Добірка наукової літератури з теми "Confocal fluorescence microscopy"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Confocal fluorescence microscopy".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Статті в журналах з теми "Confocal fluorescence microscopy"
Zhibin Wang, Zhibin Wang, Guohua Shi Guohua Shi, and Yudong Zhang Yudong Zhang. "Adaptive aberration correction in confocal scanning fluorescence microscopy." Chinese Optics Letters 12, s1 (2014): S11103–311105. http://dx.doi.org/10.3788/col201412.s11103.
Повний текст джерелаVolkov, I. A., N. V. Frigo, L. F. Znamenskaya, and O. R. Katunina. "Application of Confocal Laser Scanning Microscopy in Biology and Medicine." Vestnik dermatologii i venerologii 90, no. 1 (February 24, 2014): 17–24. http://dx.doi.org/10.25208/0042-4609-2014-90-1-17-24.
Повний текст джерелаWright, S. J., J. S. Walker, H. Schatten, C. Simerly, J. J. McCarthy, and G. Schatten. "Confocal fluorescence microscopy with the tandem scanning light microscope." Journal of Cell Science 94, no. 4 (December 1, 1989): 617–24. http://dx.doi.org/10.1242/jcs.94.4.617.
Повний текст джерелаWelzel, J., Raphaela Kästle, and Elke C. Sattler. "Fluorescence (Multiwave) Confocal Microscopy." Dermatologic Clinics 34, no. 4 (October 2016): 527–33. http://dx.doi.org/10.1016/j.det.2016.06.002.
Повний текст джерелаNie, Shuming, Daniel T. Chiu, and Richard N. Zare. "Real-time observation of single molecules by confocal fluorescence microscopy." Proceedings, annual meeting, Electron Microscopy Society of America 53 (August 13, 1995): 60–61. http://dx.doi.org/10.1017/s0424820100136672.
Повний текст джерелаJason Kirk. "Beyond the Hype - Is 2-Photon Microscopy Right for You?" Microscopy Today 11, no. 2 (April 2003): 26–29. http://dx.doi.org/10.1017/s1551929500052469.
Повний текст джерелаCheng, P. C., S. J. Pan, A. Shih, W. S. Liou, M. S. Park, T. Watson, J. Bhawalkar, and P. Prasard. "Two-Photon Laser Scanning Confocal Microscopy." Microscopy and Microanalysis 3, S2 (August 1997): 847–48. http://dx.doi.org/10.1017/s1431927600011120.
Повний текст джерелаOostveldt, P., and S. Bauwens. "Quantitative fluorescence in confocal microscopy." Journal of Microscopy 158, no. 2 (May 1990): 121–32. http://dx.doi.org/10.1111/j.1365-2818.1990.tb02985.x.
Повний текст джерелаVISSCHER, K., G. J. BRAKENHOFF, and T. D. VISSER. "Fluorescence saturation in confocal microscopy." Journal of Microscopy 175, no. 2 (August 1994): 162–65. http://dx.doi.org/10.1111/j.1365-2818.1994.tb03479.x.
Повний текст джерелаRagazzi, Moira, Simonetta Piana, Caterina Longo, Fabio Castagnetti, Monica Foroni, Guglielmo Ferrari, Giorgio Gardini, and Giovanni Pellacani. "Fluorescence confocal microscopy for pathologists." Modern Pathology 27, no. 3 (September 13, 2013): 460–71. http://dx.doi.org/10.1038/modpathol.2013.158.
Повний текст джерелаДисертації з теми "Confocal fluorescence microscopy"
Eigenbrot, Ilya Vladimirovich. "A time-resolved confocal fluorescence microscope." Thesis, Imperial College London, 2001. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.342331.
Повний текст джерелаAlawadhi, Fahimah. "Statistical image analysis and confocal microscopy." Thesis, University of Bath, 2001. https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.341639.
Повний текст джерелаJiang, Shihong. "Non-scanning fluorescence confocal microscopy using laser speckle illumination." Thesis, University of Nottingham, 2005. http://eprints.nottingham.ac.uk/10139/.
Повний текст джерелаWang, Xiao. "Confocal angle resolved linear dichroism microscopy for structural fluorescence imaging." Ecole centrale de Marseille, 2013. http://tel.archives-ouvertes.fr/docs/00/87/10/10/PDF/Wang-Thesis.pdf.
Повний текст джерелаBased on the fact that the absorption of light is a molecular-orientation sensitive process, fluorescence microscopy has been recently completed by a technique called angle-resolved linear dichroism. By analyzing the fluorescence emission response with respect to the polarization orientation of the exciting light, this technique allows retrieving orientation information of an ensemble of fluorescent molecules, namely the average orientation angle and the amplitude of the angular fluctuations around this average. In this PhD thesis, we implement new methods and instrumentation tools able to improve the robustness and speed of the polarization resolved data analysis, the rate of the data acquisition, and at last to explore the possibility to record molecular 3D orientation information. A scheme able to monitor the real-time orientation properties of fluorescent lipid probes is proposed using a high-speed spinning disk coupled to camera imaging, combined with fast switching of the polarization state by an electro optical modulator. A new data processing method is developed which considerably improves the speed and the precision of the retrieved information by investigating the sources of bias and uncertainty due to noise and instrumentation factors. The technique has been successfully tested on giant unilamellar vesicles and on living cells labeled with different fluorescent lipid probes, DiIC18 and di-8-ANEPPQ. It was able to acquire precise molecular orientation images at full frame rates in the range of one frame per second. At last in order to probe unambiguously the 3D orientation information of an ensemble of molecules, a new method is proposed and supported by simulations, based on the out-of-plane tuning of the excitation polarization realized in the focusing volume by coherently summing linearly and radially polarized fields
Gösch, Michael. "Microfluidic analysis and parallel confocal detection of single molecules /." Stockholm, 2003. http://diss.kib.ki.se/2003/91-7349-663-4/.
Повний текст джерелаRisi, Matthew D. "Advances In Combined Endoscopic Fluorescence Confocal Microscopy And Optical Coherence Tomography." Diss., The University of Arizona, 2014. http://hdl.handle.net/10150/332772.
Повний текст джерелаSlimani, Amel. "Photonic approach for the study of dental hard tissues and carious lesion detection." Thesis, Montpellier, 2017. http://www.theses.fr/2017MONTT125.
Повний текст джерелаPhotonic properties of dental hard tissues allowed us to proceed to in vitro analysis of enamel and dentin on a molecular level. Confocal Raman microscopy has been used to produce a mapping of collagen cross-link and crystallinity of human dentin–enamel junction (DEJ) with a spatial resolution not achieved up to now. The method is a non-invasive, label-free and a high spatial resolution imaging technique. This chemical analysis of DEJ led us to redefine a wider width of this transition zone and advance our understanding of dental histology. A study on the intrinsic fluorescence changes of sound and carious tissues using conventional fluorescence microscopy suggests the involvement of protoporphyrin IX and pentosidine in the fluorescence red-shift observed in carious tissues. Multiphoton microscopy allowed to detect nonlinear optical signal changes during caries process using second harmonic generation (SHG) and two-photon excitation fluorescence (2PEF). Our studies led us to propose the ratio SHG/2PEF as valuable parameter to monitor caries lesion. Collectively, advances described in this thesis show the potential of photonic properties of enamel and dentin using Raman and multiphoton microcopies for molecular investigations on sound as much as on carious tissues. It opens new perspective in dental research and clinical applications
Tsutae, Fernando Massayuki. "Espectroscopia de correlação de fluorescência aplicada em estudos de sistemas moleculares, biológicos e celulares." Universidade de São Paulo, 2016. http://www.teses.usp.br/teses/disponiveis/76/76132/tde-14102016-101124/.
Повний текст джерелаFluorescence correlation spectroscopy (FCS) is one of the many different modes of high-resolution spatial and temporal analysis of extremely low concentrated biomolecules. It has become a powerful and sensitive tool in fields like biochemistry and biophysics. As a well established technique, it is used to measure local concentrations of fluorescently labeled biomolecules, diffusion coefficients, kinetic constants and single molecule studies. Through a combination of high quantum yield fluorescent dyes, stable light sources (lasers), ultrasensitive detection and confocal microscopy is possible to perform FCS measurements in femtoliters volumes and nanomolar concentrations in aquous solution or in live cells. Unlike with other fluorescence technics, its sensibility increases with the decrease of dye concentrarion, because the main factor is not the emission intensity itself. Instead this, spontaneous statistical fluctuation of fluorescence becomes the main factor in FCS analisys. During the time that the conjugated-dye cross the volume detection can occur conformational changes, chemical reaction and photophysical processes that can change the emission properties of the dye and, then, change the detected sinal. This fluctuations are tracked and changed into a autocorrelation curve, by a specific software, appropriate to perform FCS analisys. In our study, we use comercial dye (Alexa 488) to label proteins. Firstly, we applied FCS to measure extremally diluted concentrations of dyes (~1 nM). We have performed experiments testing the influence of the viscosity medium in the free difusion of the dyes and the optical apparatus and conditions that result in the best FCS signal. We also have studied protein diffusion (PUC II e IV) in aquous medium (PBS) and toward the inner of the cells.
Kakade, Rohan. "Improved resolution and signal-to-noise ratio performance of a confocal fluorescence microscope." Thesis, University of Nottingham, 2016. http://eprints.nottingham.ac.uk/33699/.
Повний текст джерелаFerro, Daniela Peixoto 1981. "Aplicação da biofotônica para o estudo de cicatrizes." [s.n.], 2015. http://repositorio.unicamp.br/jspui/handle/REPOSIP/312786.
Повний текст джерелаTese (doutorado) - Universidade Estadual de Campinas, Faculdade de Ciências Médicas
Made available in DSpace on 2018-08-26T20:44:11Z (GMT). No. of bitstreams: 1 Ferro_DanielaPeixoto_D.pdf: 2964245 bytes, checksum: 202d309cf65f632d47c7811d4958535d (MD5) Previous issue date: 2015
Resumo: A aplicação integrada de técnicas modernas, como a Geração do Segundo Harmônico (SHG) e os tempos de vida da fluorescência (FLIM), com análise de imagens matemáticas nos permitem visualizar detalhes não vistos por microscopia de luz convencional. O objetivo deste estudo foi investigar se isto também pode ser aplicado para a investigação de tecido cicatricial. Foram estudados 28 casos de preparações histológicas de rotina, de quelóides, cicatrizes hipertróficas e normais. A Fluorescência de dois fótons e SHG foram obtidas por um microscópio multifóton (LSM 780 NLO-Zeiss), em objetiva de 40X e excitados por um laser Mai Tai de Ti: Safira (comprimento de onda de 940 nm). Foram adquiridas imagens em 3D e foram criadas imagens justapostas a fim de comparar diferentes cicatrizes ou várias regiões no interior da mesma cicatriz com análise de imagens informatizadas. Variáveis de Textura derivadas a partir da matriz de coocorrência das imagens de fluorescência mostraram diferenças significativas entre as cicatrizes normais, cicatrizes hipertróficas e quelóides. Para a análise do FLIM, foi utilizado um sistema composto por um microscópio confocal (LSM780-NLO- Zeiss), com objetiva de 40x e um sistema FLIM acoplado. As amostras foram excitadas por um laser de diodo a 405nm. Estudamos secções não coradas de 32 casos processados rotineiramente de tecido cicatricial incluídos em parafina. As áreas das regiões centrais e periféricas foram selecionadas aleatoriamente e comparadas. Os tempos de vida de fluorescência das hemácias serviram como padrão interno. Os tempos de vida do colágeno em áreas centrais em todos os tipos de cicatrizes foram significativamente mais longo do que em áreas periféricas. Houve correlação positiva entre os tempos de vida de fluorescência das hemácias e as fibras de colágeno entre os casos. Em resumo, o SHG e a técnica Flim revelam em cicatrizes rotineiramente processadas, características morfológicas dos tecidos, que não podem ser detectadas por microscopia de luz convencional
Abstract: The integrated application of modern techniques such as Second Harmonic Generation (SHG) and fluorescence lifetime imaging (FLIM) with mathematical image analysis enable us to visualize details not seen by conventional light microscopy. The aim of this study was to investigate whether this could also be true for the investigation of scar tissue. 28 routine histological preparations of keloids, hypertrophic and normal scars were studied. Two-photon fluorescence and SHG was obtained by a multiphoton microscope (LSM 780 NLO-Zeiss (at 40X objective magnification) and a Mai Tai Ti: Sapphire laser with excitation at 940 nm wavelength. 3D reconstructed patchwork images were created in order to compare different scars or various regions inside the same scar with computerized image analysis. Texture variables derived from the co- occurrence matrix of the fluorescence images showed significant differences between normal scars, hypertrophic scars and keloids. For FLIM analysis we used a system composed of a confocal microscope Zeiss LSM780 Upright-NLO with the 40x objective and a FLIM detection system. The samples were excited by a laser diode at 405nm. We studied unstained sections of 32 routinely processed and paraffin-embedded cases of scar tissue. Randomly selected areas of the central and peripheral regions were compared. The fluorescence lifetimes of red blood cells served as internal standard. Lifetimes of collagen in central areas of all scar types were significantly longer than in the periphery. There was a significant positive correlation between the fluorescence lifetimes of red blood cells and collagen fibers among the cases. In summary, SHG and FLIM techniques reveal in routinely processed scar tissue morphological characteristics, which cannot be detected by conventional light microscopy
Doutorado
Biologia Estrutural, Celular, Molecular e do Desenvolvimento
Doutora em Fisiopatologia Médica
Книги з теми "Confocal fluorescence microscopy"
Muller, Michiel. Introduction to confocal fluorescence microscopy. 2nd ed. Bellingham, Wash: SPIE Press, 2006.
Знайти повний текст джерелаBrian, Matsumoto, and American Society for Cell Biology., eds. Cell biological applications of confocal microscopy. 2nd ed. Amsterdam: Academic Press, 2002.
Знайти повний текст джерелаPeriasamy, Ammasi, and Wilson Tony. Confocal, multiphoton, and nonlinear microscopic imaging III: 17-18 June 2007, Munich, Germany. Edited by SPIE (Society), Optical Society of America, European Optical Society, Wissenschaftliche Gesellschaft Lasertechnik, and Deutsche Gesellschaft für Lasermedizin. Bellingham, Wash., USA: SPIE, 2007.
Знайти повний текст джерелаKevin, Foskett J., and Grinstein Sergio 1950-, eds. Noninvasive techniques in cell biology. New York: Wiley-Liss, 1990.
Знайти повний текст джерелаDavid, Shotton, ed. Electronic light microscopy: The principles and practice of video-enhanced contrast, digital intensified fluorescence, and confocal scanning light microscopy. New York: Wiley-Liss, 1993.
Знайти повний текст джерелаT, Mason W., ed. Fluorescent and luminescent probes for biological activity: A practical guide to technology for quantitative real-time analysis. London: Academic Press, 1993.
Знайти повний текст джерелаConference on Multidimensional Spectroscopy: Acquisition, Interpretation, and Automation (1998 San Jose, Calif.). Proceedings of three-dimensional and multidimensional microscopy: Image acquisition and processing V : 27-29 January 1998, San Jose, California. Edited by Cogswell Carol J, Society of Photo-optical Instrumentation Engineers., and International Biomedical Optics Society. Bellingham, Wash., USA: SPIE, 1998.
Знайти повний текст джерелаname, No. Three-dimensional and multidimensional microscopy: Image acquisition and processing X : 28-29 January 2003, San Jose, California, USA. Bellingham, WA: SPIE, 2003.
Знайти повний текст джерелаR, José-Angel Conchello, Carol J. Cogswell, and Wilson Tony. Three-dimensional and multidimensional microscopy: Image acquisition and processing XIII : 24-26 January 2006, San Jose, California, USA. Edited by Society of Photo-optical Instrumentation Engineers. Bellingham, Wash: SPIE, 2006.
Знайти повний текст джерелаJosé-Angel, Conchello R., Cogswell Carol J, Wilson Tony, and Society of Photo-optical Instrumentation Engineers., eds. Three-dimensional and multidimensional microscopy: Image acquisition and processing XII : 25-27 January 2005, San Jose, California, USA. Bellingham, Wash., USA: SPIE, 2005.
Знайти повний текст джерелаЧастини книг з теми "Confocal fluorescence microscopy"
Naredi-Rainer, Nikolaus, Jens Prescher, Achim Hartschuh, and Don C. Lamb. "Confocal Microscopy." In Fluorescence Microscopy, 165–202. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2017. http://dx.doi.org/10.1002/9783527687732.ch5.
Повний текст джерелаNaredi-Rainer, Nikolaus, Jens Prescher, Achim Hartschuh, and Don C. Lamb. "Confocal Microscopy." In Fluorescence Microscopy, 175–213. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2013. http://dx.doi.org/10.1002/9783527671595.ch5.
Повний текст джерелаJerome, W. Gray, and Robert L. Price. "Fluorescence Microscopy." In Basic Confocal Microscopy, 37–71. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-97454-5_3.
Повний текст джерелаJerome, W. Gray (Jay), and Robert L. Price. "Fluorescence Microscopy." In Basic Confocal Microscopy, 29–59. New York, NY: Springer New York, 2011. http://dx.doi.org/10.1007/978-0-387-78175-4_3.
Повний текст джерелаGerritsen, Hans C. "Confocal Fluorescence Lifetime Imaging." In Fluorescence Microscopy and Fluorescent Probes, 35–46. Boston, MA: Springer US, 1996. http://dx.doi.org/10.1007/978-1-4899-1866-6_3.
Повний текст джерелаDemandolx, Denis, and Jean Davoust. "Subcellular Cytofluorometry in Confocal Microscopy." In Fluorescence Microscopy and Fluorescent Probes, 279–83. Boston, MA: Springer US, 1996. http://dx.doi.org/10.1007/978-1-4899-1866-6_43.
Повний текст джерелаJerome, W. Gray. "The Theory of Fluorescence." In Basic Confocal Microscopy, 21–36. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-97454-5_2.
Повний текст джерелаJerome, W. Gray (Jay). "The Theory of Fluorescence." In Basic Confocal Microscopy, 17–28. New York, NY: Springer New York, 2011. http://dx.doi.org/10.1007/978-0-387-78175-4_2.
Повний текст джерелаHibbs, Alan R. "Fluorescence Immunolabelling." In Confocal Microscopy for Biologists, 259–77. Boston, MA: Springer US, 2004. http://dx.doi.org/10.1007/978-0-306-48565-7_11.
Повний текст джерелаGomez-Lazaro, M., A. Freitas, and C. C. Ribeiro. "Confocal Raman microscopy." In Fluorescence Imaging and Biological Quantification, 65–83. Boca Raton : Taylor & Francis, 2017.: CRC Press, 2017. http://dx.doi.org/10.1201/9781315121017-5.
Повний текст джерелаТези доповідей конференцій з теми "Confocal fluorescence microscopy"
Rüttinger, Steffen, Peter Kapusta, Volker Völlkopf, Felix Koberling, Rainer Erdmann, and Rainer Macdonald. "Fluorescence performance standards for confocal microscopy." In BiOS, edited by Ammasi Periasamy, Peter T. C. So, and Karsten König. SPIE, 2010. http://dx.doi.org/10.1117/12.840501.
Повний текст джерелаDoglia, Silvia M., L. Bianchi, Roberto Colombo, N. Allam, Hamid Morjani, Michel Manfait, and A. M. Villa. "Confocal fluorescence microscopy of living cells." In Laser Spectroscopy of Biomolecules: 4th International Conference on Laser Applications in Life Sciences, edited by Jouko E. Korppi-Tommola. SPIE, 1993. http://dx.doi.org/10.1117/12.146189.
Повний текст джерелаStelzer, Ernst H. K., and Robert Bacallao. "Confocal Fluorescence Microscopy Of Epithelial Cells." In 1988 International Congress on Optical Science and Engineering. SPIE, 1989. http://dx.doi.org/10.1117/12.950336.
Повний текст джерелаWang, Yu, Konstantin Maslov, Chulhong Kim, Song Hu, and Lihong V. Wang. "Integrated photoacoustic and fluorescence confocal microscopy." In SPIE BiOS, edited by Alexander A. Oraevsky and Lihong V. Wang. SPIE, 2011. http://dx.doi.org/10.1117/12.874888.
Повний текст джерелаLuo, Yuan, Chou-Min Chia, Hung-Chun Wang, and Yu-hsin Chia. "Multi-focal holographic slit confocal fluorescence microscopy." In Biomedical Imaging and Sensing Conference, edited by Osamu Matoba, Yasuhiro Awatsuji, Toyohiko Yatagai, and Yoshihisa Aizu. SPIE, 2018. http://dx.doi.org/10.1117/12.2316615.
Повний текст джерелаBertero, M., P. Boccacci, and E. R. Pike. "Inverse Problems In Fluorescence Confocal Scanning Microscopy." In 1988 International Congress on Optical Science and Engineering. SPIE, 1989. http://dx.doi.org/10.1117/12.950302.
Повний текст джерелаRafeq, S., A. Ernst, A. Majid, G. Michaud, C. Reddy, and F. Herth. "Bronchoscopic Imaging Using Fibered Confocal Fluorescence Microscopy." In American Thoracic Society 2009 International Conference, May 15-20, 2009 • San Diego, California. American Thoracic Society, 2009. http://dx.doi.org/10.1164/ajrccm-conference.2009.179.1_meetingabstracts.a5772.
Повний текст джерелаLoterie, Damien, Demetri Psaltis, and Christophe Moser. "Confocal microscopy via multimode fibers: fluorescence bandwidth." In SPIE BiOS, edited by Thomas G. Bifano, Joel Kubby, and Sylvain Gigan. SPIE, 2016. http://dx.doi.org/10.1117/12.2208017.
Повний текст джерелаRodrigues, Isabel, Joao Xavier, and Joao Sanches. "Fluorescence Confocal Microscopy Imaging denoising with photobleaching." In 2008 30th Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE, 2008. http://dx.doi.org/10.1109/iembs.2008.4649633.
Повний текст джерелаFersch, Daniel, Pavel Malý, Jessica Rühe, Victor Lisinetskii, Matthias Hensen, Frank Würthner, and Tobias Brixner. "Single-Molecule Ultrafast Fluorescence-Detected Pump–Probe Microscopy." In International Conference on Ultrafast Phenomena. Washington, D.C.: Optica Publishing Group, 2022. http://dx.doi.org/10.1364/up.2022.m4a.3.
Повний текст джерелаЗвіти організацій з теми "Confocal fluorescence microscopy"
Hoffmeyer, Michaela. In Vivo Fluorescence Confocal Microscopy to Investigate the Role of RhoC in Inflammatory Breast Cancer. Fort Belvoir, VA: Defense Technical Information Center, April 2005. http://dx.doi.org/10.21236/ada435616.
Повний текст джерелаWickramaratne, Chathuri, Emily Sappington, and Hanadi Rifai. Confocal Laser Fluorescence Microscopy to Measure Oil Concentration in Produced Water: Analyzing Accuracy as a Function of Optical Settings. Journal of Young Investigators, June 2018. http://dx.doi.org/10.22186/jyi.34.6.39-47.
Повний текст джерелаMorales García, María Dolores. Uso de la fluorescencia y la microscopía confocal en la investigación científica. Sociedad Española de Bioquímica y Biología Molecular (SEBBM), July 2012. http://dx.doi.org/10.18567/sebbmdiv_rpc.2012.07.1.
Повний текст джерелаDarrow, C., T. Huser, C. Campos, M. Yan, S. Lane, and R. Balhorn. Single Fluorescent Molecule Confocal Microscopy: A New Tool for Molecular Biology Research and Biosensor Development. Office of Scientific and Technical Information (OSTI), March 2000. http://dx.doi.org/10.2172/792442.
Повний текст джерела