Добірка наукової літератури з теми "Confocal microscopy"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Confocal microscopy".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Статті в журналах з теми "Confocal microscopy"
J. H., Youngblom, Wilkinson J., and Youngblom J.J. "Telepresence Confocal Microscopy." Microscopy and Microanalysis 6, S2 (August 2000): 1164–65. http://dx.doi.org/10.1017/s1431927600038319.
Повний текст джерелаYoungblom, J. H., J. Wilkinson, and J. J. Youngblom. "Telepresence Confocal Microscopy." Microscopy Today 8, no. 10 (December 2000): 20–21. http://dx.doi.org/10.1017/s1551929500054146.
Повний текст джерелаJester, J. V., H. D. Cavanagh, and M. A. Lemp. "In vivo confocal imaging of the eye using tandem scanning confocal microscopy (TSCM)." Proceedings, annual meeting, Electron Microscopy Society of America 46 (1988): 56–57. http://dx.doi.org/10.1017/s0424820100102365.
Повний текст джерелаYoungblom, J. H., J. Wilkinson, and J. J. Youngblom. "Confocal Laser Scanning Microscopy By Remote Access." Microscopy Today 7, no. 7 (September 1999): 32–33. http://dx.doi.org/10.1017/s1551929500064798.
Повний текст джерелаStefani, Caroline, Adam Lacy-Hulbert, and Thomas Skillman. "ConfocalVR: Immersive Visualization for Confocal Microscopy." Journal of Molecular Biology 430, no. 21 (October 2018): 4028–35. http://dx.doi.org/10.1016/j.jmb.2018.06.035.
Повний текст джерелаJason Kirk. "Beyond the Hype - Is 2-Photon Microscopy Right for You?" Microscopy Today 11, no. 2 (April 2003): 26–29. http://dx.doi.org/10.1017/s1551929500052469.
Повний текст джерелаChapman, George B., and T. Wilson. "Confocal Microscopy." Transactions of the American Microscopical Society 110, no. 2 (April 1991): 194. http://dx.doi.org/10.2307/3226760.
Повний текст джерелаWilson, T., and Barry R. Masters. "Confocal microscopy." Applied Optics 33, no. 4 (February 1, 1994): 565. http://dx.doi.org/10.1364/ao.33.000565.
Повний текст джерелаBeuerman, Roger W. "Confocal Microscopy." Cornea 14, no. 1 (January 1995): 1???2. http://dx.doi.org/10.1097/00003226-199501000-00001.
Повний текст джерелаLichtman, Jeff W. "Confocal Microscopy." Scientific American 271, no. 2 (August 1994): 40–45. http://dx.doi.org/10.1038/scientificamerican0894-40.
Повний текст джерелаДисертації з теми "Confocal microscopy"
Naredi-Rainer, Nikolaus. "Advanced confocal microscopy." Diss., Ludwig-Maximilians-Universität München, 2014. http://nbn-resolving.de/urn:nbn:de:bvb:19-168349.
Повний текст джерелаPacheco, Shaun, and Shaun Pacheco. "Array Confocal Microscopy." Diss., The University of Arizona, 2017. http://hdl.handle.net/10150/623252.
Повний текст джерелаYe, Peng. "Compressive confocal microscopy." Access to citation, abstract and download form provided by ProQuest Information and Learning Company; downloadable PDF file, 50 p, 2009. http://proquest.umi.com/pqdweb?did=1889084501&sid=3&Fmt=2&clientId=8331&RQT=309&VName=PQD.
Повний текст джерелаOwen, Gabrielle M. "Coherence gated confocal microscopy." Thesis, Massachusetts Institute of Technology, 1993. http://hdl.handle.net/1721.1/12434.
Повний текст джерелаIncludes bibliographical references (leaves 33-34).
by Gabrielle M. Owen.
B.S.
Sfalcin, Ravana Angelini 1985. "Avaliação de propriedades físico-químicas de infiltrantes experimentais com adição de partículas de vidro bioativas = Evaluation of the physical-chemical properties of experimental infiltrants incorporated with bioactive glass particles." [s.n.], 2015. http://repositorio.unicamp.br/jspui/handle/REPOSIP/288423.
Повний текст джерелаTese (doutorado) - Universidade Estadual de Campinas, Faculdade de Odontologia de Piracicaba
Made available in DSpace on 2018-08-27T03:22:53Z (GMT). No. of bitstreams: 1 Sfalcin_RavanaAngelini_D.pdf: 1513616 bytes, checksum: bd6dc4a4843283522343b56a58ef8ec7 (MD5) Previous issue date: 2015
Resumo: O objetivo neste trabalho foi avaliar as propriedades físico-químicas de infiltrantes resinosos com adição de partículas bioativas, bem como sua capacidade de penetração e dureza da profundidade em lesões subsuperficiais de esmalte. Uma blenda contendo TEGDMA (75% em peso) e BisEMA (25% em peso) foi manipulada e a partir dela foram incorporados 5 tipos de partículas bioativas (10% em peso): hidroxiapatita (HAp), fosfato de cálcio amorfo (ACP), vidro bioativo policarboxilato de zinco (BAG Zn), vidro bioativo 45S5 (BAG 45S5), cimento de silicato de cálcio modificado por ?-TCP (HCAT-?). Um material comercial foi utilizado (ICON®) como controle. Dez espécimes foram confeccionados para cada grupo de cada teste: rugosidade superficial (Ra) antes e após a escovação; Resistência à flexão por 3 pontos (RF) e módulo de elasticidade (ME); resistência coesiva à tração (RC); dureza Knoop (KHN); densidade de ligação cruzada (DLC); grau de conversão (GC); sorção (S) e solubilidade (SL) em água; e micro-dureza (KHN). Os dados foram submetidos a ANOVA e teste Tukey (?=0.05). A penetração dos infiltrantes resinosos no esmalte humano desmineralizado foi qualitativamente avaliada em Microscopia Confocal de Varredura a Laser (n=5). Os resultados mostraram que os menores valores de rugosidade (antes e após a escovação foram apresentados pelo ACP. Com relação à resistência a flexão e módulo de elasticidade, T+B apresentou o maior valor e ICON® mostrou o menor valor. ICON® também mostrou o menor valor de resistência coesiva à tração; não houve diferença significativa entre os grupos T+B, HAp, ACP, BAG Zn, BAG 45S5 e HCAT-?. Para o teste de dureza Knoop, ICON® obteve o menor valor e BAG Zn mostrou o maior valor. Para densidade de ligação cruzada, ICON® apresentou maior quantidade de ligação cruzada e HAp, menor quantidade de ligação cruzada. ICON® apresentou grau de conversão significantemente menor que os infiltrantes experimentais, que não diferiram entre eles. ICON® apresentou a maior sorção de água e HAp a menor. Não houve diferença significativa entre os demais grupos. Para solubilidade, ICON® apresentou os maiores valores, mas sem diferença de ACP. BAG 45S5 apresentou a menor solubilidade. Com relação a micro-dureza, não houve diferença estatisticamente significante entre as profundidades avaliadas (50 µm, 200 µm, 350 µm e 500 µm). BAG 45S5, BAG Zn e HCAT-? não mostraram diferença estatística entre eles. Entretanto, HCAT-? e BAG Zn foram similares ao ICON® e ACP. O grupo cariado mostrou menor valor quando comparado a todos os grupos testados. A análise em microscopia confocal mostrou que todos os materiais apresentaram boa capacidade de penetração nas lesões iniciais, exceto para FCA. Pôde ser concluído que adição de partículas bioativas em um infiltrante experimental melhorou as propriedades mecânicas e não afetou a capacidade de penetração dos infiltrantes. O infiltrante resinoso contendo fosfato de cálcio amorfo foi o que apresentou o melhor desempenho no teste de rugosidade de superfície antes e após a escovação
Abstract: The aim of this study was to evaluate the physical-chemical properties of the experimental infiltrants with the addition of bioactive particles as well as their capability of penetration and depth Knoop hardness into caries-like lesions. A control blend was made with TEGDMA (75 wt%) and BisEMA (25 wt%). Five bioactive fillers were added in the control blend (10 wt%): Hydroxyapatite (Hap), amorphous calcium phosphate (ACP), Zinc-polycarboxylated bioactive glass (BAG-Zn), bioactive glass 45S5 (BAG 45S5), and ?-TCP modified calcium silicate cements (HCAT-?). An available commercially material was used (ICON®). Ten specimens were comprised by each group for the following tests: Surface roughness (Ra) before and after brushing abrasion; flexural strength (FS) and elastic modulus (E-Modulus); tensile cohesive strength (TCS); Knoop hardness (KHN); softnening ratio (SR); degree of conversion (DC); water sorption (WS) and solubility (SL); and micro-hardness (micro-KHN). Data were subjected to ANOVA and Tukey¿s test (?=0.05). Confocal Scanning Laser Microscopy was used to evaluate qualitatively the penetration capability of resin infiltrants into demineralized human enamel. Results showed that ACP had the lowest Ra before and after brushing abrasion. Regarding to the FS and E-modulus, T+B showed the higher value and ICON® showed the lower value. Also, ICON® showed the lower value of TCS, but there was no significant statistically difference among the groups T+B, HAp, ACP, BAG Zn, BAG 45S5 e HCAT-?. To the KHN, ICON® obtained the lower value and BAG Zn showed the higher value. According to the SR, ICON® showed lower SR and HAp, the higher SR. ICON showed DC significantly lower than experimental resin infiltrants. Regarding to the WS, ICON® presented the highest water sorption and HAp the lowest one. There was no significant statistically difference among the other groups. ICON showed the highest SL results; however, the results were similar to ACP. The lowest SL was found for BAG 45S5. Regarding to the micro-KHN, there was no statistically difference among the analyzed depths (50 µm, 200 µm, 350 µm and 500 µm). BAG 45S5, BAG Zn and HCAT- ? did not show statistical difference among them. However, HCAT- ? and BAG Zn were similar to ICON® and ACP. Carious group showed lower value when compared to all the tested groups. Confocal microscopy analysis showed good capability of penetration into the initial lesions for all materials, except for ACP. It could be concluded that the addition of bioactive particles into an experimental infiltrant improved the mechanical properties and did not affect the capability of penetration into the experimental infiltrants. The resin infiltrant with amorphous calcium phosphate presented the best performance to the roughness surface before and after brushing abrasion
Doutorado
Materiais Dentarios
Doutora em Materiais Dentários
Booth, Martin J. "Adaptive optics for confocal microscopy." Thesis, University of Oxford, 2001. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.393566.
Повний текст джерелаCarlini, A. R. "Imaging modes of confocal scanning microscopy." Thesis, University of Oxford, 1988. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.233485.
Повний текст джерелаAlawadhi, Fahimah. "Statistical image analysis and confocal microscopy." Thesis, University of Bath, 2001. https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.341639.
Повний текст джерелаLewin, Erland. "Approaches to Optimizing High Content Confocal Microscopy." Licentiate thesis, KTH, Applied Physics, 2009. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-10691.
Повний текст джерелаThis thesis presents two methods for improving high contentconfocal microscopy.
The author's part in the first, "Toward a confocal subcellular atlasof the human proteome" was automating image capture of foursimultaneously tagged structures in cells in 96 well plates. In total,thousands of images of hundreds of proteins in cells. The authorwas also part of deciding which imaging methods should be used tomaximize image information content and quality, given the limitedtime available per well in order to scan large numbers of wells.
The second project, "Improved water permeability measurementsbased on fluorescence normalization" involves increasing the sensitivityof measurements of protein function by normalizing with anestimate of the amount of protein in the cell - the fluorescentsignal of a co-transfected protein. This could lead to achievingsufficient confidence in measurements with fewer experiments(thus increasing the information content in each experiment). Asurprisingly high level of noise in the relationship between thefluorescent signal and the protein function was measured.
Denna avhandling presenterar två projekt för att förbättrametoder för experiment med stora informationsmängderbaserade på konfokalmikroskopi.
Författarens del i det första projektet, "Toward a ConfocalSubcellular Atlas of the Human Proteome" (Mot en konfokal,subcellulär atlas av det mänskliga proteomet) var att automatiserabildinsamlingen av fyra samtidigt inmärkta strukturer i celler iplattor med 96 brunnar. Sammanlagt togs tusentals bilder avhundratals proteiner i celler. Författaren var även del i att fastställavilka bildinsamlingsmetoder som skulle användas för att maximeramängd och kvalitet på bild-informationen givet den begränsade tidper brunn som var tillgänglig för att kunna avbilda många brunnar.
Den andra studien, "Improved water permeability measurementsbased on fluorescence normalization" (Förbättrade vattenpermeabilitetsmätningargenom normalisering av fluorescens) syftade till att ökakänsligheten hos mätningar av proteiners funktion genom attnormalisera mätningarna med signalen från fluorescensen från ettkotransfekterat protein. Det skulle kunna leda till att nå tillräckligtillförlitlighet i mätresultaten med färre experiment (därmed ökainformationsinnehållet i varje experiment). En förvånansvärt högbrusnivå i förhållandet mellan fluorescenssignalen ochproteinfunktionen uppmättes
Apeldoorn, Aart Alexander van. "Confocal Raman microscopy applications in tissue engineering /." Enschede : University of Twente [Host], 2005. http://doc.utwente.nl/50895.
Повний текст джерелаКниги з теми "Confocal microscopy"
Paddock, Stephen W. Confocal Microscopy. New Jersey: Humana Press, 1998. http://dx.doi.org/10.1385/159259722x.
Повний текст джерелаBrzostowski, Joseph, and Haewon Sohn, eds. Confocal Microscopy. New York, NY: Springer US, 2021. http://dx.doi.org/10.1007/978-1-0716-1402-0.
Повний текст джерелаPaddock, Stephen W., ed. Confocal Microscopy. New York, NY: Springer New York, 2014. http://dx.doi.org/10.1007/978-1-60761-847-8.
Повний текст джерелаTony, Wilson, ed. Confocal microscopy. London: Academic Press, 1990.
Знайти повний текст джерелаMichael, Conn P., ed. Confocal microscopy. San Diego: Academic Press, 1999.
Знайти повний текст джерелаBrian, Matsumoto, and American Society for Cell Biology., eds. Cell biological applications of confocal microscopy. 2nd ed. Amsterdam: Academic Press, 2002.
Знайти повний текст джерелаPrice, Robert L., and W. Gray (Jay) Jerome, eds. Basic Confocal Microscopy. New York, NY: Springer New York, 2011. http://dx.doi.org/10.1007/978-0-387-78175-4.
Повний текст джерелаJerome, W. Gray, and Robert L. Price, eds. Basic Confocal Microscopy. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-97454-5.
Повний текст джерелаToporski, Jan, Thomas Dieing, and Olaf Hollricher, eds. Confocal Raman Microscopy. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-75380-5.
Повний текст джерелаDieing, Thomas, Olaf Hollricher, and Jan Toporski, eds. Confocal Raman Microscopy. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-12522-5.
Повний текст джерелаЧастини книг з теми "Confocal microscopy"
Bühren, Jens. "Confocal Microscopy." In Encyclopedia of Ophthalmology, 1–3. Berlin, Heidelberg: Springer Berlin Heidelberg, 2016. http://dx.doi.org/10.1007/978-3-642-35951-4_429-4.
Повний текст джерелаCox, Guy. "Confocal Microscopy." In Springer Protocols Handbooks, 1009–25. Totowa, NJ: Humana Press, 2008. http://dx.doi.org/10.1007/978-1-60327-375-6_55.
Повний текст джерелаSheppard, Colin J. R., and Shakil Rehman. "Confocal Microscopy." In Biomedical Optical Imaging Technologies, 213–31. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-28391-8_6.
Повний текст джерелаBorlinghaus, Rolf Theodor. "Confocal Microscopy." In The White Confocal, 47–66. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-55562-1_3.
Повний текст джерелаWiora, Georg, Mark Weber, and Sirichanok Chanbai. "Confocal Microscopy." In Encyclopedia of Tribology, 426–34. Boston, MA: Springer US, 2013. http://dx.doi.org/10.1007/978-0-387-92897-5_314.
Повний текст джерелаNaredi-Rainer, Nikolaus, Jens Prescher, Achim Hartschuh, and Don C. Lamb. "Confocal Microscopy." In Fluorescence Microscopy, 165–202. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2017. http://dx.doi.org/10.1002/9783527687732.ch5.
Повний текст джерелаNaredi-Rainer, Nikolaus, Jens Prescher, Achim Hartschuh, and Don C. Lamb. "Confocal Microscopy." In Fluorescence Microscopy, 175–213. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2013. http://dx.doi.org/10.1002/9783527671595.ch5.
Повний текст джерелаBühren, Jens. "Confocal Microscopy." In Encyclopedia of Ophthalmology, 475–76. Berlin, Heidelberg: Springer Berlin Heidelberg, 2018. http://dx.doi.org/10.1007/978-3-540-69000-9_429.
Повний текст джерелаSanderson, Jeremy. "Confocal Microscopy." In Principles of Light Microscopy: From Basic to Advanced, 105–38. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-04477-9_5.
Повний текст джерелаDebarbieux, Sébastien, Amélie Boespflug, Bruno Labeille, and Luc Thomas. "Confocal Microscopy." In Baran & Dawber's Diseases of the Nails and their Management, 204–11. Chichester, UK: John Wiley & Sons, Ltd, 2018. http://dx.doi.org/10.1002/9781119323396.ch8.
Повний текст джерелаТези доповідей конференцій з теми "Confocal microscopy"
Dixon, A. E. "Confocal microscopy." In OSA Annual Meeting. Washington, D.C.: Optica Publishing Group, 1993. http://dx.doi.org/10.1364/oam.1993.tue.1.
Повний текст джерелаMasters, Barry R., and Andreas A. Thaer. "Confocal Microscopy of the Human In Vivo Cornea." In Ophthalmic and Visual Optics. Washington, D.C.: Optica Publishing Group, 1993. http://dx.doi.org/10.1364/ovo.1993.osab.2.
Повний текст джерелаWebb, Robert H. "Confocal microscopy." In OSA Annual Meeting. Washington, D.C.: Optica Publishing Group, 1990. http://dx.doi.org/10.1364/oam.1990.ms1.
Повний текст джерелаLindek, Steffen, and Ernst H. Stelzer. "Confocal theta microscopy and 4Pi-confocal theta microscopy." In IS&T/SPIE 1994 International Symposium on Electronic Imaging: Science and Technology, edited by Carol J. Cogswell and Kjell Carlsson. SPIE, 1994. http://dx.doi.org/10.1117/12.172093.
Повний текст джерелаZhao, Bingying, Minoru Koyama, and Jerome Mertz. "High-resolution multi-z confocal microscopy." In Imaging Systems and Applications. Washington, D.C.: Optica Publishing Group, 2023. http://dx.doi.org/10.1364/isa.2023.itu3e.4.
Повний текст джерелаYe, P., J. L. Paredes, G. R. Arce, Y. Wu, C. Chen, and D. W. Prather. "Compressive confocal microscopy." In ICASSP 2009 - 2009 IEEE International Conference on Acoustics, Speech and Signal Processing. IEEE, 2009. http://dx.doi.org/10.1109/icassp.2009.4959612.
Повний текст джерелаChmelik, Radim. "Holographic confocal microscopy." In 12th Czech-Slovak-Polish Optical Conference on Wave and Quantum Aspects of Contemporary Optics, edited by Jan Perina, Sr., Miroslav Hrabovsky, and Jaromir Krepelka. SPIE, 2001. http://dx.doi.org/10.1117/12.417815.
Повний текст джерелаHanna, Philip M., Brian D. Rigling, and Edmund G. Zelnio. "Virtual confocal microscopy." In Electronic Imaging 2006, edited by Brian D. Corner, Peng Li, and Matthew Tocheri. SPIE, 2006. http://dx.doi.org/10.1117/12.650778.
Повний текст джерелаSheppard, Colin J., Douglas K. Hamilton, and Hubert J. Matthews. "Confocal Interference Microscopy." In 1988 International Congress on Optical Science and Engineering. SPIE, 1989. http://dx.doi.org/10.1117/12.950317.
Повний текст джерелаSheppard, Colin J. R., and Hao Zhou. "Confocal interference microscopy." In BiOS '97, Part of Photonics West, edited by Carol J. Cogswell, Jose-Angel Conchello, and Tony Wilson. SPIE, 1997. http://dx.doi.org/10.1117/12.271254.
Повний текст джерелаЗвіти організацій з теми "Confocal microscopy"
Hoffmeyer, Michaela. In Vivo Fluorescence Confocal Microscopy to Investigate the Role of RhoC in Inflammatory Breast Cancer. Fort Belvoir, VA: Defense Technical Information Center, April 2005. http://dx.doi.org/10.21236/ada435616.
Повний текст джерелаDarrow, C., T. Huser, C. Campos, M. Yan, S. Lane, and R. Balhorn. Single Fluorescent Molecule Confocal Microscopy: A New Tool for Molecular Biology Research and Biosensor Development. Office of Scientific and Technical Information (OSTI), March 2000. http://dx.doi.org/10.2172/792442.
Повний текст джерелаWickramaratne, Chathuri, Emily Sappington, and Hanadi Rifai. Confocal Laser Fluorescence Microscopy to Measure Oil Concentration in Produced Water: Analyzing Accuracy as a Function of Optical Settings. Journal of Young Investigators, June 2018. http://dx.doi.org/10.22186/jyi.34.6.39-47.
Повний текст джерелаYANG, JUNYA, and NAN ZHANG ZHANG. Changes of the corneal nerve in painful diabetic neuropathy compared to painless diabetic neuropathy under corneal confocal microscopy: a systematic review and meta-analysis. INPLASY - International Platform of Registered Systematic Review and Meta-analysis Protocols, March 2023. http://dx.doi.org/10.37766/inplasy2023.3.0023.
Повний текст джерелаTan, Li, Qiong Liu, Yun Chen, Ya-Qiong Zhao, Jie Zhao, Marie Aimee Dusenge, Yao Feng, et al. Efficacy of sonic activation techniques on tubular dentin sealer penetration:A systematic review and meta-analysis. INPLASY - International Platform of Registered Systematic Review and Meta-analysis Protocols, July 2022. http://dx.doi.org/10.37766/inplasy2022.7.0116.
Повний текст джерелаGeorge, J. S., D. M. Rector, D. M. Ranken, B. Peterson, and J. Kesteron. Virtual pinhole confocal microscope. Office of Scientific and Technical Information (OSTI), June 1999. http://dx.doi.org/10.2172/353183.
Повний текст джерелаOr, Dani, Shmulik Friedman, and Jeanette Norton. Physical processes affecting microbial habitats and activity in unsaturated agricultural soils. United States Department of Agriculture, October 2002. http://dx.doi.org/10.32747/2002.7587239.bard.
Повний текст джерелаMartinez-Rodriguez, M. J. Laser confocal microscope for analysis of 3013 inner container closure weld region. Office of Scientific and Technical Information (OSTI), October 2017. http://dx.doi.org/10.2172/1406122.
Повний текст джерелаGalbraith, David. Final Report: Confocal Laser Scanning Microscope, April 15, 1995 - April 14, 1997. Office of Scientific and Technical Information (OSTI), April 2000. http://dx.doi.org/10.2172/765740.
Повний текст джерелаWendelberger, James. Template size and proper overlap detection in Laser Confocal Microscope (LCM) images. Office of Scientific and Technical Information (OSTI), August 2021. http://dx.doi.org/10.2172/1812643.
Повний текст джерела