Добірка наукової літератури з теми "Composites avec le graphite"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Composites avec le graphite".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Статті в журналах з теми "Composites avec le graphite"

1

Kourtides, D. A. "Bismaleimide-Vinylpolystyrylpyridine Graphite Composites." Journal of Thermoplastic Composite Materials 1, no. 1 (January 1988): 12–38. http://dx.doi.org/10.1177/089270578800100103.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

KOVALYSHYN, Yaroslav, Ivanna TERENYAK, and Orest PEREVIZNYK. "CAPACITIVE PROPERTIES OF MODIFIED AND NON MODIFIED THERMALLY EXPANDED GRAPHITE COMPOSITES WITH POLYANILINE." Proceedings of the Shevchenko Scientific Society. Series Сhemical Sciences 2020, no. 60 (February 25, 2020): 75–84. http://dx.doi.org/10.37827/ntsh.chem.2020.60.075.

Повний текст джерела
Анотація:
Modified thermally exfoliated graphite with p-nitrophenyldiazonium tetrafluoroborate, followed by reduction of nitrophenyl groups to aminophenyl ones. Composites PAN - graphite, PAN - modified graphite at a constant value of potential 1 V were synthesized by electrochemical method. Their conditional density and electrical conductivity were determined. The electrochemical behavior in 1 M HCl solution was investigated and the capacity of synthesized composites was calculated. The conditional density of PAN composites with modified and non modified graphite increases sharply with increasing graphite content from 0 to 5%. At graphite contents higher than 5%, the density of composites varies very slightly. In the range of graphite contents 0% - 20%, the density is the highest for composites with a graphite content of 5% - 10%. In the case of modified graphite, the density of composites is higher than that of composites with non modified graphite. Analysis of the dependence of the specific conductivity on the content of modified graphite indicates that the conductivity of PAN - graphite composites increases the most with increasing graphite content from 1 to 10%. In this interval, the conductivity increases linearly. This indicates the absence of specific interactions between the components in the synthesized composites, as well as the fact that the nature of the distribution of these components does not change with changes in the graphite content. For a composite with modified graphite, there are two maximum capacities of composites with a graphite content of 2 and 10%. For a composite with non modified graphite on the obtained curves there is a maximum capacity of composites with a graphite content of 2%. Modification of the graphite surface leads to increased interaction between the components of the compo¬site, which resulted in the compaction of its structure. As a result, the capacitive characteristics of modified graphite composites, as well as CVA currents and electrical conductivity, were lower compared to composites with non modified graphite.
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Lambert, M. A., and L. S. Fletcher. "Thermal Conductivity of Graphite/Aluminum and Graphite/Copper Composites." Journal of Heat Transfer 118, no. 2 (May 1, 1996): 478–80. http://dx.doi.org/10.1115/1.2825869.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Kumar, R., and T. S. Sudarshan. "Self-Lubricating Composites: Graphite-Copper." Materials Technology 11, no. 5 (January 1996): 191–94. http://dx.doi.org/10.1080/10667857.1996.11752698.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Estrada-Moreno, I. A., C. Leyva-Porras, M. E. Mendoza-Duarte, S. G. Flores Gallardo, and J. L. Rivera-Armenta. "Graphite Nanoplatelets in Elastomer Composites." Microscopy and Microanalysis 25, S2 (August 2019): 1782–83. http://dx.doi.org/10.1017/s1431927619009644.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Siegrist, Marco E., and Jörg F. Löffler. "Bulk metallic glass–graphite composites." Scripta Materialia 56, no. 12 (June 2007): 1079–82. http://dx.doi.org/10.1016/j.scriptamat.2007.02.022.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Muratov, K. R., and E. A. Gashev. "Finishing of graphite-based composites." Russian Engineering Research 35, no. 8 (August 2015): 628–30. http://dx.doi.org/10.3103/s1068798x15080110.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Tu, Haoming, and Lin Ye. "Thermal conductive PS/graphite composites." Polymers for Advanced Technologies 20, no. 1 (January 2009): 21–27. http://dx.doi.org/10.1002/pat.1236.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Jiang, Tao. "Investigation of Microstructural Features and Mechanical Characteristics of the Pressureless Sintered B4C/C(Graphite) Composites and the B4C-SiC-Si Composites Fabricated by the Silicon Infiltration Process." Materials 15, no. 14 (July 12, 2022): 4853. http://dx.doi.org/10.3390/ma15144853.

Повний текст джерела
Анотація:
The B4C/C(graphite) composites were fabricated by employing a pressureless sintering process. The pressureless sintered B4C/C(graphite) composites exhibited extremely low mechanical characteristics. The liquid silicon infiltration technique was employed for enhancing the mechanical property of B4C/C(graphite) composites. Since the porosity of the B4C/C(graphite) composites was about 25–38%, the liquid silicon was able to infiltrate into the interior composites, thereby reacting with B4C and graphite to generate silicon carbide. Thus, boron carbide, silicon carbide, and residual silicon were sintered together forming B4C-SiC-Si composites. The pressureless sintered B4C/C(graphite) composites were transformed into the B4C-SiC-Si composites following the silicon infiltration process. This work comprises an investigation of the microstructure, phase composition, and mechanical characteristics of the pressureless sintered B4C/C(graphite) composites and B4C-SiC-Si composites. The XRD data demonstrated that the pressureless sintered bulks were composed of the B4C phase and graphite phase. The pressureless sintered B4C/C(graphite) composites exhibited a porous microstructure, an extremely low mechanical property, and low wear resistance. The XRD data of the B4C-SiC-Si specimens showed that silicon infiltrated specimens comprised a B4C phase, SiC phase, and residual Si. The B4C-SiC-Si composites manifested a compact and homogenous microstructure. The mechanical property of the B4C-SiC-Si composites was substantially enhanced in comparison to the pressureless sintered B4C/C(graphite) composites. The density, relative density, fracture strength, fracture toughness, elastic modulus, and Vickers hardness of the B4C-SiC-Si composites were notably enhanced as compared to the pressureless sintered B4C/C(graphite) composites. The B4C-SiC-Si composites also manifested outstanding resistance to wear as a consequence of silicon infiltration. The B4C-SiC-Si composites demonstrated excellent wear resistance and superior mechanical characteristics.
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Shang, Yingshuang, Yunping Zhao, Yifan Liu, Ye Zhu, Zhenhua Jiang, and Haibo Zhang. "The effect of micron-graphite particle size on the mechanical and tribological properties of PEEK Composites." High Performance Polymers 30, no. 2 (January 5, 2017): 153–60. http://dx.doi.org/10.1177/0954008316685410.

Повний текст джерела
Анотація:
The poly (ether ether ketone) (PEEK)/graphite composites with good tribological performance were studied. When compared with pure PEEK, the PEEK/graphite composites exhibited a lower frictional coefficient, which was attributed to the layer structure of graphite, which can be easily separated or slide past each other. Considerations were given to both the coefficient of friction and wear rate, and the PEEK/graphite composites showed the optimal tribological behavior when the graphite content was at 25 wt%. This proportion was chosen to investigate the effect of micron-graphite particle size on mechanical and tribological properties of the PEEK/graphite composites. The wear rate of the PEEK composites significantly decreased when the particle size of micron-graphite decreased. Moreover, the results showed that the wear rate had a strong dependence on the mechanical properties of the PEEK composites at the same graphite content level.
Стилі APA, Harvard, Vancouver, ISO та ін.

Дисертації з теми "Composites avec le graphite"

1

Cai, Yihui. "Mechanosynthesis of 3D, 2D and quasi-2D hybrid perovskites and MAPbI3@graphite composites : mechanisms and potential applications." Electronic Thesis or Diss., Strasbourg, 2024. https://publication-theses.unistra.fr/public/theses_doctorat/2024/Cai_Yihui_2024_ED222.pdf.

Повний текст джерела
Анотація:
Les pérovskites hybrides (PH) sont prometteuses pour des applications optoélectroniques au-delà de la photovoltaïque, avec d'autres applications explorées ici. Un défi majeur est d'obtenir une synthèse reproductible, pure et évolutive. La mécanosynthèse (MS), une méthode verte sans solvant, a permis de synthétiser des composites 3D PH MAPbI3 et graphite en 30 minutes, avec des propriétés similaires à celles des MAPbI3 à base de solvant. Le broyage prolongé a introduit des défauts, améliorant l'absorption des ondes électromagnétiques. Des PHs 2D purs n=1 et leurs composites ont été synthétisés avec succès avec trois ammoniums différents. Les PHs de faible dimension (n>2) ont montré une plus grande hétérogénéité de composition. La compaction des poudres de PHs 3D, 2D et quasi 2D a induit une préservation de la taille des grains, l’apparition d’une orientation préférentielle et une diminution de la réabsorption améliorant ainsi leur photoluminescence. Au niveau photodétection, le graphite a amélioré leur performance et les PHs (n>2) à la base phényléthylammonium ont montré des performances très prometteuses
Hybrid perovskites (HPs) are promising for optoelectronic applications beyond photovoltaics, with other application explored here. A main challenge is achieving reproducible, pure, and scalable synthesis. Mechanosynthesis (MS), a green and solvent-free method, was used to synthesize 3D HP MAPbI3 and graphite composites in 30 minutes, yielding properties similar to solvent-based MAPbI3. Extended grinding introduced defects, enhancing electromagnetic wave absorption. MS was also applied to low-dimensional HPs (n=1–3) with different ammoniums. Pure n=1 2D HPs and composites were synthesized successfully, while n>2 showed compositional heterogeneity. The compaction of 3D, 2D and quasi-2D PHs powders resulted in the preservation of grain size, the appearance of a preferential orientation and a reduction in reabsorption, thereby improving their photoluminescence. Graphite improved photodetection performance and phenylethylammonium-based PHs (n>2) showed very promising results
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Rogier, Clémence. "Vers le développement d’un pseudocondensateur asymétrique avec des électrodes composites à base d’oxydes métalliques (MnO2, MoO3) et de carbones nanostructurés." Thesis, CY Cergy Paris Université, 2020. http://www.theses.fr/2020CYUN1098.

Повний текст джерела
Анотація:
Les supercondensateurs sont des systèmes de stockage de l’énergie destinés à des applications de nécessitant de fortes densité de puissance. Leur densité d’énergie peut être augmentée en développant de nouveaux matériaux d’électrode à forte capacitance. Dans cet objectif ces travaux décrivent le développement de matériaux composites à base de carbones nanostructurés (architectures avec des nanotubes de carbones et/ou de graphène oxydé réduit) et d’oxydes métalliques pseudocapacitifs (MnO2 et MoO3 pour les électrodes positive et négative respectivement). Les oxydes métalliques permettent de générer de fortes capacitances grâce à des réactions redox réversibles sur une large gamme de potentiels. La matrice carbonée nanostructurée induit une porosité et une conductivité des électrodes optimisées et assure le transport des ions et des électrons au sein des matériaux.L’électrode positive MnO2-rGO-CNTs est développée par pulvérisation des nanomatériaux carbonés directement sur le collecteur de courant avec un spray dynamique robotisé puis par croissance électrochimique de l’oxyde. Sa capacitance maximale est de 265 F/g. Dans une approche similaire, l’électrode négative MoO3-CNTs est développée, avec une capacitance maximale de 274 F/g. Les matériaux d’électrodes sont caractérisés par différentes techniques physicochimiques (microscopies, analyses de porosité, DRX, spectroscopies).Ces électrodes sont ensuite associées au sein d’un pseudocondensateur hybride asymétrique utilisant un électrolyte organique (LiTFSI/GBL) avec une tension de fonctionnement de 2V. Les performances de ce système en termes de densités d’énergie et de puissance ainsi que de stabilité électrochimique sont étudiées sur plusieurs milliers de cycles. La densité d’énergie maximale est calculée à 25 Wh/kg pour une densité de puissance de 0,1 kW/kg
Supercapacitors are energy storage devices for applications requiring high power densities. By developing new electrode materials with high capacitance energy densities can be enhanced. In that regard this work presents the development of composites materials associating nanostructured carbons (architectures with carbon nanotubes and/or reduced graphene oxide) and pseudocapacitive metal oxides (MnO2 and MoO3 for positive and negative electrodes respectively). Metal oxides generate high capacitances thanks to reversible redox reactions in a wide range of potentials. The nanostructured carbon matrix optimizes porosity and conductivity of the electrodes to ensure good ionic and electronic transport within the materials.First MnO2-rGO-CNTs is developed as a positive electrode using spray gun deposition of carbon nanomaterials before electrochemical growth of the oxide. The interest of these elaboration techniques lies in their easy large-scale implementation. Its maximum capacitance is measured at 265 F/g. In a similar approach MoO3-CNTs is developed as a negative electrode with a maximum capacitance of 274 F/g. The materials are characterized using different physicochemical methods (microscopy, spectroscopy, porosity analysis, XRD).These electrodes are then combined in an asymmetric hybrid pseudocapacitor in an organic electrolyte (LiTFSI/GBL) with an operating voltage window of 2V. The performances of this system in terms of energy and power densities as well as electrochemical stability were studied over several thousand cycles. The maximum energy density was found to be of 25 Wh/kg for a power density of 0.1 kW/kg
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Repasi, Ivett. "Expanded graphite filled polymer composites." Thesis, Queen's University Belfast, 2011. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.557649.

Повний текст джерела
Анотація:
The aim of this project was to produce expanded graphite (EO) and modified EO-filled electrically conductive polymer composites and to investigate the effects of different additive modifications and preparation conditions on the microstructure and electrical properties of these composites. Modifications included the use of dry blending and ultrasound to reduce their size, use of various suspension media and surfactants to stabilize particle suspensions. To compare the effectiveness of different filler modification processes on electrical conductivity, unmodified and treated EO were incorporated into polypropylene (PP) by melt mixing and EO based dispersions were used to make polyvinyl alcohol (PV A) composites by solution casting. The PP composites were made using various processing methods and conditions at filler concentrations up to 12 wt%, while the polyvinyl alcohol samples contained graphite concentrations up to 8 wt%. To analyse the crystalline morphology of sample and the dispersion of the filler in the composites samples were analysed by light and electron microscopy, DSC and X-ray diffraction. TOA was also used to investigate the thermal stability of the composites. It was found that the presence of graphite, significantly changed the crystal morphology of PP. Solution mixed PVA samples showed improved dispersion and the particle size was effectively reduced.
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Savage, Gary. "Mechanical properties of carbon/graphite composites." Thesis, Imperial College London, 1986. http://hdl.handle.net/10044/1/38153.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Leesirisan, Siriwan. "Polyethersulphone/graphite conductive composites for coatings." Thesis, Loughborough University, 2007. https://dspace.lboro.ac.uk/2134/13597.

Повний текст джерела
Анотація:
In this research, the electrical conductivity and thermal properties of polyethersulphone (PES) insulating polymer were improved, at its optimum micromechanical properties, by filling with electrically and thermally conductive graphite, for use in coatings for electrostatic dissipation applications. The graphite employed was a micro-/nano-graphite with aspect ratios in the range 100-600. Two types of the graphite, untreated and treated, were used for PES composites and LiCI-doped PES composite fabrication via a solution method. The treated graphite was surface functionalised by concentrated nitric acid treatment. FT-IR indicated the effectiveness of concentrated nitric acid treatment in introducing additional -COOH groups on the surfaces of the graphite. XRD, SEM and TEM revealed the dispersion of the graphite throughout the PES matrix in both an immiscIble and disordered manner, and the existence of aggregates of graphite. Nanoindentation testing showed insignificant decreases in the nanohardness and elastic modulus of the PES/treated graphite composites when the treated graphite content was not more than 5 wt%; whereas, increasing the content of the treated graphite increased the nanoscratch resistance of the composites. Due to the high aspect ratio of the graphite, the electrical conductivities of the PES/untreated and PES/treated graphite composites were enhanced at low loadings. An initial conducting pathway was formed at lower than 3 wt% of the filler. The enhancement by 2 orders of magnitude of the electrical conductivity of a PES/treated graphite composite could be accomplished by doping with 0.06 wt% of LiC!. MDSC showed improvements in the thermal conductivity of the PES matrix by 165 and 91% with the addition of 5 wt% of the untreated and treated graphite, respectively. DSC curves illustrated higher glass transition temperatures of the PES/graphite composites and doped PES/graphite composites, compared to the pure PES. Decreases in relaxation enthalpy WIth time, due to physical ageing of PES, were smaller when the PES was filled with the graphite or LiCI-doped graphite. The decrease in relaxation enthalpy of the materials was accompanied by increases in glass transition temperature and characteristIc length. Physical ageing also led to a decrease in the electrical conductivities of the PES/graphite composites and doped PES/graphite composites.
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Chen, Rong-Sheng. "Hygrothermal response of graphite/epoxy composites /." The Ohio State University, 1987. http://rave.ohiolink.edu/etdc/view?acc_num=osu1487326511715323.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Crews, Lauren K. (Lauren Kucner) 1971. "High temperature degradation of graphite/epoxy composites." Thesis, Massachusetts Institute of Technology, 1998. http://hdl.handle.net/1721.1/42815.

Повний текст джерела
Анотація:
Thesis (Ph.D.)--Massachusetts Institute of Technology, Dept. of Aeronautics and Astronautics, 1998.
Includes bibliographical references (p. 266-270).
The problem of determining the response of a laminated composite plate exposed to a high temperature environment while mechanically loaded is approached by identifying the underlying mechanisms and addressing them separately. The approach is general, but the work focuses on the response of AS4/3501-6 graphite/epoxy composites. The mechanisms studied and modeled in this work are thermal response, degradation chemistry, and changes in mechanical material properties. The thermal response of an orthotropic plate exposed to convective heating is modeled using generalized heat transfer theory. The key parameters identified as controlling the thermal response include well-known parameters from heat transfer literature and a new parameter called the geometry-orthotropy parameter. From these parameters, the accuracy with which a multi-dimensional temperature distribution may be approximated using a onedimensional thermal model is quantified. The degradation chemistry of 3501-6 epoxy is studied through thermogravimetric analysis (TGA) experiments conducted in an inert atmosphere. A model of degradation based on a single Arrhenius rate equation is developed. Reaction constants for the degradation model are determined empirically and the validity of the model is verified through separate TGA experiments. A novel method for assessing the degradation state of a sample with an unknown thermal history is proposed. Analyses employing the method achieve estimates of the degradation state within 0.3 to 28% of the actual values. Changes in mechanical material properties are quantified by measuring the modulus and tensile strength of unidirectional [0]4 and [90]12 coupons exposed to temperatures as high as 400°C in a furnace. Some coupons are loaded to failure while exposed to the test temperature, others are first cooled to room temperature, allowing at-temperature and residual properties to be directly compared. Transverse properties are very sensitive to temperature around the glass transition temperature, but may recover when the coupon cools. Transverse properties are also very sensitive to small values (-0.03) of degradation state. Longitudinal properties are less sensitive to these variables. Temperature and degradation state are identified as appropriate metrics for quantifying changes in material properties. Models of the measured properties as functions of these variables are developed. A methodology for integrating models of the various mechanisms underlying structural response is presented. The thermal response model, degradation chemistry model, and material property models developed in this work are integrated with a thermomechanical response model based on classical laminated plate theory and implemented in a one-dimensional predictive code. This work establishes a foundation upon which a complete mechanism-based integrated model of the response of mechanically-loaded composites exposed to high temperatures may be developed. Specific recommendations for further work are provided.
by Lauren K. Crews.
Ph.D.
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Lubaba, Nicholas C. H. "Microstructure and strength of magnesia-graphite refractory composites." Thesis, University of Sheffield, 1986. http://etheses.whiterose.ac.uk/10254/.

Повний текст джерела
Анотація:
The relationships between fabrication variables, microstructure and selected properties of carbon bonded magnesia-graphite refractory composite materials have been investigated. A novel optical microscope method of characterizing the morphology of flake graphites was developed and used to determine distributions of length and thickness and average aspect ratios for the four graphite samples used in the study. The compaction behaviour of magnesia alone and in combination with the flake graphites has been studied in some detail and the microstructures of the products elucidated. It is shown that the amount of magnesia of small particle size plays a significant role in determining the graphite-graphite contact area in the structure. An irreversible volume expansion is observed on firing composites, the magnitude of which can be related to the microstructure and the graphite content. A phenolic resin binder restricts this expansion. It is shown that the carbon binder does not bond to the graphite phase and only weakly, if at all, to the magnesia. Consequently the strengths and moduli are low and show only a small variation with graphite type. The effect of adding graphite to carbon-bonded magnesia is to lower the strength slightly, but increasing the graphite content from 20-30% causes a small increase in strength. Increasing the amount of carbon bond from pitch has little effect on strength at levels of 5-15% whereas over the range 5-13% the resin binder has a more pronounced effect. The most significant factor affecting the strength and modulus of fired composites is the amount of silicon or aluminium, added as oxidation inhibitors, which react to form carbide and nitride phases. Finally, a brief study of slag penetration shows that this can be reduced by decreasing the amount of oxide fines in the composite because of the changes in microstructure that, result.
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Engelbert, Carl Robert. "Statistical characterization of graphite fiber for prediction of composite structure reliability." Thesis, Monterey, California : Naval Postgraduate School, 1990. http://handle.dtic.mil/100.2/ADA238020.

Повний текст джерела
Анотація:
Thesis (M.S. in Aeronautical Engineering)--Naval Postgraduate School, June 1990.
Thesis Advisor(s): Wu, Edward M. "June 1990." Description based on signature page as viewed on October 21, 2009. DTIC Identifier(s): Graphite fiber strength testing, graphite fiber statistical evaluation. Author(s) subject terms: Graphite fiber strength testing, graphite fiber statistical evaluation, composite reliability predictions. Includes bibliographical references (p. 78-79). Also available in print.
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Elmore, Jennifer Susan. "Dynamic mechanical analysis of graphite/epoxy composites with varied interphases." Thesis, This resource online, 1994. http://scholar.lib.vt.edu/theses/available/etd-10312009-020414/.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Книги з теми "Composites avec le graphite"

1

1964-, Chan H. E., ed. Graphene and graphite materials. Hauppauge. NY: Nova Science Publishers, 2009.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Graves, Michael J. Initiation and extent of impact damage in graphite/epoxy and graphite/PEEK composites. New York: AIAA, 1988.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

L, Smith Donald. Properties of three graphite/toughened resin composites. [Washington, DC]: National Aeronautics and Space Administration, Office of Management, Scientific and Technical Information Program, 1991.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Vannucci, Raymond D. Graphite/PMR polyimide composites with improved toughness. [Washington, DC]: National Aeronautics and Space Administration, 1985.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Delmonte, John. Technology of carbon and graphite fiber composites. Malabar, Fla: R.E. Krieger Pub. Co., 1987.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Gaier, James R. EMI shields made from intercalated graphite composites. [Washington, DC]: National Aeronautics and Space Administration, 1995.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Abel, Phillip B. Ohmic heating of composite candidate graphite-fiber/coating combinations. Cleveland, Ohio: Lewis Research Center, 1993.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Le, Jia-Liang. Graphene nanoplatelet (GNP) reinforced asphalt mixtures: A novel multifunctional pavement material. Washington, DC: IDEA Programs, Transportation Research Board of the National Academies, 2015.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

United States. National Aeronautics and Space Administration., ed. 371 C mechanical properties of graphite/polyimide composites. [Washington, D.C.]: National Aeronautics and Space Administration, 1985.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

1928-, Sun C. T., and United States. National Aeronautics and Space Administration., eds. Dynamic delamination crack propagation in a graphite/epoxy laminate. [Washington, DC]: National Aeronautics and Space Administration, 1991.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Частини книг з теми "Composites avec le graphite"

1

Hahn, H. T., and O. Choi. "Graphite Nanoplatelet Composites and Their Applications." In Composite Materials, 169–86. London: Springer London, 2011. http://dx.doi.org/10.1007/978-0-85729-166-0_7.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Margetan, F. J., B. P. Newberry, T. A. Gray, and R. B. Thompson. "Modeling Ultrasonic Beam Propagation in Graphite Composites." In Review of Progress in Quantitative Nondestructive Evaluation, 157–64. Boston, MA: Springer US, 1989. http://dx.doi.org/10.1007/978-1-4613-0817-1_20.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Colorado, H. A., A. Wong, and J. M. Yang. "Compressive Strength of Epoxy- Graphite Nanoplatelets Composites." In Supplemental Proceedings, 297–306. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2012. http://dx.doi.org/10.1002/9781118356074.ch39.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Menezes, Pradeep L., Carlton J. Reeves, Pradeep K. Rohatgi, and Michael R. Lovell. "Self-Lubricating Behavior of Graphite-Reinforced Composites." In Tribology for Scientists and Engineers, 341–89. New York, NY: Springer New York, 2013. http://dx.doi.org/10.1007/978-1-4614-1945-7_11.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Huang, Nan, Zhaofeng Zhai, Yuning Guo, Qingquan Tian, and Xin Jiang. "Diamond/Graphite Nanostructured Film: Synthesis, Properties, and Applications." In Novel Carbon Materials and Composites, 205–22. Chichester, UK: John Wiley & Sons, Ltd, 2019. http://dx.doi.org/10.1002/9781119313649.ch7.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Oliva González, Cesar Máximo, Oxana V. Kharissova, Cynthia Estephanya Ibarra Torres, Boris I. Kharisov, and Lucy T. Gonzalez. "Chapter 1. Hybrids of Graphite, Graphene and Graphene Oxide." In All-carbon Composites and Hybrids, 1–30. Cambridge: Royal Society of Chemistry, 2021. http://dx.doi.org/10.1039/9781839162718-00001.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Ye, Yifei, Xu Ran, Bozhe Dong, and Yanyi Yang. "Effect of Graphite Content on the Tribological Properties of Cu–Graphite–SiO2 Composites." In High Performance Structural Materials, 899–909. Singapore: Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-13-0104-9_94.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Kriz, R. D. "Monitoring Elastic Stiffness Degradation in Graphite/Epoxy Composites." In Solid mechanics research for quantitative non-destructive evaluation, 389–95. Dordrecht: Springer Netherlands, 1987. http://dx.doi.org/10.1007/978-94-009-3523-5_24.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Liu, Minshan, Qiwu Dong, Xin Gu, and Aifang Sun. "Heat Conduction Properties of PTFE/Graphite-Based Composites." In Particle and Continuum Aspects of Mesomechanics, 769–76. London, UK: ISTE, 2010. http://dx.doi.org/10.1002/9780470610794.ch79.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Wu, Meng-Chou, and William H. Prosser. "Harmonic Generation Measurements in Unidirectional Graphite/Epoxy Composites." In Review of Progress in Quantitative Nondestructive Evaluation, 1477–82. Boston, MA: Springer US, 1991. http://dx.doi.org/10.1007/978-1-4615-3742-7_44.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Тези доповідей конференцій з теми "Composites avec le graphite"

1

Gates, Thomas, and L. Brinson. "Acceleration of aging in graphite/bismaleimide and graphite/thermoplastic composites." In 35th Structures, Structural Dynamics, and Materials Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1994. http://dx.doi.org/10.2514/6.1994-1582.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Becker, Wayne. "Aytoclawe Tooling for Thermoplastic/Graphite Composites." In General Aviation Aircraft Meeting and Exposition. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 1989. http://dx.doi.org/10.4271/891043.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Kim, Hahnsang, O. Choi, and H. Hahn. "Graphite Fiber Composites Reinforced With Nanopaticles." In 47th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference
14th AIAA/ASME/AHS Adaptive Structures Conference
7th
. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2006. http://dx.doi.org/10.2514/6.2006-1853.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Ricciardi, M. R., A. Martone, F. Cristiano, F. Bertocchi, and M. Giordano. "Nacre-like composites made by graphite nanoplatelets." In 9TH INTERNATIONAL CONFERENCE ON “TIMES OF POLYMERS AND COMPOSITES”: From Aerospace to Nanotechnology. Author(s), 2018. http://dx.doi.org/10.1063/1.5045934.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Mokhtari, Mozaffar, Sean Duffy, Edward Archer, Eileen Harkin-Jones, Noel Bloomfield, Alberto Lario Cabello, and Alistair McIlhagger. "Easy processing antistatic PEEK/expanded graphite composites." In INTERNATIONAL CONFERENCE ON HUMANS AND TECHNOLOGY: A HOLISTIC AND SYMBIOTIC APPROACH TO SUSTAINABLE DEVELOPMENT: ICHT 2022. AIP Publishing, 2023. http://dx.doi.org/10.1063/5.0135864.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Bisal, K. B., and Kamal K. Kar. "Exfoliated Graphite reinforced Acrylonitrile butadiene styrene Composites." In Proceedings of the International Conference on Nanotechnology for Better Living. Singapore: Research Publishing Services, 2016. http://dx.doi.org/10.3850/978-981-09-7519-7nbl16-rps-95.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

GRAVES, MICHAEL, and JAN KOONTZ. "Initiation and extent of impact damage in graphite/epoxy and graphite/PEEK composites." In 29th Structures, Structural Dynamics and Materials Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1988. http://dx.doi.org/10.2514/6.1988-2327.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Brar, N. S., H. Simha, and A. Pratap. "High-strain-rate characterization of TPOs and graphite/epoxy and graphite/peek composites." In Second International Conference on Experimental Mechanics, edited by Fook S. Chau and Chenggen Quan. SPIE, 2001. http://dx.doi.org/10.1117/12.429554.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Raza, M. A., A. V. K. Westwood, and C. Stirling. "Graphite nanoplatelet/silicone composites for thermal interface applications." In 2010 International Symposium on Advanced Packaging Materials: Microtech (APM). IEEE, 2010. http://dx.doi.org/10.1109/isapm.2010.5441382.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Karavaev, Dmitrii. "MECHANICAL PROPERTIES OF EXPANDED GRAPHITE / SILICONE RESIN COMPOSITES." In 14th SGEM GeoConference on NANO, BIO AND GREEN � TECHNOLOGIES FOR A SUSTAINABLE FUTURE. Stef92 Technology, 2014. http://dx.doi.org/10.5593/sgem2014/b61/s24.015.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Звіти організацій з теми "Composites avec le graphite"

1

Gupta, Vijay. Mechanism Based Failure Laws for Graphite/Epoxy Composites. Fort Belvoir, VA: Defense Technical Information Center, July 1998. http://dx.doi.org/10.21236/ada397678.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Jenkins, G. M., and L. R. Holland. Hot forging of graphite-carbide composites. Final report. Office of Scientific and Technical Information (OSTI), July 1998. http://dx.doi.org/10.2172/638242.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Kumosa, M. S., K. Searles, G. Odegard, V. Thirumalai, and J. McCarthy. Biaxial Failure Analysis of Graphite Reinforced Polymide Composites. Fort Belvoir, VA: Defense Technical Information Center, September 1999. http://dx.doi.org/10.21236/ada368821.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Kumosa, Maciej S., Kevin H. Searles, Greg Odegard, and V. Thirumalai. Biaxial Failure Analysis of Graphite Reinforced Polyimide Composites. Fort Belvoir, VA: Defense Technical Information Center, November 1996. http://dx.doi.org/10.21236/ada329883.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Sun, C. T., and K. J. Yoon. Mechanical Properties of Graphite/Epoxy Composites at Various Temperatures. Fort Belvoir, VA: Defense Technical Information Center, January 1988. http://dx.doi.org/10.21236/ada199311.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Eng, Anthony T. Analysis of the NAVAIRDEVCEN Self-Priming Topcoat on Graphite/Epoxy Composites. Fort Belvoir, VA: Defense Technical Information Center, August 1988. http://dx.doi.org/10.21236/ada205961.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Kumosa, M. S. Fundamental Issues Regarding the High Temperature Failure Properties of Graphite/Polyimide Fabric Composites. Fort Belvoir, VA: Defense Technical Information Center, October 2004. http://dx.doi.org/10.21236/ada430088.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Pellerin, Roy F. In-Plane Stress Waves for NDE (Nondestructive Evaluation) of Graphite Fiber/Epoxy Composites. Fort Belvoir, VA: Defense Technical Information Center, April 1988. http://dx.doi.org/10.21236/ada197718.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Searles, K., J. McCarthy, and M. Kumosa. An Image Analysis Technique for Evaluating Internal Damage in Graphite/Polyimide Fabric Composites. Fort Belvoir, VA: Defense Technical Information Center, March 1997. http://dx.doi.org/10.21236/ada329913.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Menchhofer, Paul A. INVESTIGATION OF TITANIUM BONDED GRAPHITE FOAM COMPOSITES FOR MICRO ELECTRONIC MECHANICAL SYSTEMS (MEMS) APPLICATIONS. Office of Scientific and Technical Information (OSTI), April 2016. http://dx.doi.org/10.2172/1246779.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії