Добірка наукової літератури з теми "Concentrated Solar Power Technology"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Concentrated Solar Power Technology".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Статті в журналах з теми "Concentrated Solar Power Technology"

1

Cygan, David, Hamid Abbasi, Aleksandr Kozlov, Joseph Pondo, Roland Winston, Bennett Widyolar, Lun Jiang, et al. "Full Spectrum Solar System: Hybrid Concentrated Photovoltaic/Concentrated Solar Power (CPV-CSP)." MRS Advances 1, no. 43 (2016): 2941–46. http://dx.doi.org/10.1557/adv.2016.512.

Повний текст джерела
Анотація:
ABSTRACTGas Technology Institute (GTI), together with its partners University of California at Merced (UC Merced) and MicroLink Devices Inc. (MicroLink) are developing a full spectrum solar energy collection system to deliver variable electricity and on-demand heat. The technology uses secondary optics in a solar receiver to achieve high efficiency at high temperature, collects heat in particles for low fire danger, stores heat in particles instead of molten salt for low cost, and uses double junction (2J) photovoltaic (PV) cells with backside infrared (IR) reflectors on the secondary optical element to raise exergy efficiency. The overall goal is to deliver enhancement to established trough technology while exceeding the heliostat power tower molten salt temperature limit. The use of inert particles for heat transfer may make parabolic troughs safer near population centers and may be valuable for industrial facilities.
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Singh, Harwinder, and R. S. Mishra. "Perfortmance Evaluations of Concentrated Solar Thermal Power Technology." International Journal of Advance Research and Innovation 4, no. 1 (2016): 263–71. http://dx.doi.org/10.51976/ijari.411638.

Повний текст джерела
Анотація:
This review work consists of detailed description on various types of research in the field of solar thermal systems and various methods to improve the performance of the collector systems. Concentrated solar thermal systems are the highly advanced and large scale technology, which is used to generate the thermal energy and converted it in to electric energy through the application of power producing device coupled with the collector systems, therefore from the research point of view improvement in the working performance of the solar thermal system is highly important to achieve the better efficient device.
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Ubando, Aristotle T., Ariel Conversion, Renyl B. Barroca, Nelson H. Enano, and Randell U. Espina. "Computational Fluid Dynamics on Solar Dish in a Concentrated Solar Power: A Bibliometric Review." Solar 2, no. 2 (May 6, 2022): 251–73. http://dx.doi.org/10.3390/solar2020014.

Повний текст джерела
Анотація:
Concentrated solar power is an alternative renewable energy technology that converts solar energy into electrical energy by using a solar concentrator and a solar receiver. Computational fluid dynamics have been used to numerically design concentrated solar power. This is a powerful numerical analysis approach that is widely used in energy and environmental engineering applications. In this paper, we review previous work on the applications of computational fluid dynamics in the design of concentrated solar power technology. We performed a bibliometric analysis of journal articles relevant to applications to analyze the current trend of utilization of computational fluid dynamics in these technologies. Then, we conducted a comprehensive analysis focused on the design of solar dish technology using computational fluid dynamics. Furthermore, we reviewed in detail the optical modeling of solar concentrators and solar receivers. Of the 83 retrieved publications from Scopus database, 80 were journal articles, and only three were review papers. Among these 80 journal articles, only 54 were relevant to this study, and 23 were relevant to solar dish technology. The documents were analyzed according to their number of citations, journal sources, and keyword evolution and network map. The information presented in this paper is useful to further recognize the contributions of computational fluid dynamics to the development of concentrated solar power, particularly to solar dish technology. In addition, we also discuss the challenges and future research directions to make solar energy a more sustainable source of renewable energy.
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Bijarniya, Jay Prakash, K. Sudhakar, and Prashant Baredar. "Concentrated solar power technology in India: A review." Renewable and Sustainable Energy Reviews 63 (September 2016): 593–603. http://dx.doi.org/10.1016/j.rser.2016.05.064.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Lipiński, W., and A. Steinfeld. "Annular Compound Parabolic Concentrator." Journal of Solar Energy Engineering 128, no. 1 (March 8, 2005): 121–24. http://dx.doi.org/10.1115/1.2148970.

Повний текст джерела
Анотація:
The annular compound parabolic concentrator (CPC) is a body of revolution consisting of two axisymmetric surfaces produced by rotating a classical two-dimensional CPC around an axis parallel to the CPCs axis. Its ability to further concentrate incoming radiation when used in tandem with a primary solar parabolic concentrator is analyzed by the Monte Carlo ray-tracing technique. Potential applications are found in capturing the annular portion of primary concentrated solar radiation and augmenting its power flux intensity.
Стилі APA, Harvard, Vancouver, ISO та ін.
6

D. Rene, Dev, and Harison D. Sam. "A Review on Concentrated Solar Power (CSP) and Emerging Technology." i-manager’s Journal on Electrical Engineering 16, no. 1 (2022): 38. http://dx.doi.org/10.26634/jee.16.1.19196.

Повний текст джерела
Анотація:
Solar power generation is one of the fastest-growing sources of renewable energy in the world. The economic benefits of technologies used to capture sunlight are increasing every year, expanding the opportunities for cleaner power generation. The global energy production model is changing from fossil fuels to renewable and nuclear energy. This paper provides a brief overview of the solar power generation system called Concentrated Solar Power (CSP), which is an emerging technology that is leading the way. The energy extracted from CSP technology is very clean, reliable, and environmentally friendly. This growth implies the complexity and size of systems and therefore requires an increase in maintenance tasks to ensure reliability, availability, maintainability, and security. This paper describes the various configurations of CSP, and the main causes and consequences of the CSP components are also analyzed.
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Natraj, K. S. Reddy, and B. N. Rao. "Investigation of Variable Wind Loads and Shape Accuracy of Reflectors in Parabolic Trough Collector." Proceedings of the 12th Structural Engineering Convention, SEC 2022: Themes 1-2 1, no. 1 (December 19, 2022): 1495–504. http://dx.doi.org/10.38208/acp.v1.681.

Повний текст джерела
Анотація:
Concentrated solar power is the technology involving reflectors which reflects the solar radiation and concentrates the radiations onto a receiver which absorbs the solar radiation and rises the temperature of the fluid flowing through it and the fluid is further used for process heating or power generation. Solar parabolic trough is the most established technology among the concentrated solar power technologies. For the optimization of the technology it is important to optimize the parabolic trough collectors from structural point of view as even gravity load is observed to cause a substantial effect on the shape of the reflector. Shape accuracy of the reflector is measured in terms of slope deviation. The slope deviation induced due to gravity and wind loads causes a change in optical and thermal efficiencies. The paper presents the study on pressure distribution at the surface of parabolic trough collector under different wind velocity, angle of attack of wind and orientation of the trough. Further, the pressure values over the trough surface are used to estimate the shape errors for the surface of the trough.
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Bošnjaković, Mladen, and Vlado Tadijanović. "Environment impact of a concentrated solar power plant." Tehnički glasnik 13, no. 1 (March 23, 2019): 68–74. http://dx.doi.org/10.31803/tg-20180911085644.

Повний текст джерела
Анотація:
More recently, there has been an increasing interest in the use of concentrated solar thermal energy for the production of electricity, but also for the use in cogeneration and trigeneration. In this sense, the increasing use of solar thermal energy in urban areas is expected, and its impact on the environment is inducing an increasing interest. The paper analyses the impact of concentrated solar power technology (linear Fresnel, parabolic trough, parabolic dish, and central tower) on the environment in terms of water consumption, land use, wasted heat, emissions of gases, emissions of pollutants that include the leakage of heat transfer fluid through pipelines and tanks, impact on flora and fauna, impact of noise and visual impact. The impact on the environment is different for different concentrated solar power technologies and depends on whether thermal energy storage is included in the plant. Water is mainly used for cooling the system, but also for cleaning the surface of the mirror. To reduce water consumption, other cooling technologies (e.g. air cooling) are being developed. The available data from the literature show large variances depending on the size of the plant, geographic location and applied technology.
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Orangzeb, Sahil, Mumtaz A. Qaisrani, M. Basit Shafiq, N. Ahmed, M. Sana Ullah Sahar, Sana Ullah, Muhammad Umer Farooq, and Fang Jiabin. "Potential Assessment and Economic Analysis of Concentrated Solar Power against Solar Photovoltaic Technology." International Journal of Energy Research 2023 (June 26, 2023): 1–26. http://dx.doi.org/10.1155/2023/3611318.

Повний текст джерела
Анотація:
Competition between concentrated solar power and solar photovoltaic has been the subject of frequent debate in recent years based on their cost of fabrication, efficiency, storage, levelized cost of energy, reliability, and complexity of respective technologies. Taking Pakistan as a testbed, a study was conducted to determine which technology is economical in a particular location and climate. The study assesses the meteorological, orographic, and spatial factors that impact the performance and cost of both renewable energy systems. A SWOT analysis, followed by technoeconomic analyses, was conducted to determine suitable sites for setting up solar power plants in Pakistan. A detailed assessment of siting factors for solar power plants was conducted to shortlist the most suitable sites. Based on the results, economic analysis was performed to install 100 MW photovoltaic and parabolic trough power plants at selected locations. The levelized cost of energy for the 100 MW parabolic trough is 10.8 cents/kWh and 12 cents/kWh in best-case scenarios, i.e., for locations of Toba and Quetta, respectively, whereas the LCOEs of 100 MW photovoltaic systems stand comparatively low at 7.36 cents/kWh, 7.21 cents/kWh, 7.01 cents/kWh, 6.82 cents/kWh, 6.02 cents/kWh, and 5.95 cents/kWh in Multan, Bahawalpur, Rahim Yar Khan, Hyderabad, Quetta, and Toba, respectively. The results favor choosing solar PV plants over solar CSP plants in terms of finances in the selected regions. The findings will assist financiers and policymakers in creating better policies in terms of long-term goals.
Стилі APA, Harvard, Vancouver, ISO та ін.
10

K.Panjwani, M., S. X. Yang, F. Xiao, K. H. Mangi, R. M. Larik, F. H. Mangi, M. Menghwar, J. Ansari, and K. H. Ali. "Hybrid concentrated photovoltaic thermal technology for domestic water heating." Indonesian Journal of Electrical Engineering and Computer Science 16, no. 3 (December 1, 2019): 1136. http://dx.doi.org/10.11591/ijeecs.v16.i3.pp1136-1143.

Повний текст джерела
Анотація:
There is an increasing reliance on renewable energy especially Solar Energy as the fossils are on the way to depletion.It offers an environmental friendly solution with an affordable comparative paradigm. Solar photovoltaic-thermal collectors have remained of the particular interest because of their higher overall efficiencies. Most of its applications related with solar hybrid PVT systems focuses more on electrical output rather than thermal output, and the contacting fluid is allowed to act as a coolant to assure that the solar cell operates in the ranges specified by the manufacturer to guarantee higher electrical efficiency. This ultimately allows fluid to retain higher temperature that could be utilized for meeting the heating demand of any residential household. First, the PVT analyses are performed over a system comprising of Fresnel-based Solar Module to allow higher irradiance to fall for relative higher conversion of efficiency and to achieve higher temperature ranges in the contacting fluid (water). The electrical parameters are compared, and a significant increase in the power ranges is concluded. Secondly, a simulated thermal structure of the heating tank is presented that utilises the heated water from the PVT system in meeting the heating demand of a residential household. When accounting all the electrical parameters, approximately 10% increase is noticed in power produced, and sufficient energy used for the traditional heating of water is retained.
Стилі APA, Harvard, Vancouver, ISO та ін.

Дисертації з теми "Concentrated Solar Power Technology"

1

Miranda, Gilda. "Dispatch Optimizer for Concentrated Solar Power Plants." Thesis, Uppsala universitet, Byggteknik och byggd miljö, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-402436.

Повний текст джерела
Анотація:
Concentrating solar power (CSP) plant is a promising technology that exploits direct normal irradiation (DNI) from the sun to be converted into thermal energy in the solar field. One of the advantages of CSP technology is the possibility to store thermal energy in thermal energy storage (TES) for later production of electricity. The integration of thermal storage allows the CSP plant to be a dispatchable system which is defined as having a capability to schedule its operation using an innovative dispatch planning tool. Considering weather forecast and electricity price profile in the market, dispatch planning tool uses an optimization algorithm. It aims to shift the schedule of electricity delivery to the hours with high electricity price. These hours are usually reflected by the high demand periods. The implementation of dispatch optimizer can benefit the CSP plants economically from the received financial revenues. This study proposes an optimization of dispatch planning strategies for the parabolic trough CSP plant under two dispatch approaches: solar driven and storage driven. The performed simulation improves the generation of electricity which reflects to the increase of financial revenue from the electricity sale in both solar and storage driven approaches. Moreover, the optimization also proves to reduce the amount of dumped thermal energy from the solar field.
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Oggioni, Niccolò. "Modelling of microgrid energy systems with concentrated solar power." Thesis, KTH, Skolan för industriell teknik och management (ITM), 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-264345.

Повний текст джерела
Анотація:
This master’s thesis presents the work performed during a four-month long internship at Azelio AB in Gothenburg. Energy performance models for common energy technologies in microgrid energy systems were developed and validated. The investigated technologies are traditional and bifacial PV modules, wind turbines, Li-ion battery energy storage systems and diesel generators. Subsequently, they were utilised to simulate the energy supply of two remote communities in Queensland, Australia. Azelio’s CSP technology, which combines heliostats, thermal energy storage with phase change materials and Stirling engine, was introduced as well. By means of scenarios and key performance indicators, the possibility of disconnecting such towns from the local electricity distribution network was investigated. Both technical and economic aspects were analysed. This led to the conclusion that 10 MW CSP system would be sufficient to achieve grid independence if extra backup capacity, e.g. diesel generators, or demandside control strategies, are introduced. Sensitivity analysis performed on the possibility of dividing the CSP park into two clusters, the smaller one being subject to a power threshold, was investigated as well. In terms of economic feasibility, off-grid systems resulted more expensive than maintaining the grid connection.
Denna master’s uppsats presenterar alla resultat från examensarbetet hos Azelio AB i Göteborg. Energy performance models för de vanligaste energiteknologerna i microgrid energisystemen designades och validerades. De forskade energiteknologerna var traditionella och bifacial solpaneler, vindkraft, energilagring genom Liion batterier och dieselgeneratorer. Modellerna användes för att simulera energiförsörjning av olika energisystem som representerar två isolerade byar i Queensland, Australia. Azelio’s CSP teknologi, som består av heliostater, värmenergilagring med phase change material och en Stirlingmotor, introducerades också. Genom att designa olika scenarier och key perfomance indicators, möjligheten att koppla av byarna ifrån det lokala kraftnätsystemet utforskades. Båda tekniska och ekonomiska synpunkter värderades. Det beslutades att 10 MW CSP kapacitet kan vara nog mycket för att nå energisjälvständighet om ytterligare backupkapacitet, t.ex. en dieselgenerator, eller demand side control strategies introducerades. Känslighetsanalys utforskade möjligheten att dela CSP systemet i två olika delar, där den med lägre kapacitet kunde avkopplas för att undvika onödig energiförsörjning. Om ekonomiska utförbarhet, off-grid system verkade dyrare än sådana system där byarna var fortfarande kopplat till det lokala kraftnätet.
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Strand, Anna. "Optimization of energy dispatch in concentrated solar power systems : Design of dispatch algorithm in concentrated solar power tower system with thermal energy storage for maximized operational revenue." Thesis, KTH, Kraft- och värmeteknologi, 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-264410.

Повний текст джерела
Анотація:
Concentrated solar power (CSP) is a fast-growing technology for electricity production. With mirrors (heliostats) irradiation of the sun is concentrated onto a receiver run through by a heat transfer fluid (HTF). The fluid by that reaches high temperatures and is used to drive a steam turbine for electricity production. A CSP power plant is most often coupled with an energy storage unit, where the HTF is stored before it is dispatched and used to generate electricity. Electricity is most often sold at an open market with a fluctuating spot-prices. It is therefore of high importance to generate and sell the electricity at the highest paid hours, increasingly important also since the governmental support mechanisms aimed to support renewable energy production is faded out since the technology is starting to be seen as mature enough to compete by itself on the market. A solar power plant thus has an operational protocol determining when energy is dispatched, and electricity is sold. These protocols are often pre-defined which means an optimal production is not achieved since irradiation and electricity selling price vary. In this master thesis, an optimization algorithm for electricity sales is designed (in MATLAB). The optimization algorithm is designed by for a given timeframe solve an optimization problem where the objective is maximized revenue from electricity sales from the solar power plant. The function takes into consideration hourly varying electricity spot price, hourly varying solar field efficiency, energy flows in the solar power plant, start-up costs (from on to off) plus conditions for the logic governing the operational modes. Two regular pre-defined protocols were designed to be able to compare performance in a solar power plant with the optimized dispatch protocol. These three operational protocols were evaluated in three different markets; one with fluctuating spot price, one regulated market of three fixed price levels and one in spot market but with zero-prices during sunny hours. It was found that the optimized dispatch protocol gave both bigger electricity production and revenue in all markets, but with biggest differences in the spot markets. To evaluate in what type of powerplant the optimizer performs best, a parametric analysis was made where size of storage and power block, the time-horizon of optimizer and the cost of start-up were varied. For size of storage and power block it was found that revenue increased with increased size, but only up to the level where the optimizer can dispatch at optimal hours. After that there is no increase in revenue. Increased time horizon gives increased revenue since it then has more information. With a 24-hour time horizon, morning price-peaks will be missed for example. To change start-up costs makes the power plant less flexible and with fewer cycles, without affect income much.
Koncentrerad solkraft (CSP) är en snabbt växande teknologi för elektricitets-produktion. Med speglar (heliostater) koncentreras solstrålar på en mottagare som genomflödas av en värmetransporteringsvätska. Denna uppnår därmed höga temperaturer vilket används för att driva en ångturbin för att generera el. Ett CSP kraftverk är oftast kopplat till en energilagringstank, där värmelagringsvätskan lagras innan den används för att generera el. El säljs i de flesta fall på en öppen elmarknad, där spotpriset fluktuerar. Det är därför av stor vikt att generera elen och sälja den vid de timmar med högst elpris, vilket också är av ökande betydelse då supportmekanismerna för att finansiellt stödja förnybar energiproduktion används i allt mindre grad för denna teknologi då den börjar anses mogen att konkurrera utan. Ett solkraftverk har således ett driftsprotokoll som bestämmer när el ska genereras. Dessa protokoll är oftast förutbestämda, vilket innebär att en optimal produktion inte fås då exempelvis elspotpriset och solinstrålningen varierar. I detta examensarbete har en optimeringsalgoritm för elförsäljning designats (i MATLAB). Optimeringsscriptet är designat genom att för en given tidsperiod lösa ett optimeringsproblem där objektivet är maximerad vinst från såld elektricitet från solkraftverket. Funktionen tar hänsyn till timvist varierande elpris, timvist varierande solfältseffektivitet, energiflöden i solkraftverket, kostnader för uppstart (on till off) samt villkor för att logiskt styra de olika driftlägena. För att jämföra prestanda hos ett solkraftverk med det optimerade driftsprotokollet skapades även två traditionella förutbestämda driftprotokoll. Dessa tre driftsstrategier utvärderades i tre olika marknader, en med ett varierande el-spotpris, en i en reglerad elmarknad med tre prisnivåer och en i en marknad med spotpris men noll-pris under de soliga timmarna. Det fanns att det optimerade driftsprotokollet gav både större elproduktion och högre vinst i alla marknader, men störst skillnad fanns i de öppna spotprismarknaderna. För att undersöka i vilket slags kraftverk som protokollet levererar mest förbättring i gjordes en parametrisk analys där storlek på lagringstank och generator varierades, samt optimerarens tidshorisont och kostnad för uppstart. För lagringstank och generator fanns att vinst ökar med ökande storlek upp tills den storlek optimeraren har möjlighet att fördela produktion på dyrast timmar. Ökande storlek efter det ger inte ökad vinst. Ökande tidshorisont ger ökande vinst eftersom optimeraren då har mer information. Att ändra uppstartkostnaden gör att solkraftverket uppträder mindre flexibelt och har färre cykler, dock utan så stor påverkan på inkomst.
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Ertl, Felix. "Exergoeconomic Analysis and Benchmark of a Solar Power Tower with Open Air Receiver Technology." Thesis, KTH, Kraft- och värmeteknologi, 2012. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-101320.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Pragada, Gandhi, and Nitish Perisetla. "Utility-Scale Solar Power Plants with Storage : Cost Comparison and Growth Forecast Analysis." Thesis, KTH, Skolan för industriell teknik och management (ITM), 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-301838.

Повний текст джерела
Анотація:
Renewable energy for energy production, like Solar, is turning out to be very pertinent in today's world [1]. It is very clear that Solar Energy is going to emerge as one of the key sources of energy in future. Moreover, the storage option is going to play an essential role to the future deployment of solar power plants. Concentrated solar power plants with thermal storage, photovoltaic plants integrated with battery energy storage, and hybrid plants are attractive solutions to obtain a stable and dispatchable energy production. Investors or policymakers usually find it challenging to come up with the most feasible solar storage technology because they need to consider techno-economic feasibility, and at the same time, from a market or administrative perspective as well. So, this thesis study will address the key problem which is aimed at investors or policymakers since there is a need to choose the best solar storage technology at a utility level in future based on so many attributes. The thesis project was carried out in two phases which includes forecast modelling & estimations and techno-economic assessment of virtual plants. These two phases helped to address various questions in relation to the problem statement of this study. The entire thesis study broadly covered seven countries spanning across four major regions around the world. The first phase of the thesis, forecast modelling estimations shows how the seven countries will look in future (2020 – 2050) with respect to installed capacity and costs for PV, CSP, and BESS technologies. Some major results from phase 1 include, in low-cost estimates, China will remain to be the market leader in PV & CSP by 2050. In U.S.A and India, the installed costs of PV are projected to decline by 70% by 2050. By 2050, the installed costs of Solar Tower technology are estimated to drop by about 65% in China and Spain. In U.S.A, the prices of BESS technology are likely to fall by around 58 – 60 % by 2050. In the second phase of thesis study, a techno-economic evaluation of virtual plants addressed the aspects which are to be considered for a solar project if it is deployed in future across seven specific countries. Results from this analysis helps investors or policymakers to choose the cheapest solar storage technology at a utility level across seven specific countries in future (2020 – 2050). Key results from this analysis show that, in the U.S.A, by 2050, PV+BESS will be the cheapest storage technology for 4 – 10 storage hours. Addition of another renewable technology will add up more viability to the comparison. In China, Hybrid will be the cheapest storage technology for 4 – 8 hrs by 2050. There is huge potential for deployment of CSP & hybrid plants in future than PV. In South Africa, CSP will be the cheapest storage technology by 2050 for 4 – 10 hours of storage. It is assumed that deployment of BESS projects at utility level starts from 2025 in South Africa. Beyond this, market forces analysis was carried out which offers insights especially for the policymakers of how various drivers and constraints are influencing each solar technology across the specific countries in future. Overall, the entire thesis study provides guidelines/insights to investors or policy makers for choosing the best solar storage technology in future at a utility scale for a particular country.
Förnybar energi för energiproduktion, liksom Solar, visar sig vara mycket relevant i dagens värld [1]. Det är mycket tydligt att solenergi kommer att framstå som en av de viktigaste energikällorna i framtiden. Dessutom kommer lagringsalternativet att spela en väsentlig roll för den framtida distributionen av solkraftverk. Koncentrerade solkraftverk med värmelagring, solcellsanläggningar integrerade med batterilagring och hybridanläggningar är attraktiva lösningar för att få en stabil och skickbar energiproduktion. Investerare eller beslutsfattare brukar tycka att det är utmanande att komma på den mest genomförbara solcellstekniken eftersom de måste överväga teknikekonomisk genomförbarhet, och samtidigt, ur ett marknads- eller administrativt perspektiv också. Så denna avhandlingsstudie kommer att ta itu med nyckelproblemet som riktar sig till investerare eller beslutsfattare eftersom det finns ett behov av att välja den bästa solenergilagringstekniken på en användningsnivå i framtiden baserat på så många attribut. Avhandlingsprojektet genomfördes i två faser som inkluderar prognosmodellering och uppskattningar och teknikekonomisk bedömning av virtuella anläggningar. Dessa två faser hjälpte till att ta itu med olika frågor i samband med problemstudien i denna studie. Hela avhandlingsstudien omfattade i stort sju länder som sträcker sig över fyra stora regioner runt om i världen. Den första fasen i avhandlingen, prognosmodelleringsuppskattningar visar hur de sju länderna kommer att se ut i framtiden (2020 - 2050) med avseende på installerad kapacitet och kostnader för PV-, CSP- och BESS -teknik. Några viktiga resultat från fas 1 inkluderar, i lågkostnadsuppskattningar, att Kina kommer att vara marknadsledande inom PV och CSP år 2050. I USA och Indien beräknas de installerade kostnaderna för PV minska med 70% år 2050. Av 2050 beräknas de installerade kostnaderna för Solar Tower -teknik sjunka med cirka 65% i Kina och Spanien. I USA kommer priserna på BESS -teknik sannolikt att sjunka med cirka 58 - 60 % år 2050. I den andra fasen av avhandlingsstudien behandlade en teknikekonomisk utvärdering av virtuella anläggningar de aspekter som ska övervägas för ett solprojekt om det används i framtiden i sju specifika länder. Resultaten från denna analys hjälper investerare eller beslutsfattare att välja den billigaste solenergilagringstekniken på en användningsnivå i sju specifika länder i framtiden (2020 - 2050). Viktiga resultat från denna analys visar att i USA, år 2050, kommer PV+BESS att vara den billigaste lagringstekniken på 4 - 10 lagringstimmar. Tillägg av en annan förnybar teknik kommer att öka jämförbarheten. I Kina kommer Hybrid att vara den billigaste lagringstekniken i 4-8 timmar fram till 2050. Det finns en enorm potential för distribution av CSP & hybridanläggningar i framtiden än PV. I Sydafrika kommer CSP att vara den billigaste lagringstekniken år 2050 för 4 - 10 timmars lagring. Det antas att distributionen av BESS -projekt på verktygsnivå börjar från 2025 i Sydafrika. Utöver detta genomfördes marknadskravsanalys som ger insikter speciellt för beslutsfattarna om hur olika drivkrafter och begränsningar påverkar varje solteknik i de specifika länderna i framtiden. Sammantaget ger hela avhandlingsstudien riktlinjer/insikter till investerare eller beslutsfattare för att välja den bästa solenergitekniken i framtiden i en nyttoskala för ett visst land.
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Boissière, Benjamin. "Étude hydrodynamique et thermique d'un nouveau concept de récepteur solaire à suspensions denses gazparticules." Phd thesis, Toulouse, INPT, 2015. http://oatao.univ-toulouse.fr/13944/1/boissiere.pdf.

Повний текст джерела
Анотація:
Parmi les centrales solaires thermiques à concentration, la technologie des centrales à tour offre l'un des rendements les plus importants de production d'énergie. Néanmoins, l'efficacité et la sécurité de ces centrales sont améliorables. En effet, les sels fondus, généralement utilisés comme fluide de transfert thermique, présentent une plage limitée d'utilisation (200-550°C), à l'origine des limites d'efficacité de la conversion thermique-électrique, ainsi que de consommations parasites d'énergie de chauffage. De plus, leurs caractères corrosif et comburant sont à l'origine de sévères contraintes de sécurité. Un nouveau concept de récepteur solaire, dont les caractéristiques permettent de s'affranchir des contraintes associées aux sels fondus, est présenté dans ce manuscrit. Il utilise des suspensions denses de particules fluidisées par un gaz comme fluide de transfert et de stockage de l'énergie thermique. Ce concept, et la technologie de récepteur associée, a été brevetée par Flamant et Hemati dans le cadre d'une collaboration entre le Laboratoire CNRS-PROMES d'Odeillo, et l'Institut National Polytechnique de Toulouse. Son développement a reçu le soutien financier du CNRS, puis de la Commission Européenne. Les propriétés thermiques du carbure de silicium ont déterminé le choix de ce solide. Le diamètre moyen des particules utilisées avoisine 60 micromètres (groupe A). Ces particules présentent d'excellentes propriétés de fluidisation pour des vitesses de gaz faibles. La construction et l'exploitation d'une maquette froide transparente ont permis de démontrer la faisabilité hydrodynamique du concept. Cette maquette est un échangeur à deux passes. Chaque passe est constituée de deux tubes verticaux en parallèle. L'une est traversée par un débit vertical ascendant de solide, l'autre descendant. Un débit de solide continu, stable et équitablement réparti a été obtenu à l'intérieur des tubes. La caractérisation hydrodynamique détaillée de l'écoulement, et du comportement globale de la maquette, en fonction des conditions opératoires, a été effectué sur la partie ascendante de l'écoulement dans l'échangeur. La construction et l'exploitation d'une maquette chaude, constituée d'un seul tube traversé par une suspension dense en écoulement ascendant, chauffé par 3 fours d'une puissance totale de 5,6 kW, a permis d'estimer la capacité de transfert thermique de ce nouveau type d'échangeur. Le contrôle et la stabilité des conditions opératoires a permis d'évaluer l'effet de ces dernières sur le transfert thermique entre l'échangeur et la suspension dense de fines particules le traversant. La modélisation par 3 approches du transport ascendant de la suspension dense a également été réalisée. Une approche corrélative 1D basée sur le formalisme du modèle Bulle-Emulsion, adapté afin de tenir compte de l'entraînement des particules dans le sillage des bulles. Ce modèle permet de représenter la structure diphasique de l'écoulement. Une autre approche 1D a été utilisée. Elle repose sur la résolution des équations locales de conservation de masse et de quantité de mouvement sur chaque phase gaz et solide. Cette méthode permet de s'affranchir des hypothèses du modèle Bulle-Emulsion. Enfin, la simulation numérique 3D a été réalisée sur un maillage complet du système, de telle sorte que les conditions aux bornes imposées son identiques à celle imposée par l'opérateur (débit de fluidisation, débit d'aération, débit de solide, pression de la nourrice). Cette dernière apporte des informations sur la structure locale de l'écoulement, dont les caractéristiques permettent d'expliquer l'efficacité du transfert thermique entre la suspension et la paroi observé expérimentalement.
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Codd, Daniel Shawn. "Concentrated solar power on demand." Thesis, Massachusetts Institute of Technology, 2011. http://hdl.handle.net/1721.1/67579.

Повний текст джерела
Анотація:
Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Mechanical Engineering, 2011.
Cataloged from PDF version of thesis.
Includes bibliographical references (p. 207-215).
This thesis describes a new concentrating solar power central receiver system with integral thermal storage. Hillside mounted heliostats direct sunlight into a volumetric absorption molten salt pool, which also functions as a single tank assisted thermocline storage system. Concentrated light penetrates the molten salt and is absorbed over a depth of several meters; the molten salt free surface tolerates high irradiance levels, yet remains insensitive to the passage of clouds. Thermal losses to the environment are reduced with a refractory-lined domed roof and a small, closeable aperture. The molten salt and cover provide high and low temperature heat sources that can be optimally used to maximize energy production throughout the day, even when the sun is not shining. Hot salt is extracted from the upper region of the tank and sent through a steam generator, then returned to the bottom of the tank. An insulated barrier plate is positioned vertically within the tank to enhance the natural thermocline which forms and maintain hot and cold salt volumes required for operation. As a result, continuous, high temperature heat extraction is possible even as the average temperature of the salt is declining. Experimental results are presented for sodium-potassium nitrate salt volumetric receivers optically heated with a 10.5 kilowatt, 60-sun solar simulator. Designs, construction details and performance models used to estimate efficiency are presented for megawatt-scale molten salt volumetric receivers capable of operating with low cost nitrate or chloride salt eutectics at temperatures approaching 600 'C and 1000 'C, respectively. The integral storage capabilities of the receiver can be sized according to local needs, thereby enabling power generation on demand.
by Daniel Shawn Codd.
Ph.D.
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Abiose, Kabir. "Improving the concentrated solar power plant through connecting the modular parabolic solar trough." Thesis, Massachusetts Institute of Technology, 2016. http://hdl.handle.net/1721.1/105718.

Повний текст джерела
Анотація:
Thesis: S.B., Massachusetts Institute of Technology, Department of Mechanical Engineering, 2016.
Cataloged from PDF version of thesis.
Concentrating solar power (CSP) stands as a promising renewable energy technology with the ability to contribute towards global reduction of carbon emissions. A major obstacle to increased adoption of CSP plants has to do with their high initial investment cost; consequently, there is a powerful desire to find improvements that decrease the initial capital investment for a CSP plant. One such improvement involves connecting modularized parabolic trough segments, each with the same dimensions, decreasing the overall amount of actuators required along with greatly simplifying system control architecture. This thesis is concerned with the extent to which parabolic solar trough modules can be connected together while still being able to operate to desired accuracy under expected load. Accuracy requirements are calculated, along with expected loads resulting in frictional torque on the trough. These expected loads are combined with a model for the effect of connecting multiple trough modules to generate a relationship between number of chained modules and required torsional stiffness. To verify said model, an experimental setup was designed and constructed to simulate loads due to both trough weight and wind loads.
by Kabir Abiose.
S.B.
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Amba, Harsha Vardhan. "Operation and Monitoring of Parabolic Trough Concentrated Solar Power Plant." Scholar Commons, 2015. http://scholarcommons.usf.edu/etd/5891.

Повний текст джерела
Анотація:
The majority of the power generated today is produced using fossil fuels,emitting carbon dioxide and other pollutants every second. Also, fossil fuels will eventually run out. For the increasing worldwide energy demand, the use f reliable and environmentally beneficial natural energy sources is one of the biggest challenges. Alongside wind and water, the solar energy which is clean, CO2-neutral and limitless, is our most valuable resource. Concentrated solar power (CSP) is becoming one of the excellent alternative sources for the power industry. The successful implementation of this technology requires the efficient design of tracking and operation system of the CSP solar plants. A detailed analysis of components needed for the design of cost-effective and optimum tracker for CSP solar systems is required for the power plant modeling, which is the primary subject of this thesis. A comprehensive tracking and operating system of a parabolic trough solar power plant was developed focusing primarily on obtaining optimum and cost effective design through the simplified methodology of this work. This new model was implemented for a 50 kWe parabolic trough solar power plant at University of South Florida, Tampa.
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Wilk, Gregory. "Liquid metal based high temperature concentrated solar power: Cost considerations." Thesis, Georgia Institute of Technology, 2016. http://hdl.handle.net/1853/54937.

Повний текст джерела
Анотація:
Current concentrated solar power plants (CSP) use molten salt at 565°C as a heat transfer and energy storage fluid. Due to thermal energy storage (TES), these solar plants can deliver dispatachable electricity to the grid; however, the levelized cost of electricity (LCOE) for these plants is 12-15 c/kWh, about 2.5 times as high as fossil fuel electricity generation. Molten salt technology limits peak operating temperatures to 565°C and a heat engine efficiency of 40%. Liquid metal (LM), however, can reach >1350°C, and potentially utilize a more efficient (60%) heat engine and realize cost reductions. A 1350 °C LM-CSP plant would require ceramic containment, inert atmosphere containment, additional solar flux concentration, and redesigned internal receiver. It was initially unclear if these changes and additions for LM-CSP were technically feasible and could lower the LCOE compared to LS-CSP. To answer this question, a LM-CSP plant was designed with the same thermal input as a published LS-CSP plant. A graphite internal cavity receiver with secondary concentration heated liquid Sn to 1400°C and transferred heat to a 2-phase Al-Si fluid for 9 hours of thermal energy storage. Input heat to the combined power cycle was 1350°C and had 60% thermal efficiency for a gross output of 168 MW. The cost of this LM-CSP was estimated by applying material cost factors to the designed geometry and scaling construction costs from published LS-CSP estimates. Furthermore, graphite was experimentally tested for reactivity with liquid Sn, successful reaction bonds, and successful mechanical seals. The result is switching to molten metal can reduce CSP costs by 30% and graphite pipes, valves, and seals are possible at least at 400°C.
Стилі APA, Harvard, Vancouver, ISO та ін.

Книги з теми "Concentrated Solar Power Technology"

1

H, Castle C., Reimer R. R, and United States. National Aeronautics and Space Administration., eds. Solar concentrator technology development for space based applications, engineering report, ER-1001: Final report. Cleveland, Ohio: Cleveland State University, Advanced Manufacturing Center, 1995.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Mason, Lee S. A Solar Dynamic power option for Space Solar Power. [Cleveland, Ohio]: National Aeronautics and Space Administration, Glenn Research Center, 1999.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Mason, Lee S. Technology projections for solar dynamic power. [Cleveland, Ohio]: National Aeronautics and Space Administration, Lewis Research Center, 1999.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Winter, C. J. Solar Power Plants: Fundamentals, Technology, Systems, Economics. Berlin, Heidelberg: Springer Berlin Heidelberg, 1991.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

(Organization), IT Power, ed. Solar photovoltaic power generation using PV technology. [Manila?]: Asian Development Bank, 1996.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Solar power generation: Technology, new concepts & policy. Boca Raton, FL: CRC Press, 2012.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

J, Winter C., Sizmann R. L. 1929-, and Vant-Hull Lorin L, eds. Solar power plants: Fundamentals, technology, systems, economics. Berlin: Springer-Verlag, 1991.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Solar technology acceleration center (SolarTAC). Golden, Colo: National Renewable Energy Laboratory, U.S. Dept. of Energy, Office of Energy Efficiency and Renewable Energy, 2011.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Solar technology validation project, Hualapai Valley Solar (Met station). [Golden, Colo.]: National Renewable Energy Laboratory, 2013.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Norton, Brian. Solar Energy Thermal Technology. London: Springer London, 1992.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Частини книг з теми "Concentrated Solar Power Technology"

1

Alexopoulos, Spiros. "Estimation of Concentrated Solar Power Potential." In Encyclopedia of Sustainability Science and Technology, 1–21. New York, NY: Springer New York, 2021. http://dx.doi.org/10.1007/978-1-4939-2493-6_1127-1.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Alexopoulos, Spiros. "Estimation of Concentrated Solar Power Potential." In Encyclopedia of Sustainability Science and Technology Series, 23–42. New York, NY: Springer US, 2022. http://dx.doi.org/10.1007/978-1-0716-1422-8_1127.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Jemili, A., S. Ferchichi, E. Znouda, and C. Bouden. "Hybrid concentrated solar power plant and biomass power plant." In Innovative and Intelligent Technology-Based Services for Smart Environments – Smart Sensing and Artificial Intelligence, 189–95. London: CRC Press, 2021. http://dx.doi.org/10.1201/9781003181545-27.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Sangster, Alan J. "Concentrated Solar Power." In Electromagnetic Foundations of Solar Radiation Collection, 173–206. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-08512-8_8.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Guerrero-Lemus, Ricardo, and José Manuel Martínez-Duart. "Concentrated Solar Power." In Lecture Notes in Energy, 135–51. London: Springer London, 2012. http://dx.doi.org/10.1007/978-1-4471-4385-7_7.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Mukhopadhyay, Soumitra. "Concentrated Solar Power." In Renewable Energy and AI for Sustainable Development, 115–36. Boca Raton: CRC Press, 2023. http://dx.doi.org/10.1201/9781003369554-6.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

A. Kim, Katherine, Konstantina Mentesidi, and Yongheng Yang. "Solar Power Sources: PV, Concentrated PV, and Concentrated Solar Power." In Renewable Energy Devices and Systems with Simulations in MATLAB® and ANSYS®, 17–40. Boca Raton : Taylor & Francis, a CRC title, part of the Taylor & Francis imprint, a member of the Taylor & Francis Group, the academic division of T&F Informa, plc, [2017]: CRC Press, 2017. http://dx.doi.org/10.1201/9781315367392-2.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Krothapalli, Anjaneyulu, and Brenton Greska. "Concentrated Solar Thermal Power." In Handbook of Climate Change Mitigation and Adaptation, 1503–36. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-14409-2_33.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Ginley, David, R. Aswathi, S. R. Atchuta, Bikramjiit Basu, Saptarshi Basu, Joshua M. Christian, Atasi Dan, et al. "Multiscale Concentrated Solar Power." In Lecture Notes in Energy, 87–132. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-33184-9_3.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Krothapalli, Anjaneyulu, and Brenton Greska. "Concentrated Solar Thermal Power." In Handbook of Climate Change Mitigation and Adaptation, 1–27. New York, NY: Springer New York, 2015. http://dx.doi.org/10.1007/978-1-4614-6431-0_33-2.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Тези доповідей конференцій з теми "Concentrated Solar Power Technology"

1

Elahi, Engr Tehseen, Mian Haseeb Mushtaq, H. M. Usman Shafique, and Syed Ahsan Ali. "Solar power generation using concentrated technology." In 2015 12th International Conference on High-capacity Optical Networks and Enabling/Emerging Technologies (HONET). IEEE, 2015. http://dx.doi.org/10.1109/honet.2015.7395425.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Al Farah, Omar, Malek Alkasrawi, Emad Abdelsalam, Tareq Salameh, and Mohammad Al-Shannag. "Concentrated Solar Power: Technology and Potential in Jordan." In 2022 Advances in Science and Engineering Technology International Conferences (ASET). IEEE, 2022. http://dx.doi.org/10.1109/aset53988.2022.9735097.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Cojocaru, E. G., M. J. Vasallo, J. M. Bravo, and D. Marin. "Concentrated solar power plant simulator for education purpose." In 2018 IEEE International Conference on Industrial Technology (ICIT). IEEE, 2018. http://dx.doi.org/10.1109/icit.2018.8352462.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Ye Zhangbo, Li Qifen, Zhu Qunzhi, and Pan Weiguo. "The cooling technology of solar cells under concentrated system." In 2009 IEEE 6th International Power Electronics and Motion Control Conference. IEEE, 2009. http://dx.doi.org/10.1109/ipemc.2009.5157766.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Reimanis, Ivar, Julia Billman, Gregory Jackson, Jesse Fossheim, and Andrea Ambrosini. "High Temperature Coatings for Concentrated Solar Power Receivers." In Proposed for presentation at the MS&T21: Materials Science & Technology held October 17-20, 2021 in Columbus, OH. US DOE, 2021. http://dx.doi.org/10.2172/1893275.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Cao, Yiding. "Heat Pipe Solar Receivers for Concentrating Solar Power (CSP) Plants." In ASME 2013 7th International Conference on Energy Sustainability collocated with the ASME 2013 Heat Transfer Summer Conference and the ASME 2013 11th International Conference on Fuel Cell Science, Engineering and Technology. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/es2013-18299.

Повний текст джерела
Анотація:
This paper introduces separate-type heat pipe (STHP) based solar receiver systems that enable more efficient operation of concentrated solar power plants without relying on a heat transfer fluid. The solar receiver system may consist of a number of STHP modules that receive concentrated solar flux from a solar collector system, spread the high concentrated solar flux to a low heat flux level, and effectively transfer the received heat to the working fluid of a heat engine to enable a higher working temperature and higher plant efficiency. In general, the introduced STHP solar receiver has characteristics of high heat transfer capacity, high heat transfer coefficient in the evaporator to handle a high concentrated solar flux, non-condensable gas release mechanism, and lower costs. The STHP receiver in a solar plant may also integrate the hot/cold tank based thermal energy storage system without using a heat transfer fluid.
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Mahmood, Abdulkareem Naser, Syahrul Ashikin Binti Azmi, and Reyad El-Khazali. "Design of concentrated solar power water desalination system (CSPWDS)." In AL-KADHUM 2ND INTERNATIONAL CONFERENCE ON MODERN APPLICATIONS OF INFORMATION AND COMMUNICATION TECHNOLOGY. AIP Publishing, 2023. http://dx.doi.org/10.1063/5.0119753.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Teraji, David G. "Concentrated Solar Power Hybrid Gas Turbine Demonstration Test Results." In ASME 2015 Power Conference collocated with the ASME 2015 9th International Conference on Energy Sustainability, the ASME 2015 13th International Conference on Fuel Cell Science, Engineering and Technology, and the ASME 2015 Nuclear Forum. American Society of Mechanical Engineers, 2015. http://dx.doi.org/10.1115/power2015-49572.

Повний текст джерела
Анотація:
One of the most promising renewable energy concepts is the Concentrated Solar Power (CSP) tower with a hybrid combined cycle gas turbine power block. U.S. Department of Energy studies [4] indicate that this type of system can achieve greater than 60% thermal efficiency and result in a lower the levelized cost of electricity (LCOE) as compared to the CSP technology operating today. The air Brayton gas turbine part of the combined cycle system can also operate in a hybrid mode with natural gas resulting in optimizing the plant performance and making it available for fully dispatchable power output even when the solar thermal is not available. Since this concept had not been tested on a MW scale, a CSP tower hybrid gas turbine demonstration plant called Solugas was built near Seville, Spain. A 4.6 MW Mercury™ 50 gas turbine was modified to operate with a high temperature air receiver. The demonstration tests were conducted to ensure the turbine can operate over a broad range of conditions with and without solar energy. The performance and operation safety were critical test objectives. The demonstration test results were excellent and met all program objectives.
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Amin, Muhammad, Teuku Azuar Rizal, Syamsul Bahri Widodo, Fazri Amir, Diki Wijaya, and Sudi Alperius Tumanggor. "Concentrated Solar Power (CSP) Technology Uses Parabolic Reflectors for Seawater Desalination." In 2nd International Conference on Science, Technology, and Modern Society (ICSTMS 2020). Paris, France: Atlantis Press, 2021. http://dx.doi.org/10.2991/assehr.k.210909.053.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Craig, Toyosi, Alan Brent, Frank Duvenhage, and Frank Dinter. "Systems approach to concentrated solar power (CSP) technology adoption in South Africa." In SolarPACES 2017: International Conference on Concentrating Solar Power and Chemical Energy Systems. Author(s), 2018. http://dx.doi.org/10.1063/1.5067166.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Звіти організацій з теми "Concentrated Solar Power Technology"

1

Chen, Gang, and Zhifeng Ren. Concentrated Solar Thermoelectric Power. Office of Scientific and Technical Information (OSTI), July 2015. http://dx.doi.org/10.2172/1191490.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

PROJECT STAFF. THERMOCHEMICAL HEAT STORAGE FOR CONCENTRATED SOLAR POWER. Office of Scientific and Technical Information (OSTI), October 2011. http://dx.doi.org/10.2172/1039304.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Muralidharan, Govindarajan, Shivakant Shukla, Roger Miller, Donovan Leonard, Jim Myers, and Paul Enders. Cast Components for High Temperature Concentrated Solar Power Thermal Systems. Office of Scientific and Technical Information (OSTI), September 2022. http://dx.doi.org/10.2172/1890293.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Wong, Bunsen. Sulfur Based Thermochemical Heat Storage for Baseload Concentrated Solar Power Generation. Office of Scientific and Technical Information (OSTI), November 2014. http://dx.doi.org/10.2172/1165341.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Mazumder, Malay K., Mark N. Horenstein, and Nitin R. Joglekar. Prototype Development and Evaluation of Self-Cleaning Concentrated Solar Power Collectors. Office of Scientific and Technical Information (OSTI), March 2015. http://dx.doi.org/10.2172/1351259.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Santa Lucia, C. Evaluation of Ceramic Heat Exchanger for Next-Generation Concentrated Solar Power. Office of Scientific and Technical Information (OSTI), December 2020. http://dx.doi.org/10.2172/1734612.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Townley, David, and Paul Gee. Combined Heat & Power Using the Infinia Concentrated Solar CHP PowerDish System. Fort Belvoir, VA: Defense Technical Information Center, August 2013. http://dx.doi.org/10.21236/ada607481.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Kumar, Vinod. Computational Analysis of Nanoparticles-Molten Salt Thermal Energy Storage for Concentrated Solar Power Systems. Office of Scientific and Technical Information (OSTI), May 2017. http://dx.doi.org/10.2172/1355304.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Reass, William A., Sung I. Kwon, Alexander Scheinker, David M. Baca, and Jeffrey M. Audia. Solar Agile Delivery of Electrical Power Technology (Solar ADEPT). Office of Scientific and Technical Information (OSTI), October 2012. http://dx.doi.org/10.2172/1053130.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Garcia-Diaz, Brenda L. Fundamental Corrosion Studies in High-Temperature Molten Salt Systems for Next Generation Concentrated Solar Power Systems. Office of Scientific and Technical Information (OSTI), January 2016. http://dx.doi.org/10.2172/1491796.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії