Добірка наукової літератури з теми "Combustion Simulations"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Combustion Simulations".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Статті в журналах з теми "Combustion Simulations"

1

Rowan, Steven L., Ismail B. Celik, Albio D. Gutierrez, and Jose Escobar Vargas. "A Reduced Order Model for the Design of Oxy-Coal Combustion Systems." Journal of Combustion 2015 (2015): 1–9. http://dx.doi.org/10.1155/2015/943568.

Повний текст джерела
Анотація:
Oxy-coal combustion is one of the more promising technologies currently under development for addressing the issues associated with greenhouse gas emissions from coal-fired power plants. Oxy-coal combustion involves combusting the coal fuel in mixtures of pure oxygen and recycled flue gas (RFG) consisting of mainly carbon dioxide (CO2). As a consequence, many researchers and power plant designers have turned to CFD simulations for the study and design of new oxy-coal combustion power plants, as well as refitting existing air-coal combustion facilities to oxy-coal combustion operations. While CFD is a powerful tool that can provide a vast amount of information, the simulations themselves can be quite expensive in terms of computational resources and time investment. As a remedy, a reduced order model (ROM) for oxy-coal combustion has been developed to supplement the CFD simulations. With this model, it is possible to quickly estimate the average outlet temperature of combustion flue gases given a known set of mass flow rates of fuel and oxidant entering the power plant boiler as well as determine the required reactor inlet mass flow rates for a desired outlet temperature. Several cases have been examined with this model. The results compare quite favorably to full CFD simulation results.
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Sikorski, K., Kwan Liu Ma, Philip J. Smith, and Bradley R. Adams. "Distributed combustion simulations." Energy & Fuels 7, no. 6 (November 1993): 902–5. http://dx.doi.org/10.1021/ef00042a029.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Åkerblom, Arvid, Francesco Pignatelli, and Christer Fureby. "Numerical Simulations of Spray Combustion in Jet Engines." Aerospace 9, no. 12 (December 16, 2022): 838. http://dx.doi.org/10.3390/aerospace9120838.

Повний текст джерела
Анотація:
The aviation sector is facing a massive change in terms of replacing the currently used fossil jet fuels (Jet A, JP5, etc.) with non-fossil jet fuels from sustainable feedstocks. This involves several challenges and, among them, we have the fundamental issue of current jet engines being developed for the existing fossil jet fuels. To facilitate such a transformation, we need to investigate the sensitivity of jet engines to other fuels, having a wider range of thermophysical specifications. The combustion process is particularly important and difficult to characterize with respect to fuel characteristics. In this study, we examine premixed and pre-vaporized combustion of dodecane, Jet A, and a synthetic test fuel, C1, based on the alcohol-to-jet (ATJ) certified pathway behind an equilateral bluff-body flameholder, spray combustion of Jet A and C1 in a laboratory combustor, and spray combustion of Jet A and C1 in a single-sector model of a helicopter engine by means of numerical simulations. A finite rate chemistry (FRC) large eddy simulation (LES) approach is adopted and used together with small comprehensive reaction mechanisms of around 300 reversible reactions. Comparison with experimental data is performed for the bluff-body flameholder and laboratory combustor configurations. Good agreement is generally observed, and small to marginal differences in combustion behavior are observed between the different fuels.
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Tamanampudi, Gowtham Manikanta Reddy, Swanand Sardeshmukh, William Anderson, and Cheng Huang. "Combustion instability modeling using multi-mode flame transfer functions and a nonlinear Euler solver." International Journal of Spray and Combustion Dynamics 12 (January 2020): 175682772095032. http://dx.doi.org/10.1177/1756827720950320.

Повний текст джерела
Анотація:
Modern methods for predicting combustion dynamics in high-pressure combustors range from high-fidelity simulations of sub-scale model combustors, mostly for validation purposes or detailed investigations of physics, to linearized, acoustics-based analysis of full-scale practical combustors. Whereas the high-fidelity simulations presumably capture the detailed physics of mixing and heat addition, computational requirements preclude their application for practical design analysis. The linear models that are used during design typically use flame transfer functions that relate the unsteady heat addition [Formula: see text] to oscillations in velocity and pressure ([Formula: see text] and [Formula: see text]) that are obtained from the wave equation. These flame transfer functions can be empirically determined from measurements or derived from theory and analysis. This paper describes a hybrid approach that uses high-fidelity simulations to generate flame transfer functions along with nonlinear Euler CFD to predict the combustor flowfield. A model rocket combustor that presented a self-excited combustion instability with pressure oscillations on the order of 10% of mean pressure is used for demonstration. Spatially distributed flame transfer functions are extracted from a high-fidelity simulation of the combustor and then used in a nonlinear Euler CFD model of the combustor to verify the approach. It is shown that the reduced-fidelity model can reproduce the unsteady behavior of the single element combustor that was both measured in the experiment and predicted by a high-fidelity simulation reasonably well.
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Pries, Michael, Andreas Fiolitakis, and Peter Gerlinger. "Numerical Investigation of a High Momentum Jet Flame at Elevated Pressure: A Quantitative Validation with Detailed Experimental Data." Journal of the Global Power and Propulsion Society 4 (December 18, 2020): 264–73. http://dx.doi.org/10.33737/jgpps/130031.

Повний текст джерела
Анотація:
The development of efficient low emission combustion systems requires methods for an accurate and reliable prediction of combustion processes. Computational Fluid Dynamics (CFD) in combination with combustion modelling is an important tool to achieve this goal. For an accurate computation adequate boundary conditions are crucial. Especially data for the temperature distribution on the walls of the combustion chamber are usually not available. The present work focuses on numerical simulations of a high momentum jet flame in a single nozzle FLOX® type model combustion chamber at elevated pressure. Alongside the balance equations for the fluid the energy equation for the solid combustor walls is solved. To assess the accuracy of this approach, the temperature distribution on the inner combustion chamber wall resulting from this Conjugate Heat Transfer (CHT) simulation is compared to measured wall temperatures. The simulation results within the combustion chamber are compared to detailed experimental data. This includes a comparison of the flow velocities, temperatures as well as species concentrations. To further assess the benefit of including the solid domain in a CFD simulation the results of the CHT simulation are compared to results of a CFD computation where constant temperatures are assumed for all walls of the combustion chamber.
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Fooladgar, Ehsan, and C. K. Chan. "Large Eddy Simulation of a Swirl-Stabilized Pilot Combustor from Conventional to Flameless Mode." Journal of Combustion 2016 (2016): 1–16. http://dx.doi.org/10.1155/2016/8261560.

Повний текст джерела
Анотація:
This paper investigates flame and flow structure of a swirl-stabilized pilot combustor in conventional, high temperature, and flameless modes by means of a partially stirred reactor combustion model to provide a better insight into designing lean premixed combustion devices with preheating system. Finite rate chemistry combustion model with one step tuned mechanism and large eddy simulation is used to numerically simulate six cases in these modes. Results show that moving towards high temperature mode by increasing the preheating level, the combustor is prone to formation of thermalNOxwith higher risks of flashback. In addition, the flame becomes shorter and thinner with higher turbulent kinetic energies. On the other hand, towards the flameless mode, leaning the preheated mixture leads to almost thermalNOx-free combustion with lower risk of flashback and thicker and longer flames. Simulations also show qualitative agreements with available experiments, indicating that the current combustion model with one step tuned mechanisms is capable of capturing main features of the turbulent flame in a wide range of mixture temperature and equivalence ratios.
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Meng, Nan, and Feng Li. "Large-Eddy Simulations of Unsteady Reaction Flow Characteristics Using Four Geometrical Combustor Models." Aerospace 10, no. 2 (February 6, 2023): 147. http://dx.doi.org/10.3390/aerospace10020147.

Повний текст джерела
Анотація:
Combustion instability constitutes the primary loss source of combustion chambers, gas turbines, and aero engines, and it affects combustion performance or results in a sudden local oscillation. Therefore, this study investigated the factors affecting flame fluctuation on unsteady combustion flow fields through large-eddy simulations. The effects of primary and secondary holes in a triple swirler staged combustor on flame propagation and pressure fluctuation in a combustion field were studied. Moreover, the energy oscillations and dominant frequencies in the combustion field were obtained using the power spectral density technique. The results revealed a variation in the vortex structure and Kelvin–Helmholtz instability in the combustion field, along with a variation in the pressure pulsation during flame propagation under the influence of the primary and secondary hole structures. Additionally, the spatial distributions of pressure oscillation and heat release rate amplitude were obtained, revealing that the foregoing increased owing to the primary and secondary holes in the combustion field, reaching a peak in the shear layer and vortex structure regions.
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Thelen, Bryce C., and Elisa Toulson. "A computational study on the effect of the orifice size on the performance of a turbulent jet ignition system." Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering 231, no. 4 (August 20, 2016): 536–54. http://dx.doi.org/10.1177/0954407016659199.

Повний текст джерела
Анотація:
Fully three-dimensional computational fluid dynamic simulations with detailed combustion chemistry of a turbulent jet ignition system installed in a rapid compression machine are presented. The turbulent jet ignition system is a prechamber-initiated combustion system intended to allow lean-burn combustion in spark ignition internal-combustion engines. In the presented configuration, the turbulent jet ignition prechamber has a volume that is 2% of the volume of the main combustion chamber in the rapid compression machine and is separated from the main chamber by a nozzle containing a single orifice. Four simulations with orifice diameters of 1.0 mm, 1.5 mm, 2.0 mm, and 3.0 mm respectively are presented in order to demonstrate the effect of the orifice diameter on the combustion behavior of the turbulent jet ignition process. Data generated by the simulations is shown including combustion chamber pressures, temperature fields, jet velocities and mass fraction burn durations. From the combustion pressure trace, the jet velocity, and other field data, five distinct phases of the turbulent jet ignition process are identified. These phases are called the compression phase, the prechamber combustion initiation phase, the cold jet phase, the hot jet phase, and the flow reversal phase. The four simulations show that the orifice diameter of 1.5 mm provides the fastest ignition and the fastest overall combustion as reflected in the 0–10% and 10–90% mass fraction burn duration data generated. Meanwhile, the simulation for the orifice diameter of 1.0 mm produces the highest jet velocity and has the shortest delay between the spark and the exit of a jet of hot gases into the main chamber but produces a slower burn duration than the simulation for the larger orifice diameter of 1.5 mm. The simulations for orifice diameters of 2.0 mm and 3.0 mm demonstrate that the combustion speed is reduced as the orifice diameter increases above 1.5 mm. Finally, a discussion is given which examines the implications that the results generated have in regard to implementation of the turbulent jet ignition system in an internal-combustion engine.
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Zhang, Linqing, Juntao Chang, Wenxiang Cai, Hui Sun, and Yingkun Li. "A Preliminary Research on Combustion Characteristics of a Novel-Type Scramjet Combustor." International Journal of Aerospace Engineering 2022 (December 30, 2022): 1–18. http://dx.doi.org/10.1155/2022/3930440.

Повний текст джерела
Анотація:
In this work, a new configuration of strut-based scramjet is proposed, and a series of simulations are conducted to investigate its possibility of practical application. The simulation results are verified via the classical DLR ramjet and an experiment conducted on the connected pipe facility. The inlet area ( A in ) and air intake height ( H ) of the combustor are varied independently to investigate their performance. The results indicate that the flow field and shock wave structure of such engine reveal similar characteristics as the classical DLR engine, and the variation in engine geometry can significantly affect its combustion characteristics. Moreover, the combustion efficiency could be enhanced by 2% as the A in varied from 900π mm2 to 1100π mm2; increasing the air intake path ( H ) to 12 mm can increase the combustion efficiency by 25%. In general, the present work proposes a new geometry of the scramjet combustor; this combustor has possibility of practical application, but a further and detailed investigation is still needed.
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Liu, Hao, Wen Yan Song, and Shun Hua Yang. "Large Eddy Simulation of Hydrogen-Fueled Supersonic Combustion with Strut Injection." Applied Mechanics and Materials 66-68 (July 2011): 1769–73. http://dx.doi.org/10.4028/www.scientific.net/amm.66-68.1769.

Повний текст джерела
Анотація:
In order to obtain more accurate simulation results and properties of combustion in supersonic combustion flow fields, modules of large eddy simulation of reactive turbulent flow and fifth-order WENO scheme was developed. Large eddy simulation of hydrogen-fueled supersonic combustion with strut injection was conducted. Simulations results compare were with experimental measurements, which including wall pressure, velocity, velocity fluctuation and temperature.
Стилі APA, Harvard, Vancouver, ISO та ін.

Дисертації з теми "Combustion Simulations"

1

Tajiri, Kazuya. "Simulations of combustion dynamics in pulse combustor." Thesis, Georgia Institute of Technology, 2001. http://hdl.handle.net/1853/12175.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Sone, Kazuo. "Unsteady simulations of mixing and combustion in internal combustion engines." Thesis, Georgia Institute of Technology, 2001. http://hdl.handle.net/1853/12171.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Hilbert, Renan. "Etude de la combustion turbulente non prémélangée et partiellement prémélangée par simulations numériques directes." Châtenay-Malabry, Ecole centrale de Paris, 2002. http://www.theses.fr/2002ECAP0856.

Повний текст джерела
Анотація:
Ce travail présente l’étude de flammes turbulentes non-prémélangées et partiellement prémélangées par simulations numériques directes (DNS) en utilisant des modèles détaillés de chimie de transport. L’interaction entre une flamme H2/Air et un champ de turbulence est simulée et l’influence de la diffusion différentielle sur la structure de la flamme est qualifiée. On note en particulier l’absence de corrélation entre la température de flamme et le taux de dissipation scalaire quand un modèle de transport élaboré est utilisé, ainsi qu’une modification de la limite d’équilibre. Le ré-établissement de l’équation de flammelettes avec la prise en compte d’un nombre de Lewis non unitaire pour la fraction de mélange Z permet de prendre en compte, au moins partiellement, cet effet. Une simulation de l’interaction entre une flamme non-prémélangée H2/Air et une paire de tourbillons avec des modèles détaillés de chimie et de transport a été réalisée, post traitée et analysée. Une extinction de la flamme est observée et la structure partiellement prémélangée au bord de la zone réactive est étudiée. On montre que le radical OH est un bon traceur de la zone d’extinction de la flamme, mais qu’il ne « voit » pas l’intensification de l’activité chimique dans les zones partiellement prémélangées. L’auto-allumage d’une flamme turbulente non prémélangée a été examiné. Les résultats de DNS permettent d’extraire des informations sur la prévision de la localisation du premier site d’autoallumage, sur l’influence du modèle de transport et sur la structure partiellement prémélangée observée. La répétition des calculs permet une étude statistique de l’influence de la turbulence sur le temps d’allumage. Le test a priori d’un nouveau modèle de combustion turbulente basé sur le concept de densité de surface de flamme généralisée donne de premiers résultats prometteurs.
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Lindberg, Jenny. "Experiments and simulations of lean methane combustion." Licentiate thesis, Luleå, 2004. http://epubl.luth.se/1402-1757/2004/61.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Shaw, Rebecca Custis Riehl. "Combining combustion simulations with complex chemical kinetics." Thesis, University of Cambridge, 2013. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.648248.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Aubagnac-Karkar, Damien. "Sectional soot modeling for Diesel RANS simulations." Thesis, Châtenay-Malabry, Ecole centrale de Paris, 2014. http://www.theses.fr/2014ECAP0061/document.

Повний текст джерела
Анотація:
Les particules de suies issues de moteur Diesel constituent un enjeu de santé publique et sont soumises à des réglementations de plus en plus strictes. Les constructeurs automobiles ont donc besoin de modèles capables de prédire l’évolution en nombre et en taille de ces particules de suies. Dans ce cadre, un modèle de suies basé sur une représentation sectionnelle de la phase solide est proposé dans cette thèse. Le choix de ce type d’approche est d’abord justifié par l’étude de l’état de l’art de la modélisation des suies. Le modèle de suies proposé est ensuite décrit. A chaque instant et en chaque point du maillage, les particules de suies sont réparties en sections selon leur taille et l’évolution de chaque section est gouvernée par : • une équation de transport;• des termes sources modélisant l’interaction avec la phase gazeuse (nucléation, condensation, croissance de surface et oxydation des suies);• des termes sources collisionnels permettant de représenter les interactions entre suies (condensation et coagulation). Ce modèle de suies nécessite donc la connaissance des concentrations locales et instantanées des précurseurs de suies et des espèces consommées par les schémas de réactions de surface des suies. Les schémas fournissant ces informations pour des conditions thermodynamiques rencontrées dans des moteurs Diesel comportant des centaines d’espèces et des milliers de réactions, ils ne peuvent être utilisés directement dans des calculs de CFD. Pour pallier cela, l’approche de tabulation de la chimie VPTHC (Variable Pressure Tabulated Homogeneous Chemistry) a été proposée. Cette approche est basée sur l’approche ADF (Approximated Diffusion Flame) qui a été simplifiée pour permettre son emploi couplé au modèle de suies sectionnel. Dans un premier temps, la capacité du modèle tabulé à reproduire la cinétique chimique a été validée par comparaison des résultats obtenus avec ceux de réacteurs homogènes avec loi de piston équivalents. Finalement, le modèle VPTHC, couplé au modèle de suies sectionnel, a été validé sur une base d’essais moteur dédiée avec des mesures de distribution en taille de suies à l’échappement. Cette base comporte des variations de durée d’injection, de pression d’injection et de taux d’EGR à la fois pour un carburant Diesel commercial et pour le carburant modèle utilisé dans les calculs. Les prédictions des débits horaires de suies et des distributions à l’échappement obtenues sont en bon accord avec les mesures.Ensuite, les résultats du modèle ont été comparés avec les mesures plus académiques et détaillées du Spray A de l’Engine Combustion Network, un spray à haute pression et température. Cette seconde validation expérimentale a permis l’étude du comportement du modèle dans des régimes transitoires
Soot particles emitted by Diesel engines cause major public health issues. Car manufacturers need models able to predict soot number and size distribution to face the more and more stringent norms.In this context, a soot model based on a sectional description of the solid phase is proposed in this work. First, the type of approach is discussed on the base of state of the art of the current soot models. Then, the proposed model is described. At every location and time-step of the simulation, soot particles are split into sections depending on their size. Each section evolution is governed by: • a transport equation;• source terms representing its interaction with the gaseous phase (particle inception, condensation surface growth and oxidation);• source terms representing its interaction with other sections (condensation and coagulation).This soot model requires the knowledge of local and instantaneous concentrations of minor species involved in soot formation and evolution. The kinetic schemes including these species are composed of hundreds of species and thousands of reactions. It is not possible to use them in 3D-CFD simulations. Therefore, the tabulated approach VPTHC (Variable Pressure Tabulated Homogeneous Chemistry) has been proposed. This approach is based on the ADF approach (Approximated Diffusion Flame) which has been simplified in order to be coupled with the sectional soot model. First, this tabulated combustion model ability to reproduce detailed kinetic scheme prediction has been validated on variable pressure and mixture fraction homogeneous reactors designed for this purpose. Then, the models predictions have been compared to experimental measurement of soot yields and particle size distributions of Diesel engines. The validation database includes variations of injection duration, injection pressure and EGR rate performed with a commercial Diesel fuel as well as the surrogate used in simulations. The model predictions agree with the experiments for most cases. Finally, the model predictions have been compared on a more detailed and academical case with the Engine Combustion Network Spray A, a high pressure Diesel spray. This final experimental validation provides data to evaluate the model predictions in transient conditions
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Calhoon, William Henry Jr. "On subgrid combustion modeling for large-eddy simulations." Diss., Georgia Institute of Technology, 1996. http://hdl.handle.net/1853/12336.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Fujita, Akitoshi. "Numerical Simulations of Spray Combustion and Droplet Evaporation." 京都大学 (Kyoto University), 2011. http://hdl.handle.net/2433/142213.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Barsanti, Patricia Sylvia. "Simulations of confined turbulent explosions." Thesis, University of Cambridge, 1994. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.261538.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Correa, Chrys. "Combustion simulations in Diesel engines using reduced reaction mechanisms." [S.l. : s.n.], 2000. http://deposit.ddb.de/cgi-bin/dokserv?idn=961521937.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Книги з теми "Combustion Simulations"

1

Singh, Akhilendra Pratap, Pravesh Chandra Shukla, Joonsik Hwang, and Avinash Kumar Agarwal, eds. Simulations and Optical Diagnostics for Internal Combustion Engines. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-0335-1.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Pitsch, Heinz, and Antonio Attili, eds. Data Analysis for Direct Numerical Simulations of Turbulent Combustion. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-44718-2.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Merci, Bart, Dirk Roekaerts, and Amsini Sadiki, eds. Experiments and Numerical Simulations of Diluted Spray Turbulent Combustion. Dordrecht: Springer Netherlands, 2011. http://dx.doi.org/10.1007/978-94-007-1409-0.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Merci, Bart, and Eva Gutheil, eds. Experiments and Numerical Simulations of Turbulent Combustion of Diluted Sprays. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-04678-5.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Caton, Jerald A., ed. An Introduction to Thermodynamic Cycle Simulations for Internal Combustion Engines. Chichester, UK: John Wiley & Sons, Ltd, 2015. http://dx.doi.org/10.1002/9781119037576.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Caton, J. A. An introduction to thermodynamic cycle simulations for internal combustion engines. Chichester, West Sussex: John Wiley & Sons Inc, 2015.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Rocker, M. Modeling on nonacoustic combustion instability in simulations of hybrid motor tests. Marshall Space Flight Center, Ala: National Aeronautics and Space Administration, Marshall Space Flight Center, 2000.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Girimaji, Sharath S. Simulations of diffusion-reaction equations with implications to turbulent combustion modeling. Hampton, Va: Institute for Computer Applications in Science and Engineering, 1993.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Center, Langley Research, ed. Simulations of diffusion-reaction equations with implications to turbulent combustion modeling. Hampton, Va: National Aeronautics and Space Administration, Langley Research Center, 1993.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Center, Langley Research, ed. Simulations of diffusion-reaction equations with implications to turbulent combustion modeling. Hampton, Va: National Aeronautics and Space Administration, Langley Research Center, 1993.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Частини книг з теми "Combustion Simulations"

1

Durst, Bodo. "3D Supercharging Simulations." In Combustion Engines Development, 585–99. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-14094-5_15.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Streett, Craig L. "Group Summary: Simulations I." In Transition, Turbulence and Combustion, 279–80. Dordrecht: Springer Netherlands, 1994. http://dx.doi.org/10.1007/978-94-011-1032-7_26.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Erlebacher, Gordon. "Group Summary: Simulations II." In Transition, Turbulence and Combustion, 341–42. Dordrecht: Springer Netherlands, 1994. http://dx.doi.org/10.1007/978-94-011-1032-7_33.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Ray, J., R. Armstrong, C. Safta, B. J. Debusschere, B. A. Allan, and H. N. Najm. "Computational Frameworks for Advanced Combustion Simulations." In Turbulent Combustion Modeling, 409–37. Dordrecht: Springer Netherlands, 2011. http://dx.doi.org/10.1007/978-94-007-0412-1_17.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Winke, Florian. "Internal Combustion Engine." In Transient Effects in Simulations of Hybrid Electric Drivetrains, 63–96. Wiesbaden: Springer Fachmedien Wiesbaden, 2018. http://dx.doi.org/10.1007/978-3-658-22554-4_3.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Seitz, Timo, Ansgar Lechtenberg, and Peter Gerlinger. "Rocket Combustion Chamber Simulations Using High-Order Methods." In Notes on Numerical Fluid Mechanics and Multidisciplinary Design, 381–94. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-53847-7_24.

Повний текст джерела
Анотація:
Abstract High-order spatial discretizations significantly improve the accuracy of flow simulations. In this work, a multi-dimensional limiting process with low diffusion (MLP$$^\text {ld}$$) and up to fifth order accuracy is employed. The advantage of MLP is that all surrounding volumes of a specific volume may be used to obtain cell interface values. This prevents oscillations at oblique discontinuities and improves convergence. This numerical scheme is utilized to investigate three different rocket combustors, namely a seven injector methane/oxygen combustion chamber, the widely simulated PennState preburner combustor and a single injector chamber called BKC, where pressure oscillations are important.
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Fru, G., H. Shalaby, A. Laverdant, C. Zistl, G. Janiga, and D. Thévenin. "Direct Numerical Simulations of turbulent flames to analyze flame/acoustic interactions." In Combustion Noise, 239–68. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-642-02038-4_9.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Traxinger, Christoph, Julian Zips, Christian Stemmer, and Michael Pfitzner. "Numerical Investigation of Injection, Mixing and Combustion in Rocket Engines Under High-Pressure Conditions." In Notes on Numerical Fluid Mechanics and Multidisciplinary Design, 209–21. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-53847-7_13.

Повний текст джерела
Анотація:
Abstract The design and development of future rocket engines severely relies on accurate, efficient and robust numerical tools. Large-Eddy Simulation in combination with high-fidelity thermodynamics and combustion models is a promising candidate for the accurate prediction of the flow field and the investigation and understanding of the on-going processes during mixing and combustion. In the present work, a numerical framework is presented capable of predicting real-gas behavior and nonadiabatic combustion under conditions typically encountered in liquid rocket engines. Results of Large-Eddy Simulations are compared to experimental investigations. Overall, a good agreement is found making the introduced numerical tool suitable for the high-fidelity investigation of high-pressure mixing and combustion.
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Veynante, Denis. "Large Eddy Simulations of Turbulent Combustion." In Notes on Numerical Fluid Mechanics and Multidisciplinary Design, 113–38. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-642-00262-5_6.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Haworth, D. C., and S. B. Pope. "Transported Probability Density Function Methods for Reynolds-Averaged and Large-Eddy Simulations." In Turbulent Combustion Modeling, 119–42. Dordrecht: Springer Netherlands, 2011. http://dx.doi.org/10.1007/978-94-007-0412-1_6.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Тези доповідей конференцій з теми "Combustion Simulations"

1

Chen, Jacqueline. "Combustion---Terascale direct numerical simulations of turbulent combustion." In the 2006 ACM/IEEE conference. New York, New York, USA: ACM Press, 2006. http://dx.doi.org/10.1145/1188455.1188513.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

"NEURAL NETWORKS IN COMBUSTION SIMULATIONS." In International Conference on Neural Computation. SciTePress - Science and and Technology Publications, 2010. http://dx.doi.org/10.5220/0003073904060410.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Ingenito, Antonella, Claudio Bruno, Eugenio Giacomazzi, and Johan Steelant. "Supersonic Combustion: Modelling and Simulations." In 14th AIAA/AHI Space Planes and Hypersonic Systems and Technologies Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2006. http://dx.doi.org/10.2514/6.2006-8035.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Gonzalez, Esteban. "Numerical Simulations of Thermoacoustic Combustion Instabilities in the Volvo Combustor." In 53rd AIAA/SAE/ASEE Joint Propulsion Conference. Reston, Virginia: American Institute of Aeronautics and Astronautics, 2017. http://dx.doi.org/10.2514/6.2017-4686.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Duwig, Christophe, Jan Fredriksson, and Torsten Fransson. "Adaptation of a Combustion Chamber for Gasified Biomass Combustion: Numerical Simulations." In ASME 2000 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2000. http://dx.doi.org/10.1115/imece2000-1658.

Повний текст джерела
Анотація:
Abstract A gas turbine combustor was modified for addition of Low Heating Value (LHV) gas operation while retaining the original diesel option. New fuel inlets were designed and tested through numerical simulations. CFD calculations have been made in order to investigate the new design combustion abilities. A commercial 3D finite-volume Navier-Stokes solver was used. The Eddy Dissipation model was used to simulate the combustion phenomena and the flow fields were given by using k-ε model, Algebraic Stress Models and Reynolds Stress Model. The comparison between predictions using different turbulence models and grids showed some differences. The required grid for having grid independent results was found too CPU expensive. However, comparisons were done to investigate the influence of the turbulence description on the result. This influence was found significant. It was deduced that the mixing controlled the combustion process. The numerical description of quenching of the flame was found to have more influence on the emission predictions than the description of the reacting zone (swirl). Simulations validated the modified design. Successful combustion operating conditions have been predicted in terms of CO emission. Ammonia conversion to NO was also investigated. The conversion rate was found to be between 65 and 73 %. NO emissions have been predicted, as the maximum temperatures in the combustor were over-predicted, ammonia conversion to NO was also over valued. However, the results show that the combustion process of LHV gas within a small combustor volume is achievable. The swirl was found to be an efficient way to promote the combustion process by improving the mixing. High NO emissions have been predicted. It came from the high conversion rate of fuel ammonia into NO.
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Poinsot, Thierry, Christian Angelberger, Fokion Egolfopoulos, and Denis Veynante. "LARGE EDDY SIMULATIONS OF COMBUSTION INSTABILITIES." In First Symposium on Turbulence and Shear Flow Phenomena. Connecticut: Begellhouse, 1999. http://dx.doi.org/10.1615/tsfp1.10.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

MENON, SURESH, and WEN-HUEI JOU. "Large-eddy simulations of combustion instability in an axisymmetric ramjet combustor." In 28th Aerospace Sciences Meeting. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1990. http://dx.doi.org/10.2514/6.1990-267.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Singh, Kapil, Bala Varatharajan, Ertan Yilmaz, Fei Han, and Kwanwoo Kim. "Effect of Hydrogen Combustion on the Combustion Dynamics of a Natural Gas Combustor." In ASME Turbo Expo 2008: Power for Land, Sea, and Air. ASMEDC, 2008. http://dx.doi.org/10.1115/gt2008-51343.

Повний текст джерела
Анотація:
In a carbon-constrained world, Integrated Gasification Combined Cycle (IGCC) systems achieve excellent environmental performance and offer a more economical pre-combustion CO2 removal compared to other coal-based systems. The residual gas after carbon removal is comprised primarily of hydrogen and nitrogen mixtures. Achieving stable combustion of hydrogen-rich fuel mixtures while producing ultra-low NOx emissions (much lower than current diffusion combustion technology) is challenging. The goal of this study was to characterize the stability of lean premixed combustion systems operating with hydrogen and establish boundaries for stable operation. Modeling and experimental efforts were directed towards demonstration of the feasibility of such systems while meeting the emissions requirements. The higher flame speed and heat-release rate achievable with hydrogen-containing fuels can change the dynamics and stability characteristics of the combustors compared to natural gas. A combustion rig was modeled using an in-house combustion dynamics analysis code. In the model, flame heat-release fluctuations were captured by considering the effect of upstream fuel-air ratio fluctuations and flow speed fluctuations. CFD simulations were used to obtain combustion parameters. The results showed the effect of using hydrogen instead of methane and the simulations correctly predicted the combustor modes and their instability for hydrogen as well as methane combustion.
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Sperotto de Quadros, Regis, Alvaro de Bortoli, and Rafaela Sehnem. "Carbon monoxide combustion simulations by reduced mechanism." In 24th ABCM International Congress of Mechanical Engineering. ABCM, 2017. http://dx.doi.org/10.26678/abcm.cobem2017.cob17-0618.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Ingenito, Antonella, Claudio Bruno, Eugenio Giacomazzi, and Johan Steelant. "Advance in Supersonic Combustion Modeling and Simulations." In 45th AIAA Aerospace Sciences Meeting and Exhibit. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2007. http://dx.doi.org/10.2514/6.2007-837.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Звіти організацій з теми "Combustion Simulations"

1

Pope, Stephen B., and Steven R. Lantz. Terascale Cluster for Advanced Turbulent Combustion Simulations. Fort Belvoir, VA: Defense Technical Information Center, July 2008. http://dx.doi.org/10.21236/ada486130.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Pitsch, Heinz. Advanced Chemical Modeling for Turbulent Combustion Simulations. Fort Belvoir, VA: Defense Technical Information Center, May 2012. http://dx.doi.org/10.21236/ada567579.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Rutland, Christopher J. Terascale High-Fidelity Simulations of Turbulent Combustion with Detailed Chemistry: Spray Simulations. Office of Scientific and Technical Information (OSTI), April 2009. http://dx.doi.org/10.2172/951592.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Cloutman, L. D. What is Air? A Standard Model for Combustion Simulations. Office of Scientific and Technical Information (OSTI), August 2001. http://dx.doi.org/10.2172/15005296.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Raghurama Reddy, Roberto Gomez, Junwoo Lim, Yang Wang, and Sergiu Sanielevici. Terascale High-Fidelity Simulations of Turbulent Combustion with Detailed Chemistry. Office of Scientific and Technical Information (OSTI), October 2004. http://dx.doi.org/10.2172/834581.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Hong G. Im, Arnaud Trouve, Christopher J. Rutland, and Jacqueline H. Chen. Terascale High-Fidelity Simulations of Turbulent Combustion with Detailed Chemistry. Office of Scientific and Technical Information (OSTI), February 2009. http://dx.doi.org/10.2172/946730.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Im, Hong G., Arnaud Trouve, Christopher J. Rutland, and Jacqueline H. Chen. Terascale High-Fidelity Simulations of Turbulent Combustion with Detailed Chemistry. Office of Scientific and Technical Information (OSTI), August 2012. http://dx.doi.org/10.2172/1048137.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Menon, S. Active Control of Combustion Instability in a Ramjet Using Large-Eddy Simulations. Fort Belvoir, VA: Defense Technical Information Center, September 1992. http://dx.doi.org/10.21236/ada255226.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Flowers, Daniel L. Combustion in Homogeneous Charge Compression Ignition Engines: Experiments and Detailed Chemical Kinetic Simulations. Office of Scientific and Technical Information (OSTI), June 2002. http://dx.doi.org/10.2172/15006123.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Lawson, Matthew, Bert J. Debusschere, Habib N. Najm, Khachik Sargsyan, and Jonathan H. Frank. Uncertainty quantification of cinematic imaging for development of predictive simulations of turbulent combustion. Office of Scientific and Technical Information (OSTI), September 2010. http://dx.doi.org/10.2172/1011617.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії