Добірка наукової літератури з теми "Commande des systèmes dynamiques"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Commande des systèmes dynamiques".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Статті в журналах з теми "Commande des systèmes dynamiques"
Taleb, Marwa, Edouard Leclercq, and Dimitri Lefebvre. "Commande prédictive des systèmes dynamiques hybrides." Journal Européen des Systèmes Automatisés 50, no. 1-2 (April 28, 2017): 49–74. http://dx.doi.org/10.3166/jesa.50.49-74.
Повний текст джерелаIung, C., and P. Riedinger. "Commande optimale des systèmes dynamiques hybrides." J3eA 2 (2003): 003. http://dx.doi.org/10.1051/bib-j3ea:2003503.
Повний текст джерелаChachuat, B., N. Roche, and M. A. Latifi. "Réduction du modèle ASM 1 pour la commande optimale des petites stations d'épuration à boues activées." Revue des sciences de l'eau 16, no. 1 (April 12, 2005): 5–26. http://dx.doi.org/10.7202/705496ar.
Повний текст джерелаSotomayor, O. A. Z., S. W. Park, and C. Garcia. "Modèle de référence pour évaluer différentes stratégies de contrôle dans des usines de traitement des eaux usées." Revue des sciences de l'eau 15, no. 2 (April 12, 2005): 543–56. http://dx.doi.org/10.7202/705468ar.
Повний текст джерелаBiau, Véronique. "Stratégies de positionnement et trajectoires d'architectes." Sociétés contemporaines 29, no. 1 (May 1, 1998): 7–25. http://dx.doi.org/10.3917/soco.p1998.29n1.0007.
Повний текст джерелаEnrici, Philippe, Thierry Martiré, Christophe Coillot, and Jean-Jacques Huselstein. "Maquette analogique pour l’étude de boucle de régulation. Application à la régulation d’un Moteur à Courant Continu." J3eA 22 (2023): 1015. http://dx.doi.org/10.1051/j3ea/20231015.
Повний текст джерелаBonneuil, Noël. "Jeux, équilibres et régulation des populations sous contrainte de viabilité. Une lecture de l'œuvre de l'anthropologue Fredrik Barth." Population Vol. 52, no. 4 (April 1, 1997): 947–76. http://dx.doi.org/10.3917/popu.p1997.52n4.0976.
Повний текст джерелаBonneuil, Noël. "Games, equilibria and population regulation under viability constraints: An interpretation of the work of the anthropologist Fredrik Barth." Population Vol. 53, HS1 (December 1, 1998): 151–79. http://dx.doi.org/10.3917/popu.p1998.10n1.0179.
Повний текст джерелаMillet, Pierre-Alain. "Une modélisation objet des processus industriels." Revue Française de Gestion Industrielle 14, no. 3-4 (December 1, 1995): 27–37. http://dx.doi.org/10.53102/1995.14.03-4.242.
Повний текст джерела-Quénec'Hdu, Yves. "Systèmes dynamiques hybrides : introduction." Revue de l'Electricité et de l'Electronique -, no. 05 (1998): 70. http://dx.doi.org/10.3845/ree.1998.053.
Повний текст джерелаДисертації з теми "Commande des systèmes dynamiques"
Cébron, Benoît. "Commande de systèmes dynamiques hybrides." Angers, 2000. http://www.theses.fr/2000ANGE0022.
Повний текст джерелаA dynamic system is said to be hybrid (sdh) when discrete and continuous variables interact. The development of specific representation, analysis and control methods is required to take into account the complexity of these systems. A classification of sdhs is proposed according to the types of hybrid phenomena considered: controlled or autonomous model switching, controlled or autonomous state vector jumps. Control problems are then posed and analysed for each class presented. The search for an optimal control is posed as a problem of minimisation of a criterion of deviation between a calculated trajectory and a desired trajectory. A descent method is applied in each case; it uses the expression of the gradient of the criterion. The latter is calculated from the solution of an adjoint system. We show how to calculate this adjoint system by adapting the general principles of the calculation of variations to the cases considered. This is how discontinuities appear on the adjoint state, for which explicit expressions are given. These discontinuities can be found in the calculated control. The minimization of the criterion is first performed without constraints and then with bound constraints on the control and on its derivative, by implementing the uzawa method. The state feedback control problem is addressed for the classes of sdh with controlled and autonomous model switching. This leads to the solution of riccati equations. Each case studied is illustrated by a numerical implementation which allows to judge the efficiency of the proposed method, in terms of accuracy and computation time, and to conclude that it is possible to control sdhs by these methods
Vera, Estrada Martin Carlos. "Modélisation et commande des systèmes dynamiques hybrides." Grenoble INPG, 2000. http://www.theses.fr/2000INPG0055.
Повний текст джерелаOlaru, Sorin. "La commande des systèmes dynamiques sous contraintes Interaction optimisation-géométrie-commande." Habilitation à diriger des recherches, Université Paris Sud - Paris XI, 2011. http://tel.archives-ouvertes.fr/tel-00641658.
Повний текст джерелаProdan, Ionela. "Commande sous contraintes de systèmes dynamiques multi-agents." Phd thesis, Supélec, 2012. http://tel.archives-ouvertes.fr/tel-00783221.
Повний текст джерелаBonnet, Stéphane. "Approches numériques pour la commande des systèmes dynamiques." Compiègne, 2008. http://www.theses.fr/2008COMP1745.
Повний текст джерелаWhile advanced control schemes are generally based upon the knowledge of an analytical plant model, the idea developed here is to use instead a numerical state-space model, given as a one-step prediction function of the dynamical behavior of the system, and suitable predictive control algorithms to perform the control task. That model is lookuptable-based. The table contains, for each initial state condition and admissible control input, both taken from discrete subspaces of the corresponding continuous state and input spaces of the plant, the output and state values obtained from a constant control after one time-step. Using that model and knowing the current state of the system, a prediction of its state and outputs as a function of possible inputs can be efficiently computed. If a given output objective for the next time-step is known, the appropriate control inputs can be computed. Here, the output objective is build so that the plant outputs follow a dynamical behavior similar to that of a given reference linear system. The control problem is then to find the inputs minimizing for the next step the distance between that objective and the predicted plant outputs. The proposed predictive control algorithm implements that control scheme while focusing on minimizing the computing effort needed. This is achieved by building a linear interpolator-based approximation of the prediction function from the lookup-table data and by approximately solving the minimization problem through specific and efficient descent-based numerical algorithms. Two applications of this scheme are carried out. The first one is a real-life experiment, applied to a laboratory active magnetic bearing where each axis is considered independently, showing the scheme correctly lends itself to the control of fast electromechanical systems and that it is robust towards perturbations and model errors. The second application deals with the stabilization of a simulated multiple-input “PVTOL”-type aircraft, showing the algorithm can be generalized to more complex systems
Villa, Ramirez José Luis. "Modélisation et commande de systèmes hybrides : l'approche MLD." Nantes, 2004. http://www.theses.fr/2004NANT2003.
Повний текст джерелаRiedinger, Pierre. "Contribution à la commande optimale des systèmes dynamiques hybrides." Vandoeuvre-les-Nancy, INPL, 1999. http://www.theses.fr/1999INPL128N.
Повний текст джерелаTognetti, Calliero. "Commande de systèmes dynamiques: stabilité absolue, saturation et bilinéarité." Phd thesis, INSA de Toulouse, 2009. http://tel.archives-ouvertes.fr/tel-00621132.
Повний текст джерелаTognetti, Taïs Calliero. "Commande de systèmes dynamiques : stabilité absolue, saturation et bilinéarité." Toulouse, INSA, 2009. http://eprint.insa-toulouse.fr/archive/00000405/.
Повний текст джерелаThis thesis presents contributions to the solution of theproblems of stability analysis and synthesis of state feedback controllers for dynamic systems with non-linear elements, by means of conditions based on linear matrix inequalities and Lyapunov functions. For switched systems subject to saturation in the actuators, convex conditions to design switched and robust controllers are presented. The saturation is modeled as a sector non-linearity and an estimate of the domain of stability is determined. For linear systems with polytopic uncertainties and sector non-linearities, convex conditions of finite dimension to build Lur’e functions with homogeneous polynomially parameter dependence are provided. If satisfied, the conditions guarantee the stability of the entire domain of uncertainty for all sector non-linearities, allowing the design oflinear and non-linear robust statefeedback stabilizing controllers. For continuous and discrete-time unstable bilinear systems, a procedure to design a state feedback stabilizing control gain is proposed. The method is based on the alternate solution of two convex optimization problems described by linear matrix inequalities, providing an estimate of the domain of stability. Extensions to handle robust and linear parameter varying controllers are also presented
Boukal, Yassine. "Observation et commande des systèmes dynamiques d’ordre non entier." Thesis, Université de Lorraine, 2017. http://www.theses.fr/2017LORR0154/document.
Повний текст джерелаThis work focuses on the synthesis of observers and the controller laws for fractional order systems. The presented document consists of 4 chapters: The first chapter of the theses manuscript contains an introduction dealing with the basic mathematical notions and the stability analysis of fractional systems as well as a presentation of the different definitions. The stability conditions of these systems and some examples of systems modeled by fractional differential equations are presented. In the second chapter, we were interested in the design of several types of observers of reduced order, full order, and functional observers for fractional systems with and without delays. In the case where there are no delays in the dynamics of the system, observers of full and reduced orders have been synthesized in order to ensure the estimation of the pseudo-states. In a second step, a functional observer was synthesized in the case where the delay is present in the dynamics of the system. In Chapter 3, we worked on observer synthesis for uncertain fractional order systems. Our contributions are classified into three main lines: first, when the system under consideration is affected by unknown inputs, a functional observer has been proposed. In the second part, H∞ observers for fractional order systems with and without delays have been synthesized to ensure the stability of the estimation error. It is a question of guaranteeing a bound of the L2 gain between the observation error and the non-measurable perturbations affecting the dynamics of the system: this gain L2 is also called H∞ norm. In last part of this chapter, the synthesis of a robust observer with respect to modeling uncertainties for this class of systems is presented. The sufficient conditions of convergence of the estimation errors of the pseudo-states obtained are established in the form of a set of matrix inequalities LMIs. The last chapter of the manuscript is devoted to the command based on the different observers obtained. We were interested in observer-based control for fractional order systems. This command is based on the observers proposed in the previous chapters. Stability conditions and synthesis procedures are presented
Книги з теми "Commande des systèmes dynamiques"
Souriau, Jean-Marie. Structure des systèmes dynamiques. [Paris]: J. Gabay, 2008.
Знайти повний текст джерелаJournées mathématiques X-UPS (1994/1996 Palaiseau, Essonne). Aspects des systèmes dynamiques. Palaiseau: Editions de l'Ecole polytechnique, 2009.
Знайти повний текст джерелаLopez, Pierre. Commande des systèmes robotiques: Applications. Paris: Editests, 1986.
Знайти повний текст джерелаAntoine, Chambert-Loir, Guedj Vincent, and Société mathématique de France, eds. Quelques aspects des systèmes dynamiques polynomiaux. Paris, France: Société mathématique de France, 2010.
Знайти повний текст джерелаMaret, Louis. Régulation automatique: Systèmes analogiques. Lausanne: Presses Polytechniques Romandes, 1987.
Знайти повний текст джерела1933-, Bertrandias J. P., ed. Espaces de Marcinkiewicz, corrélations, mesures, systèmes dynamiques. Paris: Masson, 1987.
Знайти повний текст джерелаPavel, Winternitz, ed. Systèmes dynamiques non linéaires: Intégrabilité et comportement qualitatif. Montréal: Presses de l'Université de Montréal, 1986.
Знайти повний текст джерелаM, Milanese, ed. Bounding approaches to system identification. New York: Plenum Press, 1996.
Знайти повний текст джерелаFriedberg, Erhard. Le pouvoir et la règle: Dynamiques de l'action organisée. Paris: Seuil, 1993.
Знайти повний текст джерелаBuhler, Hansruedi. Réglage par mode de glissement. Lausanne: Presses Polytechniques Romandes, 1986.
Знайти повний текст джерелаЧастини книг з теми "Commande des systèmes dynamiques"
Hmissi, Mohamed. "Sur les systèmes dynamiques instables." In ICPT ’91, 145–52. Dordrecht: Springer Netherlands, 1994. http://dx.doi.org/10.1007/978-94-011-1118-8_9.
Повний текст джерелаSIMANI, Silvio. "Méthodes guidées par les données pour le diagnostic de défauts." In Diagnostic et commande à tolérance de fautes 1, 167–233. ISTE Group, 2024. http://dx.doi.org/10.51926/iste.9058.ch5.
Повний текст джерелаSIMANI, Silvio. "Modélisation mathématique et caractérisation des défauts." In Diagnostic et commande à tolérance de fautes 1, 29–85. ISTE Group, 2024. http://dx.doi.org/10.51926/iste.9058.ch1.
Повний текст джерелаMunuera, Jérôme. "Peut-on se passer de représentations en sciences cognitives ?" In Neurosciences & cognition, 125–35. De Boeck Supérieur, 2011. http://dx.doi.org/10.3917/dbu.putoi.2011.01.0125.
Повний текст джерела"Chapitre 12 Systèmes dynamiques." In Mécanique classique - Cours et exercices corrigés - Tome 2, 657–98. EDP Sciences, 2022. http://dx.doi.org/10.1051/978-2-7598-2672-8.c005.
Повний текст джерела"II. Dynamique topologique." In Théorie des systèmes dynamiques, 23–54. EDP Sciences, 2020. http://dx.doi.org/10.1051/978-2-7598-1050-5-003.
Повний текст джерела"V. Dynamique hyperbolique II." In Théorie des systèmes dynamiques, 109–48. EDP Sciences, 2020. http://dx.doi.org/10.1051/978-2-7598-1050-5-006.
Повний текст джерела"VII. Théorie ergodique." In Théorie des systèmes dynamiques, 177–98. EDP Sciences, 2020. http://dx.doi.org/10.1051/978-2-7598-1050-5-008.
Повний текст джерела"IV. Dynamique hyperbolique I." In Théorie des systèmes dynamiques, 85–108. EDP Sciences, 2020. http://dx.doi.org/10.1051/978-2-7598-1050-5-005.
Повний текст джерела"TABLE DES MATIÈRES." In Théorie des systèmes dynamiques, iii—vi. EDP Sciences, 2020. http://dx.doi.org/10.1051/978-2-7598-1050-5-toc.
Повний текст джерелаТези доповідей конференцій з теми "Commande des systèmes dynamiques"
Broy, P., C. Berenguer, and H. Chraibi. "Fiabilité dynamique : estimation de la sûreté de systèmes dynamiques hybrides complexes dans le domaine hydraulique." In Congrès Lambda Mu 19 de Maîtrise des Risques et Sûreté de Fonctionnement, Dijon, 21-23 Octobre 2014. IMdR, 2015. http://dx.doi.org/10.4267/2042/56121.
Повний текст джерела