia Publishing, 2016. http://dx.doi.org/10.11159/ffhmt16.119.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Hong, Fangjun, Ping Cheng, Zhen Sun, and Huiying Wu. "Simulation of Spreading Dynamics of a EWOD Droplet With Dynamic Contact Angle and Contact Angle Hysteresis." In ASME 2009 Second International Conference on Micro/Nanoscale Heat and Mass Transfer. ASMEDC, 2009. http://dx.doi.org/10.1115/mnhmt2009-18558.

Повний текст джерела
Анотація:
In this paper, the electrowetting dynamics of a droplet on a dielectric surface was investigated numerically by a mathematical model including dynamic contact angle and contact angle hysteresis. The fluid flow is described by laminar N-S equation, the free surface of the droplet is modeled by the Volume of Fluid (VOF) method, and the electrowetting force is incorporated by exerting an electrical force on the cells at the contact line. The Kilster’s model that can deal with both receding and advancing contact angle is adopted. Numerical results indicate that there is overshooting and oscillation of contact radius in droplet spreading process before it ceases the movement when the excitation voltage is high; while the overshooting is not observed for low voltage. The explanation for the contact line overshooting and some special characteristics of variation of contact radius with time were also conducted.
Стилі APA, Harvard, Vancouver, ISO та ін.

Звіти організацій з теми "Contact heat and mass transfer"

1

Walton, George N. Validation test of an earth contact heat transfer algorithm. Gaithersburg, MD: National Bureau of Standards, 1985. http://dx.doi.org/10.6028/nbs.ir.85-3201.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Zyvoloski, G., Z. Dash, and S. Kelkar. FEHM: finite element heat and mass transfer code. Office of Scientific and Technical Information (OSTI), March 1988. http://dx.doi.org/10.2172/5495517.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Zyvoloski, G., Z. Dash, and S. Kelkar. FEHMN 1.0: Finite element heat and mass transfer code. Office of Scientific and Technical Information (OSTI), April 1991. http://dx.doi.org/10.2172/138080.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Bohn, M. Heat transfer and pressure drop measurements in an air/molten salt direct-contact heat exchanger. Office of Scientific and Technical Information (OSTI), November 1988. http://dx.doi.org/10.2172/10102019.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Goldstein, R. J., and M. Y. Jabbari. The impact of separated flow on heat and mass transfer. Office of Scientific and Technical Information (OSTI), January 1990. http://dx.doi.org/10.2172/6546146.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Pesaran, A. A. Heat and mass transfer analysis of a desiccant dehumidifier matrix. Office of Scientific and Technical Information (OSTI), July 1986. http://dx.doi.org/10.2172/5438707.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Bell, J., and L. Hand. Calculation of Mass Transfer Coefficients in a Crystal Growth Chamber through Heat Transfer Measurements. Office of Scientific and Technical Information (OSTI), April 2005. http://dx.doi.org/10.2172/918405.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Pickrell, Mark M., Matt Briggs, Mark Marr-Lyon, Larry Hull, Mike Shinas, and Daniel Creveling. Heat Transfer Analysis from laser Energy on Metal Parts in Contact with HE. Office of Scientific and Technical Information (OSTI), August 2018. http://dx.doi.org/10.2172/1467311.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Maclaine-Cross, I. L., and A. A. Pesaran. Heat and Mass Transfer Analysis of Dehumidifiers Using Adiabatic Transient Tests. Office of Scientific and Technical Information (OSTI), April 1986. http://dx.doi.org/10.2172/1129251.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Drost, Kevin, Goran Jovanovic, and Brian Paul. Microscale Enhancement of Heat and Mass Transfer for Hydrogen Energy Storage. Office of Scientific and Technical Information (OSTI), September 2015. http://dx.doi.org/10.2172/1225296.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії