Добірка наукової літератури з теми "Computational Fluids Mechanic"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Computational Fluids Mechanic".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Статті в журналах з теми "Computational Fluids Mechanic":

1

Mora Pérez, M., G. López Patiño, M. A. Bengochea Escribano, and P. A. López Jiménez. "Cuantificación de la eficiencia de la fachada cerámica ventilada mediante técnicas de la mecánica de fluidos computacional." Boletín de la Sociedad Española de Cerámica y Vidrio 50, no. 2 (April 30, 2011): 99–108. http://dx.doi.org/10.3989/cyv.142011.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Sandrakov, Gennadiy. "Computational Fluid Mechanics with Phase Transitions by Particle Methods." Modeling Control and Information Technologies, no. 6 (November 22, 2023): 90–91. http://dx.doi.org/10.31713/mcit.2023.025.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
A computational method of simulations for processes of heterogeneous hydrodynamics with take of phase transitions will be discussed. The method is based on relevant approximation of conservation laws for mass, momentum, and energy in integral and differential forms. The time and spatial approximation is natural and numerical simulations are realized as direct computer experiments. It is supposed that the fluids are compressible and non-viscous. Heterogeneities of the fluids are considered as small drops or particles of one fluid within other fluid. Total number of the drops may be large enough and the drops may have phase transitions. Therefore, simulations of the main fluid with small transited drops dynamics are considered. The particle dynamics will be modelled as in the particle-in-cell method, and in the main fluid as in the large particle method. This approach makes it possible to simulate phase transitions under certain assumptions about heterogeneous fluids. The calculation algorithm of this method is implemented as a computer simulation of the dynamics of a multiphase carrier fluid containing particles that can undergo, for example, graphite-diamond phase transitions. Such transitions are modelled on the basis of the theory of phase transformations and the laws of thermodynamics. In fact, the method is a combination of the Harlow's particle-in-cell method, Belotserkovskii's large particles method and Bakhvalov's homogenization method. A modification of this method has also been developed to take into account the effects of viscosity when simulating the dynamics of a multiphase fluid in porous media. A model of the motion of such a liquid in a porous medium is obtained by freezing the motion of particles of the corresponding size in the presented method. The method will certainly be promising for numerical simulations of absorption and diffusion processes in complex fluids with phase transitions.
3

Zamora, Blas, Antonio S. Kaiser, and Pedro G. Vicente. "Improvement in Learning on Fluid Mechanics and Heat Transfer Courses Using Computational Fluid Dynamics." International Journal of Mechanical Engineering Education 38, no. 2 (April 2010): 147–66. http://dx.doi.org/10.7227/ijmee.38.2.6.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
This paper is concerned with the teaching of fluid mechanics and heat transfer on courses for the industrial engineer degree at the Polytechnic University of Cartagena (Spain). In order to improve the engineering education, a pedagogical method that involves project-based learning, using computational fluid dynamics (CFD), was applied. The project-based learning works well for mechanical engineering education, since it prepares students for their later professional training. The courses combined applied and advanced concepts of fluid mechanics with the basic numerical aspects of CFD, including validation of the results obtained. In this approach, the physical understanding of practical problems of fluid mechanics and heat transfer played an important role. Satisfactory numerical results were obtained by using both Phoenics and Fluent finite-volume codes. Some cases were solved using the well known Matlab software. Comparisons were made between the results obtained by analytical solutions (if any) with those reached by CFD general-purpose codes and with those obtained by Matlab. This system provides engineering students with a solid comprehension of several aspects of thermal and fluids engineering.
4

Kim, Youngho, and Sangho Yun. "Fluid Dynamics in an Anatomically Correct Total Cavopulmonary Connection : Flow Visualizations and Computational Fluid Dynamics(Cardiovascular Mechanics)." Proceedings of the Asian Pacific Conference on Biomechanics : emerging science and technology in biomechanics 2004.1 (2004): 57–58. http://dx.doi.org/10.1299/jsmeapbio.2004.1.57.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Chen, Yinwei, and Suzanne Garcia. "Preface: 1st International Conference on Fluid Mechanics, Computational Mathematics and Physics (FMCMP 2023)." Highlights in Science, Engineering and Technology 77 (November 29, 2023): I. http://dx.doi.org/10.54097/hset.v77i.13926.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
The 1st International Conference on Fluid Mechanics, Computational Mathematics and Physics (FMCMP 2023) was held in Xi'an City, China during November 18-19, 2023, it included original and peer-reviewed research papers. FMCMP is an annual international conference devoted to the discussion of original work on theoretical, computational, and experimental aspects of the mechanics of fluids, with special regards to the Navier-Stokes equations. FMCMP conference covers the field of Fluid Mechanics, Computational and Applied Mathematics, and Physics. FMCMP aims to provide a knowledge exchange and sharing platform of fluid mechanics, computational mathematics and physics for the aviation and aerospace industry, automobile industry, shipbuilding industry, etc. We welcome experts in fields related to fluid mechanics, computational mathematics and physics to join us. We would like to thank all the author submitted papers to this FMCMP 2023 and thank all the reviewers for their time and effort in reviewing articles. Especially we would like to thank the organizing committee for their valuable advices in the organization and helpful peer review of the papers. Organizing Committee of FMCMP 2023 Xi'an City, China
6

Lin, Guang, Xiaoliang Wan, Chau-hsing Su, and George Karniadakis. "Stochastic Computational Fluid Mechanics." Computing in Science and Engineering 9, no. 2 (March 2007): 21–29. http://dx.doi.org/10.1109/mcse.2007.38.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Drikakis, Dimitris, Michael Frank, and Gavin Tabor. "Multiscale Computational Fluid Dynamics." Energies 12, no. 17 (August 25, 2019): 3272. http://dx.doi.org/10.3390/en12173272.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Computational Fluid Dynamics (CFD) has numerous applications in the field of energy research, in modelling the basic physics of combustion, multiphase flow and heat transfer; and in the simulation of mechanical devices such as turbines, wind wave and tidal devices, and other devices for energy generation. With the constant increase in available computing power, the fidelity and accuracy of CFD simulations have constantly improved, and the technique is now an integral part of research and development. In the past few years, the development of multiscale methods has emerged as a topic of intensive research. The variable scales may be associated with scales of turbulence, or other physical processes which operate across a range of different scales, and often lead to spatial and temporal scales crossing the boundaries of continuum and molecular mechanics. In this paper, we present a short review of multiscale CFD frameworks with potential applications to energy problems.
8

HALLEZ, YANNICK, and JACQUES MAGNAUDET. "A numerical investigation of horizontal viscous gravity currents." Journal of Fluid Mechanics 630 (July 10, 2009): 71–91. http://dx.doi.org/10.1017/s0022112009006454.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
We study numerically the viscous phase of horizontal gravity currents of immiscible fluids in the lock-exchange configuration. A numerical technique capable of dealing with stiff density gradients is used, allowing us to mimic high-Schmidt-number situations similar to those encountered in most laboratory experiments. Plane two-dimensional computations with no-slip boundary conditions are run so as to compare numerical predictions with the ‘short reservoir’ solution of Huppert (J. Fluid Mech., vol. 121, 1982, pp. 43–58), which predicts the front position lf to evolve as t1/5, and the ‘long reservoir’ solution of Gratton & Minotti (J. Fluid Mech., vol. 210, 1990, pp. 155–182) which predicts a diffusive evolution of the distance travelled by the front xf ~ t1/2. In line with dimensional arguments, computations indicate that the self-similar power law governing the front position is selected by the flow Reynolds number and the initial volume of the released heavy fluid. We derive and validate a criterion predicting which type of viscous regime immediately succeeds the slumping phase. The computations also reveal that, under certain conditions, two different viscous regimes may appear successively during the life of a given current. Effects of sidewalls are examined through three-dimensional computations and are found to affect the transition time between the slumping phase and the viscous regime. In the various situations we consider, we make use of a force balance to estimate the transition time at which the viscous regime sets in and show that the corresponding prediction compares well with the computational results.
9

Urreta, Harkaitz, Gorka Aguirre, Pavel Kuzhir, and Luis Norberto Lopez de Lacalle. "Actively lubricated hybrid journal bearings based on magnetic fluids for high-precision spindles of machine tools." Journal of Intelligent Material Systems and Structures 30, no. 15 (July 13, 2019): 2257–71. http://dx.doi.org/10.1177/1045389x19862358.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
The research work reported in this article is focused on the use of magnetic fluids as active lubricant for improving the performance of hybrid journal bearings, with application to high-precision machine tools. Prototype design was optimized following numerical computation of Reynolds equation and computational fluid dynamics calculations, in both cases with Herschel–Bulkley model for the magnetorheological fluid. This fluid (LORD Corp. MRF 122-2ED) was experimentally characterized in detail. The improvement of the hydrodynamic effect in journal bearings was demonstrated with 50% higher load capacity and stiffness, mainly at half of shaft eccentricity 0.4 < ε < 0.7. Active hydrostatic lubrication achieved quasi-infinite stiffness within working limits (load and speed), at low frequencies. For high dynamic response, the active lubrication based on magnetorheological valves did not show good response. The feasibility of using magnetic fluids for developing high performance machine tool spindles and the validity of the simulation models was demonstrated experimentally.
10

Wu, Xiang, and Ling Feng Tang. "Review of Coupled Research for Mechanical Dynamics and Fluid Mechanics of Reciprocating Compressor." Applied Mechanics and Materials 327 (June 2013): 227–32. http://dx.doi.org/10.4028/www.scientific.net/amm.327.227.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Research statuses of mechanical dynamics and fluid mechanics of a reciprocating compressor are reviewed respectively ,along with the presentation of coupled research for these two disciplines of a reciprocating compressor. Analyses for mechanical dynamics are focused on modal analysis and dynamic response analysis. Three methods can be adopted in dynamic response analysis,which are the combination of the formula derivation and finite element method, the combination of multi-rigid-body dynamics and finite element method , and thecombination of multi-flexible body dynamics and finite element method. Analytical models for fluid dynamics include 1-D computationalfluid dynamics model, 2-D computational fluid dynamics model and 3-D computational fluid dynamics model. In addition, limitations of researches for mechanical dynamics and fluid mechanics in a reciprocating compressor are also presented, as well as the prospect for the coupled research of two disciplines.

Дисертації з теми "Computational Fluids Mechanic":

1

Andrade, Luiz Fernando de Souza. "Animação de jatos oscilantes em fluidos viscosos usando SPH em GPU." Universidade de São Paulo, 2014. http://www.teses.usp.br/teses/disponiveis/55/55134/tde-08082014-113954/.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Nos últimos anos, o estudo de métodos de animação de escoamento de fluidos tem sido uma área de intensa pesquisa em Computação Gráfica. O principal objetivo desse projeto é desenvolver novas técnicas em GPGPU baseadas na arquitetura CUDA para simular o escoamento de fluidos não-newtonianos, tais como fluidos viscoplásticos e viscoelásticos. Ao invés dos tradicionais métodos com malha diferenças finitas e elementos finitos, essas técnicas são baseadas em uma discretização lagrangeana das equações de governo desses fluidos através do método sem malha conhecido como SPH (Smoothed Particle Hydrodynamics)
I n recent years, the study of methods of animating fluid flow has been an area of intense research in Computer Graphics. The main objective of this project is to develop new techniques based on the CUDA GPGPU architecture to simulate the flow of non-Newtonian fluids, such as viscoelastic and viscoplastic fluids. Instead of traditional methods with mesh - finite differences and finite elements, these techniques are based on a Lagrangian discretization of the governing equations of these fluids through the mesh free method known as SPH (Smoothed Particle Hydrodynamics)
2

Latour, Gillien. "Modélisation et simulation 3D des écoulements et transports au sein d'un bassin versant." Electronic Thesis or Diss., Université de Toulouse (2023-....), 2024. http://www.theses.fr/2024TLSEP009.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
L'équilibre entre les besoins anthropiques en eau et la disponibilité des ressources hydrologiques souterraines est menacé par la présence de polluants dans les sols et les sous-sols. Afin d'étudier les risques de contamination des nappes phréatiques par des polluants issus d'activités nucléaires, le CEA (Commissariat à l'Énergie Atomique et aux énergies alternatives) utilise des modèles hydrogéologiques pour simuler des scénarios potentiels. Dans une volonté d'amélioration de la précision de ces simulations, la présente thèse propose des modèles tridimensionnels d'écoulement des eaux souterraines et du transport de polluants à l'échelle du bassin versant. Ces modèles permettent d'intégrer de nombreux mécanismes physiques négligés dans les modèles mono et bidimensionnels. Toutefois, la mise en œuvre des modèles 3D nécessite des paramètres adaptés ainsi que d'importantes ressources numériques. Dans un premier temps, nous avons mis en place une méthode de calibration des modèles d'écoulement 1D+2D et 3D, décomposée en une étape de calibration de la perméabilité par la méthode des points-pilotes, suivie par une étape de calibration des paramètres du modèle de capillarité par la méthode de Nelder-Mead. Cette méthode a permis l'obtention de paramètres dédiés aux modèles 3D, et les résultats ont été sujet à une publication. Sous l'hypothèse d'une perméabilité verticalement homogène, les calibrations des champs de perméabilité des modèles 1D+2D et 3D ont produits des résultats similaires et une interpolation du modèle 1D+2D vers le modèle 3D est alors pertinente. À l'inverse, les calibrations des paramètres du modèle de capillarité produisent des ensembles très différents. Des méthodes de calibration propres aux modèles 3D s'avèrent nécessaires. La comparaison des ressources numériques nécessaires à la calibration des modèles 1D+2D et 3D a mis en valeurs les importants coûts numériques nécessaires à l'exploitation des modèles 3D de l'écoulement.Pour limiter ces coûts, nous avons mis en œuvre deux méthodes numériques d'amélioration de l'efficacité sur les modèles 3D utilisés. La première méthode est le raffinement adaptatif du maillage (AMR). Cette méthode consiste à raffiner localement le maillage dans les zones d'intérêt au fur et à mesure de la simulation. En appliquant cette méthode sur les équations du transport en présence d'un écoulement stationnaire, nous avons retrouvé les résultats d'une simulation raffinée, tant sur des cas théoriques que sur un cas réaliste complexe. Nous avons également amorcé l'intégration des méthodes de raffinement adaptatif du maillage dans les solveurs de l'écoulement, mais une mise en œuvre complète et pleinement fonctionnelle nécessite encore des efforts. La seconde méthode numérique utilisée pour augmenter l'efficacité des simulations 3D est la méthode du double maillage. Appliquée aux phénomènes de transport en présence d’écoulement transitoires, cette méthode différencient les discrétisations spatiales des équations du transport et de l'écoulement, ce qui permet de raffiner uniquement un des deux maillages. Nous montrons alors que le raffinement du maillage dédié au transport est plus important que le raffinement maillage dédié à l'écoulement pour une localisation précise du panache de polluant et de ses concentrations. En associant cette méthode au raffinement adaptatif du maillage dédié au transport sur une colonne 1D et dans un domaine réaliste 3D, nous sommes parvenus à réduire d'un facteur 100 les temps de calculs sur des maillages raffinés deux fois en dégradant de façon négligeable la précision des résultats
The balance between human water needs and the availability of groundwater resources is threatened by the presence of pollutants in sub-surfaces. To study the risks of groundwater contamination from pollutants originating from nuclear activities, the CEA (French Alternative Energies and Atomic Energy Commission) uses hydro-geological models to simulate potential scenarios. In an effort to enhance the precision of these simulations, this thesis proposes three-dimensional models of groundwater flow and pollutant transport at the watershed scale. These models allow the incorporation of numerous physical mechanisms neglected in mono- and bi-dimensional models. However, the implementation of 3D models requires tailored parameters and significant computational resources.Initially, we established a calibration method for 1D+2D and 3D flow models, divided into a permeability calibration step using the pilot points method, followed by a capillarity model parameter calibration step using the Nelder-Mead method. This method yielded a correct parameter set for 3D models, and the results were subject to publication. Assuming vertically homogeneous permeability, calibrations of permeability fields for 1D+2D and 3D models produced similar results, making interpolation from the 1D+2D model to the 3D model possible. In contrast, calibrations of capillarity model parameters produced very different sets. Specific calibration methods for 3D models are therefore necessary. A comparison of the computational resources required for calibrating 1D+2D and 3D models highlighted the significant numerical costs associated with the operation of 3D flow models.To mitigate these costs, we implemented two numerical methods to enhance the efficiency of the employed 3D models. The first method is an adaptive mesh refinement (AMR), involving local mesh refinement in areas of interest during the simulation. By applying this method to transport equations in the presence of steady flow, we achieved results similar to those of a refined simulation, both for theoretical cases and a complex realistic scenario. We also initiated the integration of adaptive mesh refinement methods into flow solvers, but complete and fully functional implementation still requires further efforts.The second numerical method used to increase the efficiency of 3D simulations is the double-mesh method. Applied to transport in the presence of transient flow, this method distinguishes spatial discretizations of transport and flow equations, allowing for the refinement of only one of the two meshes. We demonstrate that refinement of the transport-dedicated mesh is more critical than refinement of the flow-dedicated mesh for precise localization of the pollutant plume and its concentrations. By combining this method with adaptive mesh refinement dedicated to transport in a 1D column and in a realistic 3D domain, we succeeded in reducing computation times by a factor of 100 on twice-refined meshes, with negligible degradation in result accuracy
3

Farhat, Hikmat. "Studies in computational methods for statistical mechanics of fluids." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1998. http://www.collectionscanada.ca/obj/s4/f2/dsk1/tape10/PQDD_0026/NQ50157.pdf.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Hughes, Michael. "Computational magnetohydrodynamics." Thesis, University of Greenwich, 1994. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.284683.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Betancourt, Arturo. "Computational study of the heat transfer and fluid structure of a shell and tube heat exchanger." Thesis, Florida Atlantic University, 2016. http://pqdtopen.proquest.com/#viewpdf?dispub=10172609.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:

A common technique to improve the performance of shell and tube heat exchangers (STHE) is by redirecting the flow in the shell side with a series of baffles. A key aspect in this technique is to understand the interaction of the fluid dynamics and heat transfer. Computational fluid dynamics simulations and experiments were performed to analysis the 3-dimensional flow and heat transfer on the shell side of an STHE with and without baffles. Although, it was found that there was a small difference in the average exit temperature between the two cases, the heat transfer coefficient was locally enhanced in the baffled case due to flow structures. The flow in the unbaffled case was highly streamed, while for the baffled case the flow was a highly complex flow with vortex structures formed by the tip of the baffles, the tubes, and the interaction of flow with the shell wall.

6

Peshkin, David Annesley. "Computational fluid dymanics using transputer systems." Thesis, Queen's University Belfast, 1990. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.335585.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Marshall, G. S. "Muiticomponent fluid flow computation." Thesis, Teesside University, 1988. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.384659.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Hunsaker, Doug F. "Evaluation of an Incompressible Energy-Vorticity Turbulence Model for Fully Rough Pipe Flow." DigitalCommons@USU, 2011. https://digitalcommons.usu.edu/etd/1068.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Traditional methods of closing the Boussinesq-based Reynolds-averaged Navier-Stokes equations are considered, and suggestions for improving two-equation turbulence models are made. The traditional smooth-wall boundary conditions are shown to be incorrect, and the correct boundary conditions are provided along with sample solutions to traditional models. The correct boundary condition at a smooth wall for dissipation-based turbulence models is that which forces both the turbulent kinetic energy and its first derivative to zero. Foundations for an energy-vorticity model suggested by Phillips are presented along with the near-smooth-wall behavior of the model. These results show that at a perfectly smooth wall, the turbulent kinetic energy may approach the wall at a higher order than is generally accepted. The foundations of this model are used in the development of a k-λ model for fully rough pipe flow. Closure coefficients for the model are developed through gradient-based optimization techniques. Results of the model are compared to results from the Wilcox 1998 and 2006 k-ω models as well as four eddy-viscosity models. The results show that the Phillips k-λ model is much more accurate than other models for predicting the relationship between Reynolds number and friction factor for fully rough pipe flow. However, the velocity profiles resulting from the model deviate noticeably from the law of the wall.
9

Alarcón, Oseguera Francisco. "Computational study of the emergent behavior of micro-swimmer suspensions." Doctoral thesis, Universitat de Barcelona, 2016. http://hdl.handle.net/10803/394065.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
It is known that active particles induce emerging patterns as a result of their dynamic interactions, giving rise to amazing collective motions, such as swarming or clustering. Here we present a systematic numerical study of self-propelling particles; our main goal is to characterize the collective behavior of suspensions of active particles as a result of the competition among their propulsion activity and the intensity of an attractive pair potential. Active particles are modeled using the squirmer model. Due to its hydrodynamic nature, we are able to classify the squirmer swimmer activity in terms of the stress it generates (referred to as pullers or pushers). We show that these active stresses play a central role in the emergence of collective motion. We have found that hydrodynamics drive the coherent swimming between swimmers while the swimmer direct interactions, modeled by a Lennard-Jones potential, contributes to the swimmers' cohesion. This competition gives rise to two different regimes where giant density fluctuations (GDF) emerge. These two regimes are differentiated by the suspension alignment; one regime has GDF in aligned suspensions whereas the other regime has GDF of suspensions with an isotropic orientated state. All the simulated squirmer suspensions shown in this study were characterized by a thorough analysis of global properties of the squirmer suspensions as well as a complementary cluster analysis. Active matter refers generically to systems composed of self-driven units, active particles, each capable of converting stored or ambient free energy into systematic movement. Examples of active systems are found at all length scales and could be classified in living and nonliving systems such as microorganisms, tissues and organisms, animal groups, self- propelled colloids and artificial nanoswimmers. Specifically, at the micro and nano scale we find an enormous range of interesting systems both biological and artificial; e.g. spermatozoa that fuse with the ovum during fertilization, the bacteria that inhabit our guts, the protozoa in our ponds, the algae in the ocean; these are but a few examples of a wide biological spectrum. In the artificial world we have self- healing colloidal crystals and membranes as well as self- assembled microswimmers and robots. Experiments in this field are now developing at a very rapid pace and new theoretical ideas are needed to bring unity to the field and identify "universal" behavior in these internally driven systems. One important feature of active matter is that their elements can develop emergent, coordinated behavior; collective motion constitutes one of the most common and spectacular example. Collective motion is ubiquitous and at every scale, from herds of large mammals to amoeba and bacteria colonies, down to the cooperative behavior of molecular motors in the cell. The behavior of large fish schools and the dance of starling flocks at dusk are among the most spectacular examples. From a physical perspective collective motion emerges from a spontaneous symmetry breaking that allows for long-range orientational orden The different mechanisms responsible for such symmetry breaking are still not completely understood. We have performed a systematic numerical study of interactive micro-swimmer suspensions building on the squirmer model, introduced by Lighthill. Since the squirmer identifies systematically the hydrodynamic origin of self-propulsion and stress generation it provides a natural scheme to scrutinize the impact that the different features associated to self-propulsion in a liquid medium have in the collective dynamics of squirmer suspensions. In this abstract we describe the simulation scheme and how squirmers are modeled, then some of the main results are discussed and finally we conclude emphasizing the main implications of the results obtained.
Los sistemas activos se definen como materiales fuera del equilibrio termodinámico compuestos por muchas unidades interactuantes que individualmente consumen energía y colectivamente generan movimiento o estreses mecánicos. Ejemplos se pueden encontrar en un enorme rango de escalas de longitud, desde el mundo biológico hasta artificial, incluyendo organismos unicelulares, tejidos y organismos pluricelulares, grupos de animales, coloides auto-propulsados y nano-nadadores artificiales. Actualmente se están desarrollando experimentos en este campo a un ritmo muy veloz, en consecuencia son necesarias nuevas ideas teóricas para traer unidad al campo de estudio e identificar comportamientos “universales” en estos sistemas propulsados internamente. El objetivo de esta tesis es el estudiar mediante simulaciones numéricas, el comportamiento colectivo de un modelo de micro-nadadores. En particular, el modelo de squirmers, donde el movimiento del fluido es axi-simétrico. Existen estructuras coherentes que emergen de estos sistemas así que, el entender si las estructuras coherentes son generadas por la firma hidrodinámica intrínseca de los squirmers individuales o por un efecto de tamaño finito se vuelve algo de primordial importancia. Nosotros también estudiamos la influencia que tiene la geometría en la aparición de estructuras coherentes, la interacción directa entre las partículas, la concentración, etc.
10

Dhruv, Akash. "A Multiphase Solver for High-Fidelity Phase-Change Simulations over Complex Geometries." Thesis, The George Washington University, 2021. http://pqdtopen.proquest.com/#viewpdf?dispub=28256871.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Complex interactions between solid, liquid and gas occur in many practical engineering applications, and are often difficult to quantify experimentally. A few examples include boiling over solid heaters, solidification melt-dynamics in metal casting, and convective cooling of electronic components. With the availability of scalable computational tools, high-fidelity simulations can provide new insight into these phenomena and answer open questions. In the present work, a multiphase solver is presented which can simulate problems involving phase transition over complex geometries. The dynamics of liquid-gas interface are modeled using a level-set technique, which utilizes Ghost Fluid Method (GFM) to account for sharp jump in pressure, velocity, and temperature across the multiphase boundary. The fluid-solid interactions are modeled using an Immersed Boundary Method (IBM) which uses a Moving Least Squared (MLS) reconstruction to calculate fluid-flow around the solid, along with an additional GFM forcing to model its effect on pressure, temperature and Conjugate Heat Transfer (CHT). The resulting three dimensional solver is fully explicit in time and uses a fractional step method for Navier-Stokes, energy, and mass transfer equations. Validation and verification cases are presented to demonstrate the accuracy of the solver in comparison to experimental and analytical problems, and results of high fidelity pool boiling simulations in varying gravity environments are discussed in detail.

Книги з теми "Computational Fluids Mechanic":

1

Abbott, Michael B. Computational fluid dynamics: An introduction for engineers. Harlow, Essex, England: Longman Scientific & Technical, 1989.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Post, Scott. Applied and computational fluid mechanics. Sudbury, Mass: Jones and Bartlett, 2010.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Klapp, Jaime, and Abraham Medina, eds. Experimental and Computational Fluid Mechanics. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-00116-6.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Post, Scott. Applied and computational fluid mechanics. Sudbury, Mass: Jones and Bartlett Publishers, 2011.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Chorin, Alexandre Joel. Computational fluid mechanics: Selected papers. Boston: Academic Press, 1989.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Post, Scott. Applied and computational fluid mechanics. Sudbury, Mass: Jones and Bartlett, 2010.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Post, Scott. Applied and computational fluid mechanics. Sudbury, Mass: Jones and Bartlett, 2010.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Baker, A. J. Finite element computational fluid mechanics. Maidenhead: McGraw-Hill, 1986.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Moschandreou, Terry E., Keith Afas, and Khoa Nguyen. Theoretical and Computational Fluid Mechanics. Boca Raton: Chapman and Hall/CRC, 2023. http://dx.doi.org/10.1201/9781003452256.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Tu, Jiyuan. Computational fluid dynamics: A practical approach. Amsterdam: Butterworth-Heinemann, 2008.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Частини книг з теми "Computational Fluids Mechanic":

1

Larson, Mats G., and Fredrik Bengzon. "Fluid Mechanics." In Texts in Computational Science and Engineering, 289–325. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-33287-6_12.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Betounes, David. "Fluid Mechanics." In Partial Differential Equations for Computational Science, 245–98. New York, NY: Springer New York, 1998. http://dx.doi.org/10.1007/978-1-4612-2198-2_10.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Liu, Peiqing. "Computational Fluid Dynamics." In A General Theory of Fluid Mechanics, 297–332. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-33-6660-2_4.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Alobaid, Falah. "Computational Fluid Dynamics." In Springer Tracts in Mechanical Engineering, 87–204. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-76234-0_3.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Yeo, Yeong Koo. "Fluid Mechanics." In Chemical Engineering Computation with MATLAB®, 297–360. Second edition. | Boca Raton, FL : CRC Press/Taylor & Francis Group, LLC, [2021]: CRC Press, 2020. http://dx.doi.org/10.1201/9781003090601-05.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Schaffarczyk, A. P. "Application of Computational Fluid Mechanics." In Green Energy and Technology, 121–57. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014. http://dx.doi.org/10.1007/978-3-642-36409-9_7.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Schaffarczyk, A. P. "Application of Computational Fluid Mechanics." In Green Energy and Technology, 135–76. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-41028-5_7.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Shokin, Yu I. "Computational Fluid Mechanics in Russia." In Notes on Numerical Fluid Mechanics and Multidisciplinary Design, 117–31. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-540-70805-6_11.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Schaffarczyk, Alois Peter. "Application of Computational Fluid Mechanics." In Green Energy and Technology, 181–224. Cham: Springer International Publishing, 2024. http://dx.doi.org/10.1007/978-3-031-56924-1_7.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Zheng, Shaokai, Dario Carugo, Francesco Clavica, Ali Mosayyebi, and Sarah Waters. "Flow Dynamics in Stented Ureter." In Urinary Stents, 149–58. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-04484-7_13.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
AbstractUrinary flow is governed by the principles of fluid mechanics. Urodynamic studies have revealed the fundamental kinematics and dynamics of urinary flow in various physiological and pathological conditions, which are cornerstones for future development of diagnostic knowledge and innovative devices. There are three primary approaches to study the fluid mechanical characteristics of urinary flow: reduced order, computational, and experimental methods. Reduced-order methods exploit the disparate length scales inherent in the system to reveal the key dominant physics. Computational models can simulate fully three-dimensional, time-dependent flows in physiologically-inspired anatomical domains. Finally, experimental models provide an excellent counterpart to reduced and computational models by providing physical tests under various physiological and pathological conditions. While the interdisciplinary approaches to date have provided a wealth of insight into the fluid mechanical properties of the stented ureter, the next challenge is to develop new theoretical, computational and experimental models to capture the complex interplay between the fluid dynamics in stented ureters and biofilm/encrustation growth. Such studies will (1) enable identification of clinically relevant scenarios to improve patients’ treatment, and (2) provide physical guidelines for next-generation stent design.

Тези доповідей конференцій з теми "Computational Fluids Mechanic":

1

Wang, Xiao, Keith Walters, Greg W. Burgreen, and David S. Thompson. "Cyclic Breathing Simulations: Pressure Outlet Boundary Conditions Coupled With Resistance and Compliance." In ASME/JSME/KSME 2015 Joint Fluids Engineering Conference. American Society of Mechanical Engineers, 2015. http://dx.doi.org/10.1115/ajkfluids2015-26569.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
A patient-specific non-uniform pressure outlet boundary condition was developed and used in unsteady simulations of cyclic breathing in a large-scale model of the lung airway from the oronasal opening to the terminal bronchioles. The computational domain is a reduced-geometry model, in which some airway branches in each generation were truncated, and only selected paths were retained to the terminal generation. To characterize pressure change through airway tree extending from the truncated outlets to pulmonary zone, virtual airways represented by extended volume mesh zones were constructed in order to apply a zero-dimensional airway resistance model. The airway resistances were prescribed based on a precursor steady simulation under constant ventilation condition. The virtual airways accommodate the use of patient-specific alveolar pressure conditions. Furthermore, the time-dependent alveolar pressure profile was composed with the physiologically accurate pleural pressure predicted by the whole-body simulation software HumMod, and the transpulmonary pressure evaluated based on lung compliance and local air volume change. To investigate airway flow patterns of healthy and diseased lungs, unsteady breathing simulations were conducted with varying lung compliances accounting for healthy lungs, and lungs with emphysema or interstitial fibrosis. Results show that the simulations using this patient-specific pressure boundary condition are capable of reproducing physiologically realistic flow patterns corresponding to abnormal pulmonary compliance in diseased lungs, such as the hyperventilation in lungs with emphysema, and the demand of more mechanic work for breathing in lungs with fibrosis.
2

Isoz, Martin, and Marie Plachá. "A Parallel Algorithm for Flux-Based Bounded Scalar Re-distribution." In Topical Problems of Fluid Mechanics 2022. Institute of Thermomechanics of the Czech Academy of Sciences, 2022. http://dx.doi.org/10.14311/tpfm.2022.013.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Let us assume a bounded scalar function ? : Q = I × ? ? ?0, 1?, I ? R, ? ? R3, where Q is an open bounded domain and its discrete counterpart ?h defined on a computational mesh Qh = Ih × ?h. The problem of redistribution of ?h over ?h ensuring the scalar boundedness while maintaining the invariance of R ?h ?h dV is surprisingly frequent within the field of computational fluid dynamics (CFD). The present contribution is motivated by the case arising from coupling Lagrangian particle tracking and particle deposition within ?h with Eulerian CFD computation. We propose an algorithm for ?h redistribution that is (i) based on fluxes over the computational cells faces, i.e. suitable for finite volume (FV) computations, (ii) localized, meaning that a cell ?h P with ?hP > 1 affects only its closest neighbors with ?h < 1, and (iii) designed for parallel computations leveraging the standard domain decomposition methods.
3

Studeník, Ondřej, Martin Kotouč Šourek, and Martin Isoz. "Octree-Generated Virtual Mesh for Improved Contact Resolution in CFD-Dem Coupling." In Topical Problems of Fluid Mechanics 2022. Institute of Thermomechanics of the Czech Academy of Sciences, 2022. http://dx.doi.org/10.14311/tpfm.2022.021.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
The present work is focused on improving the efficiency of a computational fluid dynamics (CFD) – discrete element method (DEM) solver allowing for computations with non-spherical solids. In general, the combination of CFD and DEM allows for simulations of freely moving solid particles within a computational domain containing fluid. The standard approach of CFD-DEM solvers is to approximate solid bodies by spheres, the geometry of which can be fully defined via its radius and center position. Consequently, the standard DEM contact models are based on an overlap depth between particles, which can be easily evaluated for a sphere-sphere contact. However, for a contact between two non-spherical particles, the overlap depth cannot be used and has to be replaced by the more general overlap volume. The precision of the overlap volume computation is (i) crucial for the correct evaluation of contact forces, and (ii) directly dependent on the computational mesh resolution. Still, the contact volume evaluation in DEM for arbitrarily shaped bodies is usually by at least one order of magnitude more demanding on the mesh resolution than the CFD. In order to improve the computational efficiency of our CFD-DEM solver, we introduce the concept of an OCTREEbased virtual mesh, in which the DEM spatial discretization is adaptively refined while the CFD mesh remains unchanged.
4

McConnell, Joshua, Rekha Rao, Weston Ortiz, and Pania Newell. "Computational Models for Fluid-to-Solid Transitions in Yield Stress Fluids." In Proposed for presentation at the 16th US National Congress on Computational Mechanics held July 25-29, 2021 in Austin, Texas United States. US DOE, 2021. http://dx.doi.org/10.2172/1878278.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

McConnell, Joshua, Rekha Rao, Weston Ortiz, and Pania Newell. "Computational Models for Fluid-to-Solid Transitions in Yield Stress Fluids." In Proposed for presentation at the 16th US National Congress on Computational Mechanics held July 25-29, 2021 in Austin, Texas United States. US DOE, 2021. http://dx.doi.org/10.2172/1888673.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Nonomura, Taku, Hiroko Muranaka, and Kozo Fujii. "Computational Analysis of Various Factors on the Edgetone Mechanism Using High Order Schemes." In ASME 2005 Fluids Engineering Division Summer Meeting. ASMEDC, 2005. http://dx.doi.org/10.1115/fedsm2005-77220.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Flow fields of two dimensional jets impinging on the sharp edge are computationally simulated and the effect of various parameters on the edgetone that is created by the flow interaction is investigated. Compressible Navier-Stokes equations are used so that acoustic waves are captured accurately as a part of feedback-loop. For numerical accuracy, Pade type compact finite difference scheme are used. First parameter is the jet velocity. Computational result shows good qualitative agreement with the experiment. Edgetone frequencies obtained by the computation also show good correspondence with those of experimental study in the past. Second parameter is the nozzle lip thickness. Although not considered in the computational study in the past, the nozzle lip thickness influences to the results. Amplitude of acoustics of larger nozzle lip is greater than that of smaller ones. This effect may comes from the fact that acoustic wave as a part of feedback loop is emphasized by nozzle lip. Third parameter is the jet-profile. Four different jet-profiles with the same maximum velocity (from top-hat profile to parabolic profile) and four different jet-profiles with the same mean velocity are computed. The mean jet velocity appears to have strong influence on the stage. The results also indicated that the mean jet velocity and the jet-profile have influence on edgetone frequencies.
7

Sethian, J. A. "Computational fluid mechanics and massively parallel processors." In the 1993 ACM/IEEE conference. New York, New York, USA: ACM Press, 1993. http://dx.doi.org/10.1145/169627.169660.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Parra, M. T., J. R. Pérez, and F. Castro. "Workshops for learning in computational fluid mechanics." In the Second International Conference. New York, New York, USA: ACM Press, 2014. http://dx.doi.org/10.1145/2669711.2669888.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Velivelli, Aditya C., and Kenneth M. Bryden. "An Improved Lattice Boltzmann Method for Steady Fluid Flows." In ASME 2004 International Mechanical Engineering Congress and Exposition. ASMEDC, 2004. http://dx.doi.org/10.1115/imece2004-61900.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
The use of the lattice Boltzmann method in computational fluid dynamics has been steadily increasing. The highly local nature of lattice Boltzmann computations have allowed for easy cache optimization and parallelization. This bestows the lattice Boltzmann method with considerable superiority in computational performance over traditional finite difference methods for solving unsteady flow problems. When solving steady flow problems, the explicit nature of the lattice Boltzmann discretization limits the time step size. The time step size is limited by the Courant-Friedrichs-Lewy (CFL) condition and local gradients in the solution, the latter limitation being more extreme. This paper describes a novel explicit discretization for the lattice Boltzmann method that can perform simulations with larger time step sizes. The new algorithm is applid to the steady Burger’s equation, uux = μ(uxx + uyy), which is a nonlinear partial differential equation containing both convection and diffusion terms. A comparison between the original lattice Boltzmann method and the new algorithm is performed with regard to time for computation and accuracy.
10

Akamine, Takayuki, Kenta Inakagata, Yasunori Osana, Naoyuki Fujita, and Hideharu Amano. "Reconfigurable out-of-order mechanism generator for unstructured grid computation in computational fluid dynamics." In 2012 22nd International Conference on Field Programmable Logic and Applications (FPL). IEEE, 2012. http://dx.doi.org/10.1109/fpl.2012.6339277.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Звіти організацій з теми "Computational Fluids Mechanic":

1

Buchholz. L52308 Temperature Logging as a Cavern Mechanical Integrity Test. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), October 2010. http://dx.doi.org/10.55274/r0010397.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
This work documents case histories, develops an analytical solutions to predict a temperature decreases that occurs when gas leaks out of a well, and performs a computational fluid dynamics analyses of a generic gas well.
2

Davison, Scott, Nicholas Alger, Daniel Zack Turner, Samuel Ramirez Subia, Brian Carnes, Mario J. Martinez, Patrick K. Notz, et al. Computational thermal, chemical, fluid, and solid mechanics for geosystems management. Office of Scientific and Technical Information (OSTI), September 2011. http://dx.doi.org/10.2172/1029788.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Rao, Rekha, Joshua McConnell, Anne Grillet, Anthony McMaster, Helen Cleaves, Christine Roberts, Weston Ortiz, et al. Stress Birth and Death: Disruptive Computational Mechanics and Novel Diagnostics for Fluid-to-Solid Transitions. Office of Scientific and Technical Information (OSTI), October 2022. http://dx.doi.org/10.2172/1893238.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Goldak, J. L51647 Welding on Fluid Filled and Pressurized Pipelines-Transient 3D Analysis. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), March 2000. http://dx.doi.org/10.55274/r0011356.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
The objective of this project was to determine if research in Computational Weld Mechanics had matured to the stage where it could simulate the process of welding on a pressurized pipeline and provide useful estimates of the risk of burn-through. To achieve that objective we have compared the results of our FEM analyzes of several welds with the experimental data reported in "http://www.prci.com/publications/L51763.htm" PR-185-9515, Repair of Pipelines by Direct Deposition of Weld Metal: Further Studies. The temperature and deformation predicted by our FEM analysis agrees quite well with the experimental data. The critical input data in addition to the internal pressure in the pipe, the geometry of the pipe, the size and shape of the weld pool including weld reinforcement, are the convection coefficient on the internal pipe surface and the temperature dependence of the viscosity of the pipe metal. Our FEM analysis shows that creep under the weld pool can thin the pipe wall and form a groove. In welds that show significant groove formation and thus high risk of burn through, this groove is significantly deeper than in welds that are at low risk of burn-through. When the pipe wall is thinned by the groove, the internal pipe wall temperature increases under the weld pool. Also the groove could reduce the convection on the internal pipe wall. This would further increase the temperature on the internal pipe wall under the weld pool and further accelerate actual burn-through. In our FEM analysis, we found no significant groove formation in those welds for which no significant groove formation was reported in the PR-185-9515 experiments. We found significant groove formation exactly in those welds that burned-through or were at high risk of burn-through. In those welds, the FEM analyses predicted a somewhat deeper groove than experiment. This suggests the FEM analyses erred on the safe side. In this sense, we conclude that we have succeeded in computing useful estimates of the risk of burn-through using Computational Weld Mechanics. It is notable that almost no use is made of adjustable or tuning parameters. To simulate the actual burn-through we conjecture that we would need to include inertial forces in the stress analysis.
5

Voegeli, Sam. PR-317-10701-R01 Temperature Logging as a Mechanical Integrity Test (MIT) for Gas-Filled Caverns. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), August 2012. http://dx.doi.org/10.55274/r0010850.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
This report documents the work performed to evaluate the possibility that temperature log anomalies (�cold spots� or departures from temperature linearity with depth) can be indicators of well leaks. The natural gas cavern storage industry does not have a methodology for accurate gas-filled cavern well Mechanical Integrity Tests (MITs). Analyses of some temperature log anomalies in North American gas cavern well completions revealed that temperature log anomalies can be indicators of well leaks. The challenges in applying this technology to quantify gas-filled cavern MITs are threefold: (1) Does a temperature anomaly (�cold spot�) always indicate a leak? (2) Can a leak magnitude be correlated to a temperature log anomaly magnitude? and (3) What protocol should be used for executing such an MIT? This report is not intended to completely address all three issues noted above. However, the research presented here is one of many steps needed to evaluate the possibility of temperature logging as an MIT. Research activities discussed in this report involve computational fluid dynamics (CFD) modeling of both a well and cavern. Specifically, the response from a representative cold spot introduced in the cement sheath of a well and the response from an actual leak are addressed.

До бібліографії