Добірка наукової літератури з теми "Completed cohomology"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Completed cohomology".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Статті в журналах з теми "Completed cohomology"
Blomer, Inga, Peter A. Linnell, and Thomas Schick. "Galois cohomology of completed link groups." Proceedings of the American Mathematical Society 136, no. 10 (May 16, 2008): 3449–59. http://dx.doi.org/10.1090/s0002-9939-08-09395-7.
Повний текст джерелаBarthel, Tobias, and Nathaniel Stapleton. "Brown–Peterson cohomology from Morava -theory." Compositio Mathematica 153, no. 4 (March 13, 2017): 780–819. http://dx.doi.org/10.1112/s0010437x16008241.
Повний текст джерелаWu, Yongping, Ying Xu, and Lamei Yuan. "Derivations and Automorphism Group of Completed Witt Lie Algebra." Algebra Colloquium 19, no. 03 (July 5, 2012): 581–90. http://dx.doi.org/10.1142/s1005386712000454.
Повний текст джерелаDíaz, Antonio, Albert Ruiz, and Antonio Viruel. "Cohomological uniqueness of some p-groups." Proceedings of the Edinburgh Mathematical Society 56, no. 2 (August 30, 2012): 449–68. http://dx.doi.org/10.1017/s0013091512000247.
Повний текст джерелаPuig, Lluis. "Existence, Uniqueness and Functoriality of the Perfect Locality over a Frobenius P-Category." Algebra Colloquium 23, no. 04 (September 26, 2016): 541–622. http://dx.doi.org/10.1142/s1005386716000523.
Повний текст джерелаNewton, James. "Completed cohomology of Shimura curves and a p-adic Jacquet–Langlands correspondence." Mathematische Annalen 355, no. 2 (March 10, 2012): 729–63. http://dx.doi.org/10.1007/s00208-012-0796-y.
Повний текст джерелаDotto, Andrea, and Daniel Le. "Diagrams in the mod p cohomology of Shimura curves." Compositio Mathematica 157, no. 8 (July 7, 2021): 1653–723. http://dx.doi.org/10.1112/s0010437x21007375.
Повний текст джерелаIsaksen, Daniel C., and Armira Shkembi. "Motivic connective K-theories and the cohomology of A(1)." Journal of K-theory 7, no. 3 (May 24, 2011): 619–61. http://dx.doi.org/10.1017/is011004009jkt154.
Повний текст джерелаAsadollahi, Javad, and Shokrollah Salarian. "Complete Cohomologies and Some Homological Invariants." Algebra Colloquium 14, no. 01 (March 2007): 155–66. http://dx.doi.org/10.1142/s1005386707000156.
Повний текст джерелаEmmanouil, Ioannis. "Balance in complete cohomology." Journal of Pure and Applied Algebra 218, no. 4 (April 2014): 618–23. http://dx.doi.org/10.1016/j.jpaa.2013.08.001.
Повний текст джерелаДисертації з теми "Completed cohomology"
Rodriguez, Camargo Juan Esteban. "Locally analytic completed cohomology of Shimura varieties and overconvergent BGG maps." Thesis, Lyon, 2022. http://www.theses.fr/2022LYSEN027.
Повний текст джерелаIn this thesis, we study the Hodge-Tate structure of the proétale cohomology of Shimura varieties. This document is divided in four main issues. First, we construct an integral model of the perfectoid modular curve. Using this formal scheme, we prove some vanishing results for the coherent cohomology of the perfectoid modular curve, we also provide a description of the dual completed cohomology as an inverse limit of integral modular forms of weight 2 by normalized traces. Secondly, we construct the overconvergent Eichler-Shimura map for the first coherent cohomology group, complementing the work of Andreatta-Iovita-Stevens. More precisely, we construct a map from the overconvergent cohomology with compact support of Boxer-Pilloni to the locally analytic modular symbols of Ash-Stevens. We reinterpret the construction of these maps in terms of the Hodge-Tate period map and the perfectoid modular curve. Thirdly, in a joint work with Joaquín Rodrigues Jacinto, we develop the classical theory of locally analytic representations of p-adic Lie groups in the context of condensed mathematics. Inspired from foundational works of Lazard, Schneider-Teitelbaum and Emerton, we define a notion of solid locally analytic representation for a compact p-adic Lie group. We prove that the category of solid locally analytic representations can be described as modules over algebras of analytic distributions. As an application, we prove a cohomological comparison theorem between solid group cohomology, solid group cohomology of the (derived) locally analytic vectors, and Lie algebra cohomology. Finally, we generalize the work of Lue Pan to arbitrary Shimura varieties. We construct a geometric Sen operator for a particular class of proetale modules over the structural sheaf which we call relative locally analytic. We prove that this Sen operator is related with the p-adic Simpson correspondence, and that it computes proétale cohomology. We apply this theory to Shimura varieties, obtaining that the computation of proétale cohomology can be translated in terms of Lie algebra cohomology over the flag variety via the Hodge-Tate period map. In particular, we prove that the Cp-extension of scalars of the locally analytic completed cohomology can be described as the analytic cohomology of the infinite-at-p level Shimura variety, of the locally analytic sections of the structural sheaf. This implies a rational version of the Calegari-Emerton conjectures for any Shimura variety without the hypothesis of the infinite-at-p level Shimura variety to be perfectoid. Then, we study the isotypic components of the locally analytic completed cohomology for the action of a Borel subalgebra. Using the interpretation as Lie algebra cohomology over the flag variety, we construct overconvergent BGG maps generalizing the previous work for the modular curve. In addition, we give a local proof of the classical Hodge-Tate decompositions for Shimura varieties, using the dual BGG resolution and the Hodge-Tate period map
Paganin, Matteo. "On some generalizations of Tate Cohomology: an overview." Pontificia Universidad Católica del Perú, 2016. http://repositorio.pucp.edu.pe/index/handle/123456789/97253.
Повний текст джерелаEste artículo es una revisión del desarrollo y generalizaciones de la cohomología de Tate. El número de tales generalizaciones es alto y la literatura en torno a muchas de ellas es vasta. Por consiguiente, no pretendemos dar un recuento completo de las ramas que se desprenden de las ideas originales de Tate; esto más bien representa un bosquejo de cómo estas ideas se han ido desarrollando.
Ben, Charrada Rochdi. "Cohomologie de Dolbeault feuilletée de certaines laminations complexes." Phd thesis, Université de Valenciennes et du Hainaut-Cambresis, 2013. http://tel.archives-ouvertes.fr/tel-00871710.
Повний текст джерелаNucinkis, Brita Erna Anita. "Complete cohomological functors and finiteness conditions." Thesis, Queen Mary, University of London, 1996. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.246487.
Повний текст джерелаCombe, Noémie. "On a new cell decomposition of a complement of the discriminant variety : application to the cohomology of braid groups." Thesis, Aix-Marseille, 2018. http://www.theses.fr/2018AIXM0140.
Повний текст джерелаThis thesis mainly concerns two closely related classical objects: on the one hand, the variety of unitary complex polynomials of degree $ d> 1 $ with a variable, and with simple roots (hence with a non-zero discriminant), and on the other hand, the $d$ strand Artin braid groups. The work presented in this thesis proposes a new approach allowing explicit cohomological calculations with coefficients in any sheaf. In order to obtain explicit cohomological calculations, it is necessary to have a good cover in the sense of Čech. One of the main objectives of this thesis is to construct such a good covering, based on graphs that are reminiscent of the ''dessins d'enfants'' and which are associated to the complex polynomials. This decomposition of the space of polynomials provides a semi-algebraic stratification. The number of connected components in each stratum is counted in the last chapter of this thesis. Nevertheless, this partition does not immediately provide a ''good'' cover adapted to the computation of the cohomology of Čech (with any coefficients) for two related and obvious reasons: on the one hand the subsets of the cover are not open, and moreover they are disjoint since they correspond to different signatures. Therefore, the main purpose of Chapter 6 is to ''correct'' the cover in order to transform it into a good open cover, suitable for the calculation of the Čech cohomology. It is explicitly verified that there is an open cover such that all the multiple intersections are contractible. This allows an explicit calculation of cohomology groups of Čech with values in a locally constant sheaf
Jaloux, Christophe. "Cohomologie des variétés feuilletées." Phd thesis, Université Claude Bernard - Lyon I, 2008. http://tel.archives-ouvertes.fr/tel-00358710.
Повний текст джерелаJoshi, Janhavi. "On the L² Cohomology of Complete Kähler Convex Manifolds." The Ohio State University, 2010. http://rave.ohiolink.edu/etdc/view?acc_num=osu1277942962.
Повний текст джерелаPillet, Basile. "Géométrie complexe globale et infinitésimale de l'espace des twisteurs d'une variété hyperkählérienne." Thesis, Rennes 1, 2017. http://www.theses.fr/2017REN1S021/document.
Повний текст джерелаThe purpose of this thesis is to construct geometric objects on a manifold C parametrizing rational curves in the twistor space of a hyperkähler manifold. We shall establish a correspondence between the complex geometry of the twistor space and some differential properties of C (differential operators and curvature of a complex riemannian structure inherited from the base hyperkähler manifold). The first chapters gather some classical results of the theory of hyperkähler manifolds and their twistor spaces. In the chapters 4, 5 and 6, we construct an equivalence of categories between bundles on the twistor space which are trivial on each line and bundles with a connexion of C satisfying certain curvature conditions. The chapter 7 extends this correspondence on the cohomological level whereas the chapter 8 explores its infinitesimal version ; it links curvature of the connexion with thickening (in the sense of LeBrun) of the bundle along the lines
Hoggart, John. "On the cohomology of generalised quadratic complexes over the complex numbers." Thesis, University of Liverpool, 1996. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.338454.
Повний текст джерелаAnel, Mathieu. "Champs de modules des catégories linéaires et abéliennes." Phd thesis, Université Paul Sabatier - Toulouse III, 2006. http://tel.archives-ouvertes.fr/tel-00085627.
Повний текст джерелаLe résultat principal de la thèse est que, sous des conditions de finitude des objets classifiés, ces champs sont géométriques au sens de C.~Simpson. En particulier, on trouve que les complexes tangents de ces champs en une catégorie $C$, i.e. les objets classifiant les déformations au premier ordre de $C$, sont donnés par des tronqués du complexe de cohomologie de Hochschild de $C$.
En plus, il existe une suite naturelle de morphismes surjectifs de champs :
$$\ukcatiso \tto \ukcateq \tto \ukcatmor \tto \ukab$$
dont on montre que celui du milieu est étale, et celui de droite une équivalence.
Книги з теми "Completed cohomology"
Laumon, Gérard. Cohomology of Drinfeld modular varieties. Cambridge, U.K: Cambridge University Press, 1996.
Знайти повний текст джерелаRoe, John. Coarse cohomology and index theory on complete Riemannian manifolds. Providence, RI: American Mathematical Society, 1993.
Знайти повний текст джерела1945-, Cohen Frederick R., ed. Mapping class groups of low genus and their cohomology. Providence, R.I., USA: American Mathematical Society, 1991.
Знайти повний текст джерелаTopological modular forms. Providence, Rhode Island: American Mathematical Society, 2014.
Знайти повний текст джерела1975-, Panov Taras E., ed. Toric topology. Providence, Rhode Island: American Mathematical Society, 2015.
Знайти повний текст джерелаBasterra, Maria, Kristine Bauer, Kathryn Hess, and Brenda Johnson. Women in topology: Collaborations in homotopy theory : WIT, Women in Topology Workshop, August 18-23, 2013, Banff International Research Station, Banff, Alberta, Canada. Providence, Rhode Island: American Mathematical Society, 2015.
Знайти повний текст джерела1974-, Nelson Sam, ed. Quandles: An introduction to the algebra of knots. Providence, Rhode Island: American Mathematical Society, 2015.
Знайти повний текст джерела1974-, Zomorodian Afra J., ed. Advances in applied and computational topology: American Mathematical Society Short Course on Computational Topology, January 4-5, 2011, New Orleans, Louisiana. Providence, R.I: American Mathematical Society, 2012.
Знайти повний текст джерелаAusoni, Christian, 1968- editor of compilation, Hess, Kathryn, 1967- editor of compilation, Johnson Brenda 1963-, Lück, Wolfgang, 1957- editor of compilation, and Scherer, Jérôme, 1969- editor of compilation, eds. An Alpine expedition through algebraic topology: Fourth Arolla Conference, algebraic topology, August 20-25, 2012, Arolla, Switzerland. Providence, Rhode Island: American Mathematical Society, 2014.
Знайти повний текст джерелаRoe, John. Winding around: The winding number in topology, geometry, and analysis. Providence, Rhode Island: American Mathematical Society, 2015.
Знайти повний текст джерелаЧастини книг з теми "Completed cohomology"
Kostrikin, A. I., and I. R. Shafarevich. "Complexes and Cohomology." In Homological Algebra, 8–21. Berlin, Heidelberg: Springer Berlin Heidelberg, 1994. http://dx.doi.org/10.1007/978-3-642-57911-0_1.
Повний текст джерелаPuschnigg, Michael. "Algebraic de Rham complexes." In Asymptotic Cyclic Cohomology, 19–26. Berlin, Heidelberg: Springer Berlin Heidelberg, 1996. http://dx.doi.org/10.1007/bfb0094460.
Повний текст джерелаPuschnigg, Michael. "Homotopy properties of X-complexes." In Asymptotic Cyclic Cohomology, 40–58. Berlin, Heidelberg: Springer Berlin Heidelberg, 1996. http://dx.doi.org/10.1007/bfb0094462.
Повний текст джерелаWedhorn, Torsten. "Cohomology of Complexes of Sheaves." In Manifolds, Sheaves, and Cohomology, 205–32. Wiesbaden: Springer Fachmedien Wiesbaden, 2016. http://dx.doi.org/10.1007/978-3-658-10633-1_10.
Повний текст джерелаDavis, James, and Paul Kirk. "Chain complexes, homology, and cohomology." In Lecture Notes in Algebraic Topology, 1–22. Providence, Rhode Island: American Mathematical Society, 2001. http://dx.doi.org/10.1090/gsm/035/01.
Повний текст джерелаAdem, Alejandro, and R. James Milgram. "G-Complexes and Equivariant Cohomology." In Grundlehren der mathematischen Wissenschaften, 157–74. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004. http://dx.doi.org/10.1007/978-3-662-06280-7_6.
Повний текст джерелаAdem, Alejandro, and R. James Milgram. "G-Complexes and Equivariant Cohomology." In Grundlehren der mathematischen Wissenschaften, 161–79. Berlin, Heidelberg: Springer Berlin Heidelberg, 1994. http://dx.doi.org/10.1007/978-3-662-06282-1_6.
Повний текст джерелаAvramov, Luchezar L., and Daniel R. Grayson. "Resolutions and Cohomology over Complete Intersections." In Computations in Algebraic Geometry with Macaulay 2, 131–78. Berlin, Heidelberg: Springer Berlin Heidelberg, 2002. http://dx.doi.org/10.1007/978-3-662-04851-1_7.
Повний текст джерелаSchenzel, Peter, and Anne-Marie Simon. "Čech Complexes, Čech Homology and Cohomology." In Springer Monographs in Mathematics, 135–63. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-96517-8_6.
Повний текст джерелаHernández, L. J., and T. Porter. "Categorical models of N-types for pro-crossed complexes and ℑn-prospaces." In Algebraic Topology Homotopy and Group Cohomology, 146–85. Berlin, Heidelberg: Springer Berlin Heidelberg, 1992. http://dx.doi.org/10.1007/bfb0087509.
Повний текст джерела