Добірка наукової літератури з теми "Computational Condensed Matter Physics"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Computational Condensed Matter Physics".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Статті в журналах з теми "Computational Condensed Matter Physics"

1

Godwal, B. K. "Computational condensed matter physics." Bulletin of Materials Science 22, no. 5 (August 1999): 877–84. http://dx.doi.org/10.1007/bf02745548.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Stephen, David T., Hendrik Poulsen Nautrup, Juani Bermejo-Vega, Jens Eisert, and Robert Raussendorf. "Subsystem symmetries, quantum cellular automata, and computational phases of quantum matter." Quantum 3 (May 20, 2019): 142. http://dx.doi.org/10.22331/q-2019-05-20-142.

Повний текст джерела
Анотація:
Quantum phases of matter are resources for notions of quantum computation. In this work, we establish a new link between concepts of quantum information theory and condensed matter physics by presenting a unified understanding of symmetry-protected topological (SPT) order protected by subsystem symmetries and its relation to measurement-based quantum computation (MBQC). The key unifying ingredient is the concept of quantum cellular automata (QCA) which we use to define subsystem symmetries acting on rigid lower-dimensional lines or fractals on a 2D lattice. Notably, both types of symmetries are treated equivalently in our framework. We show that states within a non-trivial SPT phase protected by these symmetries are indicated by the presence of the same QCA in a tensor network representation of the state, thereby characterizing the structure of entanglement that is uniformly present throughout these phases. By also formulating schemes of MBQC based on these QCA, we are able to prove that most of the phases we construct are computationally universal phases of matter, in which every state is a resource for universal MBQC. Interestingly, our approach allows us to construct computational phases which have practical advantages over previous examples, including a computational speedup. The significance of the approach stems from constructing novel computationally universal phases of matter and showcasing the power of tensor networks and quantum information theory in classifying subsystem SPT order.
Стилі APA, Harvard, Vancouver, ISO та ін.
3

McClintock, Peter V. E. "Experimental and Computational Techniques in Soft Condensed Matter Physics, edited by Jeffrey Olafsen." Contemporary Physics 52, no. 5 (September 2011): 486. http://dx.doi.org/10.1080/00107514.2011.580058.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Karney, Charles F. F. "Modern computational techniques in plasma physics." Physics of Plasmas 5, no. 5 (May 1998): 1632–35. http://dx.doi.org/10.1063/1.872831.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Schultz, D. R., P. S. Krstic, T. Minami, M. S. Pindzola, F. J. Robicheaux, J. P. Colgan, S. D. Loch, et al. "Computational atomic physics for plasma edge modeling." Contributions to Plasma Physics 44, no. 13 (April 2004): 247–51. http://dx.doi.org/10.1002/ctpp.200410036.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Janatipour, Najmeh, Zabiollah Mahdavifar, Siamak Noorizadeh, and Fazel Shojaei. "Modifying the electronic and geometrical properties of mono/bi-layer graphite-like BC2N via alkali metal (Li, Na) adsorption and intercalation: computational approach." New Journal of Chemistry 43, no. 33 (2019): 13122–33. http://dx.doi.org/10.1039/c9nj02260k.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Probert, Matt. "Symmetry and Condensed Matter Physics – A Computational Approach, by M. El-Batanouny and F. Wooten." Contemporary Physics 51, no. 5 (September 2010): 457–58. http://dx.doi.org/10.1080/00107510903395937.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

BINDER, K. "LARGE-SCALE SIMULATIONS IN CONDENSED MATTER PHYSICS —THE NEED FOR A TERAFLOP COMPUTER." International Journal of Modern Physics C 03, no. 03 (June 1992): 565–81. http://dx.doi.org/10.1142/s0129183192000373.

Повний текст джерела
Анотація:
The introduction of vector processors {“supercomputers” with a performance in the range of 109 floating point operations (1 GFLOP) per second} has had an enormous impact on computational condensed matter physics. The possibility of a substantially enhanced performance by massively parallel processors (“teraflop” machines with 1012 floating point operations per second) will allow satisfactory treatment of a large range of important scientific problems which have to a great extent thus far escaped numerical resolution. The present paper describes only a few examples (out of a long list of interesting research problems!) for which the availability of “teraflops” will allow spectacular progress, i.e., the modelling of dense macromolecular systems and metallic alloys by molecular dynamics and Monte Carlo simulations.
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Pursky, O. I., T. V. Dubovyk, V. O. Babenko, V. F. Gamaliy, R. A. Rasulov, and R. P. Romanenko. "Computational method for studying the thermal conductivity of molecular crystals in the course of condensed matter physics." Journal of Physics: Conference Series 1840, no. 1 (March 1, 2021): 012015. http://dx.doi.org/10.1088/1742-6596/1840/1/012015.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Smit, Berend. "Computational physics in petrochemical industry." Physica Scripta T66 (January 1, 1996): 80–84. http://dx.doi.org/10.1088/0031-8949/1996/t66/010.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Дисертації з теми "Computational Condensed Matter Physics"

1

Arias, Tomas A. "New analytic and computational techniques for finite temperature condensed matter systems." Thesis, Massachusetts Institute of Technology, 1992. http://hdl.handle.net/1721.1/13158.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Darmawan, Andrew. "Quantum computational phases of matter." Thesis, The University of Sydney, 2014. http://hdl.handle.net/2123/11640.

Повний текст джерела
Анотація:
Universal quantum computation can be realised by measuring individual particles in a specially entangled state of many particles, called a universal resource state. This model of quantum computation, called measurement-based quantum computation (MBQC), provides a framework for studying the intrinsic computational power of physical systems. In this thesis I will investigate how universal resource states may arise naturally as ground states of interacting spin systems. In particular, I will describe new 'phases' of quantum matter, which are characterised by having universal resource states as ground states. This direction of research allows us to draw on techniques from both many-body quantum physics and quantum information theory.
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Varner, Samuel John. "Experimental and computational techniques in carbon-13 NMR." W&M ScholarWorks, 1999. https://scholarworks.wm.edu/etd/1539623952.

Повний текст джерела
Анотація:
An efficient method for calculating NMR lineshapes from anisotropic second rank tensor interactions is presented. The algorithm produces lineshapes from asymmetric tensors by summing those from symmetric tensors. This approach significantly reduces the calculation time, greatly facilitating iterative nonlinear least squares fitting of experimental spectra. This algorithm has been modified to produce partially relaxed lineshapes and spectra of partially ordered samples.;Calculations for rapidly spinning samples show that spin-lattice relaxation time ( T1Z ) anisotropy varies with the angle between the spinning axis and the external field. When the rate of molecular motion is in the extreme narrowing limit, measurement of T1Z anisotropies for two different values of the spinning angle allows the determination of two linear combinations of the three static spectral densities, J0(0), J1(0) and J2(0). Experimental results for ferrocene demonstrate the utility of these linear combinations in the investigation of molecular dynamics with natural abundance 13C NMR. For ferrocene-d 10, deuteron T1Z and quadrupolar order relaxation time ( T1Q ) anisotropies, along with the relaxation time of the 13C magic angle spinning (MAS) peak, provide sufficient information to determine the orientation dependence of all three individual spectral densities. The experimental results include the first determination of J 0(0) in a solid sample.;A variety of experimental techniques were used in an investigation of the polyimides LaRC-IA, LaRC-TPI and LaRC-SI and related model compounds. Magic angle spinning was used to acquire 13C isotropic chemical shift spectra of these materials. The spectra were assigned as completely as possible. In addition, the principal components of some shielding tensors were measured using variable angle correlation spectroscopy. of those studied, LaRC-SI is the only polymer that is soluble. However, after it is heated past its glass transition temperature, LaRC-SI becomes insoluble. Experiments were performed in an attempt to identify causes of this behavior. 1H and 13C NMR spectra of soluble and insoluble LaRC-SI are significantly different when magnetization from nuclei in rigid regions of the polymer is suppressed. Hydration studies of LaRC-SI and LaRC-IA show that absorbed water plasticizes these polymers.
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Matsuda, Takehisa. "Computational proposal for locating local defects in superconducting tapes." California State University, Long Beach, 2013.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Giomi, Luca. "Unordinary order a theoretical, computational and experimental investigation of crystalline order in curved space /." Related electronic resource: Current Research at SU : database of SU dissertations, recent titles available full text, 2009. http://wwwlib.umi.com/cr/syr/main.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Prentice, Joseph Charles Alfred. "Investigating anharmonic effects in condensed matter systems." Thesis, University of Cambridge, 2018. https://www.repository.cam.ac.uk/handle/1810/275467.

Повний текст джерела
Анотація:
This thesis presents work done on the calculation of the effects of anharmonic nuclear motion on the properties of solid materials from first principles. Such anharmonic effects can be significant in many cases. A vibrational self-consistent field (VSCF) method is used as the basis for these calculations, which is then improved and applied to a variety of solid state systems. Firstly, work done to improve the efficiency of the VSCF method is presented. The standard VSCF method involves using density functional theory (DFT) to map the Born-Oppenheimer (BO) energy surface that the nuclei move in, a computationally expensive process. It is shown that the accurate forces available in plane-wave basis DFT can be used to help map the BO surface more accurately and reduce the computational cost. This improved VSCF+f method is tested on molecular and solid hydrogen, as well as lithium and zirconium, and is found to give a speed-up of up to 40%. The VSCF method is then applied to two different systems of physical interest. It is first applied to the case of the neutral vacancy in diamond, in order to resolve a known discrepancy between harmonic ab initio calculations and experiment -- the former predict a static Jahn-Teller distortion, whilst the latter leads to a dynamic Jahn-Teller effect. By including anharmonic corrections to the energy and nuclear wavefunction, we show that the inclusion of these effects results in agreement between first-principles calculations and experiment for the first time. Lastly, the VSCF method is applied to barium titanate, a prototypical ferroelectric material which undergoes a series of phase transitions from around 400 K downwards. The nature of these phase transitions is still unclear, and understanding them is an active area of research. We describe the physics of the phase transitions of barium titanate, including both anharmonicity and the effect of polarisation caused by long wavelength vibrations, to help understand the important physics from first principles.
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Garcia, Alberto J. "Parameter Dependence of Pair Correlations in Clean Superconducting-Magnetic Proximity Systems." Thesis, California State University, Long Beach, 2018. http://pqdtopen.proquest.com/#viewpdf?dispub=10841350.

Повний текст джерела
Анотація:

Cooper pairs are known to tunnel through a barrier between superconductors in a Josephson junction. The spin states of the pairs can be a mixture of singlet and triplet states when the barrier is an inhomogeneous magnetic material. The purpose of this thesis is to better understand the behavior of pair correlations in the ballistic regime for different magnetic configurations and varying physical parameters. We use a tight-binding Hamiltonian to describe the system and consider singlet-pair conventional superconductors. Using the Bogoliubov-Valatin transformation, we derive the Bogoliubov-de Gennes equations and numerically solve the associated eigenvalue problem. Pair correlations in the magnetic Josephson junction are obtained from the Green's function formalism for a superconductor. This formalism is applied to Josephson junctions composed of discrete and continuous magnetic materials. The differences between representing pair correlations in the time and frequency domain are discussed, as well as the advantages of describing the Gor'kov functions on a log scale rather than the commonly used linear scale, and in a rotating basis as opposed to a static basis. Furthermore, the effects of parameters such as ferromagnetic width, magnetization strength, and band filling will be investigated. Lastly, we compare results in the clean limit with known results in the diffusive regime.

Стилі APA, Harvard, Vancouver, ISO та ін.
8

Stefferson, Michael W. "Dynamics of Crowded and Active Biological Systems." Thesis, University of Colorado at Boulder, 2018. http://pqdtopen.proquest.com/#viewpdf?dispub=10823834.

Повний текст джерела
Анотація:

Interactions between particles and their environment can alter the dynamics of biological systems. In crowded media like the cell, interactions with obstacles can introduce anomalous subdiffusion. Active matter systems, e.g. , bacterial swarms, are nonequilibrium fluids where interparticle interactions and activity cause collective motion and dynamical phases. In this thesis, I discuss my advances in the fields of crowded media and active matter. For crowded media, I studied the effects of soft obstacles and bound mobility on tracer diffusion using a lattice Monte Carlo model. I characterized how bound motion can minimize the effects of hindered anomalous diffusion and obstacle percolation, which has implications for protein movement and interactions in cells. I extended the analysis of binding and bound motion to study the effects of transport across biofilters like the nuclear pore complex (NPC). Using a minimal model, I made predictions on the selectivity of the NPC in terms of physical parameters. Finally, I looked at active matter systems. Using dynamical density functional theory, I studied the temporal evolution of a self-propelled needle system. I mapped out a dynamical phase diagram and discuss the connection between a banding instability and microscopic interactions.

Стилі APA, Harvard, Vancouver, ISO та ін.
9

Kremeyer, Kevin P. 1968. "Experimental and computational investigations of binary solidification." Diss., The University of Arizona, 1997. http://hdl.handle.net/10150/289267.

Повний текст джерела
Анотація:
The topic of this dissertation is the solidification of a binary melt. The investigation is separated into three portions: An experimental investigation on the NH₄Cl--H₂O system; the development of a Cellular Automata code; and the development of a pair of coupled partial differential equations governing the evolution of an array of dendrites. Any necessary concepts are reviewed in the introduction. The experimental investigation focuses on the morphological transition from "slow" <100> dendrites to "fast" <111> dendrites. It is shown how the very complicated structures occurring during the transition actually have a simple explanation. The "slow-to-fast" transition has been previously investigated in the literature, and the relationships obtained in those studies can not account for the data collected in the present study. When "slow" dendrites are cooled into the "fast" regime, a curious stagnation of growth has also been observed. Additionally, two mechanisms are proposed as possible contributions to the order-of-magnitude jump in speed at the slow-to-fast transition. One mechanism is that of a "herringbone structure", and the other is that of a vortical fluid flow occurring at the tip of the dendrite. A relationship is also found which further indicates the importance of fluid flow. The cellular automata model developed in this dissertation has proven to be a valuable tool in gaining insight into the solidification process. The simulated growth is governed predominantly by the diffusion of solute and the Gibbs-Thomson effect. Solutal diffusion, is accurately treated, diffusing differently through liquid than through solid. The interface curvature is approximated using a template method, into which crystalline anisotropy has also been introduced. Several features were added to explore interface kinetics, solute partitioning, and fluid flow due to shrinkage. Simulations on a 100 x 100 system typically required less than a minute on a workstation, and only qualitative agreement with the experiments was sought. The partial differential equations for the evolution of a growing array of dendrites are derived taking into account only diffusion. It is explicitly shown how the non-conservative equations conserve all of the material in the solidifying system.
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Hutzel, William D. "Particle-Hole Symmetry Breaking in the Fractional Quantum Hall Effect at nu = 5/2." Thesis, California State University, Long Beach, 2018. http://pqdtopen.proquest.com/#viewpdf?dispub=10841528.

Повний текст джерела
Анотація:

The fractional quantum Hall effect (FQHE) in the half-filled second Landau level (filling factor ν = 5/2) offers new insights into the physics of exotic emergent quasi-particles. The FQHE is due to the collective interactions of electrons confined to two-dimensions, cooled to sub-Kelvin temperatures, and subjected to a strong perpendicular magnetic field. Under these conditions a quantum liquid forms displaying quantized plateaus in the Hall resistance and chiral edge flow. The leading candidate description for the FQHE at 5/2 is provided by the Moore-Read Pfaffian state which supports non-Abelian anyonic low-energy excitations with potential applications in fault-tolerant quantum computation schemes. The Moore-Read Pfaffian is the exact zero-energy ground state of a particular three-body Hamiltonian and explicitly breaks particle-hole symmetry. In this thesis we investigate the role of two and three body interaction terms in the Hamiltonian and the role of particle hole symmetry (PHS) breaking at ν = 5/2. We start with a PHS two body Hamiltonian (H 2) that produces an exact ground state that is nearly identical with the Moore-Read Pfaffian and construct a Hamiltonian H(α) = (1 – α)H3 + α H 2 that tunes continuously between H3 and H2. We find that the ground states, and low-energy excitations, of H2 and H3 are in one-to-one correspondence and remain adiabatically connected indicating they are part of the same universality class and describe the same physics in the thermodynamic limit. In addition, evidently three body PHS breaking interactions are not a crucial ingredient to realize the FQHE at 5/2 and the non-Abelian quasiparticle excitations.

Стилі APA, Harvard, Vancouver, ISO та ін.

Книги з теми "Computational Condensed Matter Physics"

1

Miyashita, Seiji, Masatoshi Imada, and Hajime Takayama, eds. Computational Approaches in Condensed-Matter Physics. Berlin, Heidelberg: Springer Berlin Heidelberg, 1992. http://dx.doi.org/10.1007/978-3-642-84821-6.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Experimental and computational techniques in soft condensed matter physics. New York: Cambridge University Press, 2010.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

F, Wooten, ed. Symmetry and condensed matter physics: A computational approach. New York: Cambridge University Press, 2008.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Olafsen, Jeffrey, ed. Experimental and Computational Techniques in Soft Condensed Matter Physics. Cambridge: Cambridge University Press, 2009. http://dx.doi.org/10.1017/cbo9780511760549.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

A, Zhuravlëv V., ed. Physics of dendrites: Computational experiments. Singapore: World Scientific, 1994.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Monastyrsky, Michael. Topology of Gauge Fields and Condensed Matter. Boston, MA: Springer US, 1993.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Luciano, Reatto, and Manghi Franca, eds. Progress in computational physics of matter: Methods, software and applications. Singapore: World Scientific, 1995.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Thijssen, J. M. Computational physics. Cambridge: Cambridge University Press, 1999.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Thijssen, J. M. Computational physics. Cambridge: Cambridge University Press, 1999.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

1940-, Kitagawa Hiroshi, Aihara T. 1964-, and Kawazoe Y. 1947-, eds. Mesoscopic dynamics of fracture: Computational materials design. Berlin: New York, 1998.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Частини книг з теми "Computational Condensed Matter Physics"

1

Van Hieu, Nguyen. "Functional Integral Techniques in Condensed Matter Physics." In Computational Approaches to Novel Condensed Matter Systems, 191–233. Boston, MA: Springer US, 1995. http://dx.doi.org/10.1007/978-1-4757-9791-6_10.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Powell, Ben J. "Introduction to Effective Low-Energy Hamiltonians in Condensed Matter Physics and Chemistry." In Computational Methods for Large Systems, 309–66. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2011. http://dx.doi.org/10.1002/9780470930779.ch10.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Laumann, C. R., R. Moessner, A. Scardicchio, and S. L. Sondhi. "Statistical Mechanics of Classical and Quantum Computational Complexity." In Modern Theories of Many-Particle Systems in Condensed Matter Physics, 295–332. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-10449-7_7.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Heine, Volker. "Computation of Electronic Structure: Its Role in the Development of Solid State Physics." In Electronic Structure, Dynamics, and Quantum Structural Properties of Condensed Matter, 1–5. Boston, MA: Springer US, 1985. http://dx.doi.org/10.1007/978-1-4757-0899-8_1.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Balkanski, Minko. "Condensed Matter Physics." In Encyclopedia of Sciences and Religions, 458–64. Dordrecht: Springer Netherlands, 2013. http://dx.doi.org/10.1007/978-1-4020-8265-8_9.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Chaikin, P. M., M. Ya Azbel, and P. Bak. "Magnetic Field Induced Transitions in Organic Conductors and Gaps in the Rings of Saturn." In Condensed Matter Physics, 1–15. New York, NY: Springer New York, 1987. http://dx.doi.org/10.1007/978-1-4612-4772-2_1.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Schuller, Ivan K., and M. Lagos. "Polarons and Subsurface Bonding." In Condensed Matter Physics, 110–15. New York, NY: Springer New York, 1987. http://dx.doi.org/10.1007/978-1-4612-4772-2_10.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Cohen, Marvin L. "New Directions in Calculating Electron-Phonon Interactions." In Condensed Matter Physics, 116–22. New York, NY: Springer New York, 1987. http://dx.doi.org/10.1007/978-1-4612-4772-2_11.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Schrieffer, J. Robert. "The Electron-Phonon Cornucopia." In Condensed Matter Physics, 123–28. New York, NY: Springer New York, 1987. http://dx.doi.org/10.1007/978-1-4612-4772-2_12.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Shoenberg, D. "Magnetic Interaction in a 2-D Electron Gas." In Condensed Matter Physics, 129–41. New York, NY: Springer New York, 1987. http://dx.doi.org/10.1007/978-1-4612-4772-2_13.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Тези доповідей конференцій з теми "Computational Condensed Matter Physics"

1

Ravindran, Reju, Sanoj P. Suresh, Sabarishwaran Rajasekar, Basithrahman Abbas, Oblisamy Lakshminarayanan, Shweata Swaminath Melkunde, Shyam Shashikant Shukla, and Vaishnavi Anil Furmalkar. "Computational investigation of aerodynamics characteristics over GNVR profile." In APPLIED PHYSICS OF CONDENSED MATTER (APCOM 2022). AIP Publishing, 2023. http://dx.doi.org/10.1063/5.0130973.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Irfan, Abd Rahim, M. Z. M. Zarhamdy, Saad Mohd Sazli, Muhamad Nur Amni, N. A. Shuaib, and A. Azlida. "Computational study on thermoacoustic heat engine for proposing a new method renewable technique." In APPLIED PHYSICS OF CONDENSED MATTER (APCOM 2019). AIP Publishing, 2019. http://dx.doi.org/10.1063/1.5118189.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Haty, Amarjit, Rajendra K. Ray, and Atendra Kumar. "A computational study of forced convection from rotating circular cylinder heated with time-periodic pulsating temperature." In APPLIED PHYSICS OF CONDENSED MATTER (APCOM 2022). AIP Publishing, 2023. http://dx.doi.org/10.1063/5.0127807.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Radhwan, H., Z. Shayfull, M. R. Farizuan, M. S. M. Effendi, and A. R. Irfan. "Analysis particle trajectory and air flow on hopper for swiftlet feeding machine using computational fluid dynamics (CFD)." In APPLIED PHYSICS OF CONDENSED MATTER (APCOM 2019). AIP Publishing, 2019. http://dx.doi.org/10.1063/1.5118166.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Sachdeva, Ritika, Prabhjot Kaur, V. P. Singh, and G. S. S. Saini. "Computational study of frontier orbitals, moments, chemical reactivity and thermodynamic parameters of sildenafil." In INTERNATIONAL CONFERENCE ON CONDENSED MATTER AND APPLIED PHYSICS (ICC 2015): Proceeding of International Conference on Condensed Matter and Applied Physics. Author(s), 2016. http://dx.doi.org/10.1063/1.4946347.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Kumar, Ajith, and Vincent Mathew. "Computational study of proton acceleration from the laser irradiated metal substrate." In 2ND INTERNATIONAL CONFERENCE ON CONDENSED MATTER AND APPLIED PHYSICS (ICC 2017). Author(s), 2018. http://dx.doi.org/10.1063/1.5033186.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Tiwari, Aditya, Brijesh Kumar, and Ambrish Kumar Srivastava. "Computational study on 8-quinolinolato-alkali, an electron transporting material for OLED devices." In 3RD INTERNATIONAL CONFERENCE ON CONDENSED MATTER AND APPLIED PHYSICS (ICC-2019). AIP Publishing, 2020. http://dx.doi.org/10.1063/5.0005773.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Gupta, Shivani, Vinay Shukla, Sarvesh Kumar Gupta, B. K. Pandey, and Abhishek Kumar Gupta. "Computational studies of PEO3-NaClO4 based solid polymer electrolyte for Na-ion batteries." In 3RD INTERNATIONAL CONFERENCE ON CONDENSED MATTER AND APPLIED PHYSICS (ICC-2019). AIP Publishing, 2020. http://dx.doi.org/10.1063/5.0001951.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Dewangan, Satish Kumar. "Review of computational fluid dynamics (CFD) researches on nano fluid flow through micro channel." In 2ND INTERNATIONAL CONFERENCE ON CONDENSED MATTER AND APPLIED PHYSICS (ICC 2017). Author(s), 2018. http://dx.doi.org/10.1063/1.5033211.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Surbhi, Sarvendra Kumar, and G. N. Pandey. "Experimental and computational (ab initio and DFT) analysis of vibrational spectra of 2,6-dimethyl-4-nitrophenol." In 3RD INTERNATIONAL CONFERENCE ON CONDENSED MATTER AND APPLIED PHYSICS (ICC-2019). AIP Publishing, 2020. http://dx.doi.org/10.1063/5.0002433.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Звіти організацій з теми "Computational Condensed Matter Physics"

1

Barbee, T. W., M. P. Surh, and L. X. Benedict. Computational Theory of Warm Condensed Matter. Office of Scientific and Technical Information (OSTI), February 2001. http://dx.doi.org/10.2172/15006179.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Mele, E. J. Condensed matter physics at surfaces and interfaces of solids. Office of Scientific and Technical Information (OSTI), January 1992. http://dx.doi.org/10.2172/5524488.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Maynard, Julian D. Innovative Acoustic Techniques for Studying New Materials and New Developments in Condensed Matter Physics. Fort Belvoir, VA: Defense Technical Information Center, July 2000. http://dx.doi.org/10.21236/ada380708.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Fradkin, Eduardo, Juan Maldacena, Lali Chatterjee, and James W. Davenport. BES-HEP Connections: Common Problems in Condensed Matter and High Energy Physics, Round Table Discussion. Office of Scientific and Technical Information (OSTI), February 2015. http://dx.doi.org/10.2172/1275474.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Stocks, G. M. (The use of parallel computers and multiple scattering Green function methods in condensed matter physics). Office of Scientific and Technical Information (OSTI), November 1990. http://dx.doi.org/10.2172/6352675.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Collins, G. Physics and Chemistry of the Interiors of Large Planets: A new generation of condensed matter using NIF. Office of Scientific and Technical Information (OSTI), April 2009. http://dx.doi.org/10.2172/1113445.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Mele, E. J. Condensed matter physics at surfaces and interfaces of solids. Progress report, February 1, 1991--January 31, 1992. Office of Scientific and Technical Information (OSTI), January 1992. http://dx.doi.org/10.2172/10131186.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Solomon, Allan I., Roy Pike, David Sherrington, Brian Rainford, Raymond Bishop, Colin Gough, Mario Rasetti, and Mikael Ciftan. Round Table Workshop on the Frontiers of Condensed Matter Physics Held in Broomcroft Hall, Manchester on 24-25 September 1990. Fort Belvoir, VA: Defense Technical Information Center, December 1990. http://dx.doi.org/10.21236/ada250357.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Ulloa, S. E. Electronic states in systems of reduced dimensionality. [Dept. of Physics and Astronomy and Condensed Matter and Surface Sciences Program, Ohio Univ. , Athens, Ohio]. Office of Scientific and Technical Information (OSTI), May 1993. http://dx.doi.org/10.2172/6425342.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії