Добірка наукової літератури з теми "Combinatorics of cores"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Combinatorics of cores".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Статті в журналах з теми "Combinatorics of cores"
Aukerman, David, Ben Kane, and Lawrence Sze. "On simultaneous s-cores/t-cores." Discrete Mathematics 309, no. 9 (May 2009): 2712–20. http://dx.doi.org/10.1016/j.disc.2008.06.024.
Повний текст джерелаGodsil, Chris, and Gordon F. Royle. "Cores of Geometric Graphs." Annals of Combinatorics 15, no. 2 (May 15, 2011): 267–76. http://dx.doi.org/10.1007/s00026-011-0094-5.
Повний текст джерелаMančinska, Laura, Irene Pivotto, David E. Roberson, and Gordon F. Royle. "Cores of cubelike graphs." European Journal of Combinatorics 87 (June 2020): 103092. http://dx.doi.org/10.1016/j.ejc.2020.103092.
Повний текст джерелаHan, Guo-Niu, and Ken Ono. "Hook Lengths and 3-Cores." Annals of Combinatorics 15, no. 2 (May 15, 2011): 305–12. http://dx.doi.org/10.1007/s00026-011-0096-3.
Повний текст джерелаSato, Cristiane M. "On the robustness of randomk-cores." European Journal of Combinatorics 41 (October 2014): 163–82. http://dx.doi.org/10.1016/j.ejc.2014.03.007.
Повний текст джерелаMalen, Greg. "Homomorphism complexes andk-cores." Discrete Mathematics 341, no. 9 (September 2018): 2567–74. http://dx.doi.org/10.1016/j.disc.2018.06.014.
Повний текст джерелаCho, Hyunsoo, and Kyounghwan Hong. "Corners of self-conjugate (s,s + 1)-cores and (s‾,s+1‾)-cores." Discrete Mathematics 345, no. 9 (September 2022): 112949. http://dx.doi.org/10.1016/j.disc.2022.112949.
Повний текст джерелаBaruah, Nayandeep Deka, and Kallol Nath. "Infinite families of arithmetic identities for self-conjugate 5-cores and 7-cores." Discrete Mathematics 321 (April 2014): 57–67. http://dx.doi.org/10.1016/j.disc.2013.12.019.
Повний текст джерелаThiel, Marko, and Nathan Williams. "Strange expectations and simultaneous cores." Journal of Algebraic Combinatorics 46, no. 1 (April 10, 2017): 219–61. http://dx.doi.org/10.1007/s10801-017-0754-6.
Повний текст джерелаKotsireas, Ilias S., Christos Koukouvinos, and Jennifer Seberry. "Hadamard ideals and Hadamard matrices with two circulant cores." European Journal of Combinatorics 27, no. 5 (July 2006): 658–68. http://dx.doi.org/10.1016/j.ejc.2005.03.004.
Повний текст джерелаДисертації з теми "Combinatorics of cores"
Stockwell, Roger James. "Frameproof codes : combinatorial properties and constructions." Thesis, Royal Holloway, University of London, 2003. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.405211.
Повний текст джерелаHoughten, Sheridan. "On combinatorial searches for designs and codes." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1999. http://www.collectionscanada.ca/obj/s4/f2/dsk1/tape7/PQDD_0016/NQ43587.pdf.
Повний текст джерелаPhillips, Linzy. "Erasure-correcting codes derived from Sudoku & related combinatorial structures." Thesis, University of South Wales, 2013. https://pure.southwales.ac.uk/en/studentthesis/erasurecorrecting-codes-derived-from-sudoku--related-combinatorial-structures(b359130e-bfc2-4df0-a6f5-55879212010d).html.
Повний текст джерелаEsterle, Alexandre. "Groupes d'Artin et algèbres de Hecke sur un corps fini." Thesis, Amiens, 2018. http://www.theses.fr/2018AMIE0061/document.
Повний текст джерелаIn this doctoral thesis, we will determine the image of Artin groups associated to all finite irreducible Coxeter groups inside their associated finite Iwahori-Hecke algebra. This was done in type A in articles by Brunat, Marin and Magaard. The Zariski closure of the image was determined in the generic case by Marin. It is suggested by strong approximation that the results should be similar in the finite case. However, the conditions required to use are much too strong and would only provide a portion of the results. We show in this thesis that they are but that new phenomena arise from the different field factorizations. The techniques used in the finite case are very different from the ones in the generic case. The main arguments come from finite group theory. In high dimension, we will use a theorem by Guralnick-Saxl which uses the classification of finite simple groups to give a condition for subgroups of linear groups to be classical groups in a natural representation. In low dimension, we will mainly use the classification of maximal subgroups of classical groups obtained by Bray, Holt and Roney-Dougal for the complicated cases
Paegelow, Raphaël. "Action des sous-groupes finis de SL2(C) sur la variété de carquois de Nakajima du carquois de Jordan et fibrés de Procesi." Electronic Thesis or Diss., Université de Montpellier (2022-....), 2024. http://www.theses.fr/2024UMONS005.
Повний текст джерелаIn this doctoral thesis, first of all, we have studied the decomposition into irreducible components of the fixed point locus under the action of Γ a finite subgroup of SL2(C) of the Nakajima quiver variety of Jordan’s quiver. The quiver variety associated with Jordan’s quiver is either isomorphic to the punctual Hilbert scheme in C2 or to the Calogero-Moser space. We have described the irreducible components using quiver varieties of McKay’s quiver associated with the finite subgroup Γ. We were then interested in the combinatorics coming out of the indexing set of these irreducible components using an action of the affine Weyl group introduced by Nakajima. Moreover, we have constructed a combinatorial model when Γ is of type D, which is the only original and remarkable case. Indeed, when Γ is of type A, such work has already been done by Iain Gordon and if Γ is of type E, we have shown that the fixed points that are also fixed under the maximal diagonal torus of SL2(C) are the monomial ideals of the punctual Hilbert scheme in C2 indexed by staircase partitions. To be more precise, when Γ is of type D, we have obtained a model of the indexing set of the irreducible components containing a fixed point of the maximal diagonal torus of SL2(C) in terms of symmetric partitions. Finally, if n is an integer greater than 1, using the classification of the projective, symplectic resolutions of the singularity (C2)n/Γn where Γn is the wreath product of the symmetric group on n letters Sn with Γ, we have obtained a description of all such resolutions in terms of irreducible components of the Γ-fixedpoint locus of the Hilbert scheme of points in C2.Secondly, we were interested in the restriction of two vector bundles over a fixed irreducible component of the Γ-fixed point locus of the punctual Hilbert scheme in C2. The first vector bundle is the tautological vector bundle that we have expressed the restriction in terms of Nakajima’s tautological vector bundle on the quiver variety of McKay’s quiver associated with the fixed irreducible component. The second vector bundle is the Procesi bundle. This vector bundle was introduced by Marc Haiman in his work proving the n! conjecture. We have studied the fibers of this bundle as (Sn × Γ)-module. In the first part of the chapter of this thesis dedicated to the Procesi bundle, we have shown a reduction theorem that expresses the (Sn × Γ)-module associated with the fiber of the restriction of the Procesi bundle over an irreducible component C of the Γ-fixed point locus of Hilbert scheme of n points in C2 as the induced of the fiber of the restriction of the Procesi bundle over an irreducible component of the Γ-fixed point locus of the Hilbert scheme of k points in C2 where k ≤ n is explicit and depends on the irreducible component C and Γ. This theorem is then proven with other tools in two edge cases when Γ is of type A. Finally, when Γ is of type D, some explicit reduction formulas of the restriction of the Procesi bundle to the Γ-fixed point locus have been obtained.To finish, if l is an integer greater than 1, then in the case where Γ is the cyclic group of order l contained in the maximal diagonal torus of SL2(C) denoted by µl, the reduction theorem restricts the study of the fibers of the Procesi bundle over the µl-fixed points of the punctual Hilbert scheme in C2 to the study of the fibers over points in the Hilbert scheme associated with monomial ideals parametrized by the l-cores. The (Sn × Γ)-module that one obtains seems to be related to the Fock space of the Kac-Moody algebra ˆsll(C). A conjecture in this direction has been stated in the last chapter
Paris, Gabrielle. "Resolution of some optimisation problems on graphs and combinatorial games." Thesis, Lyon, 2018. http://www.theses.fr/2018LYSE1180/document.
Повний текст джерелаI studied three optimization problems on graphs and combinatorial games.First, identifying codes were studied : vertices couteract faults. Identifying codes help locate the fault to repare it. We focused on circulant graphs by embedding them on infinite grids.Then, the marking and the coloring games were studied : two player games were one player wants to build something (a proper coloration or a proper marking) and the other wants to prevent the first player from doing so. For the marking game we studied the evolution of the strategy when modifying the graph. For the coloring game we defined a new edge-wise decomposition of graphs and we defined a new strategy on this decomposition that improves known results on planar graphs.In the end, I studied pure breaking games : two players take turns to break a heap of tokens in a given number of non-empty heaps. We focused on winning strategies for the game starting with a unique heap on n tokens. These games seem, on first sight, to be all regular : we showed this is the case for some of them and we gave a test to study one game at a time. Only one of these games does not seem to be regular, its behavior remains a mystery.To sum up, I studied three bilateral problems that use different methods and have different purposes in combinatorics
Chen, Lei. "Construction of structured low-density parity-check codes : combinatorial and algebraic approaches /." For electronic version search Digital dissertations database. Restricted to UC campuses. Access is free to UC campus dissertations, 2005. http://uclibs.org/PID/11984.
Повний текст джерелаVandomme, Elise. "Contributions to combinatorics on words in an abelian context and covering problems in graphs." Thesis, Université Grenoble Alpes (ComUE), 2015. http://www.theses.fr/2015GRENM010/document.
Повний текст джерелаThis dissertation is divided into two (distinct but connected) parts that reflect the joint PhD. We study and we solve several questions regarding on the one hand combinatorics on words in an abelian context and on the other hand covering problems in graphs. Each particular problem is the topic of a chapter. In combinatorics on words, the first problem considered focuses on the 2-regularity of sequences in the sense of Allouche and Shallit. We prove that a sequence satisfying a certain symmetry property is 2-regular. Then we apply this theorem to show that the 2-abelian complexity functions of the Thue--Morse word and the period-doubling word are 2-regular. The computation and arguments leading to these results fit into a quite general scheme that we hope can be used again to prove additional regularity results. The second question concerns the notion of return words up to abelian equivalence, introduced by Puzynina and Zamboni. We obtain a characterization of Sturmian words with non-zero intercept in terms of the finiteness of the set of abelian return words to all prefixes. We describe this set of abelian returns for the Fibonacci word but also for the Thue-Morse word (which is not Sturmian). We investigate the relationship existing between the abelian complexity and the finiteness of this set. In graph theory, the first problem considered deals with identifying codes in graphs. These codes were introduced by Karpovsky, Chakrabarty and Levitin to model fault-diagnosis in multiprocessor systems. The ratio between the optimal size of an identifying code and the optimal size of a fractional relaxation of an identifying code is between 1 and 2 ln(|V|)+1 where V is the vertex set of the graph. We focus on vertex-transitive graphs, since we can compute the exact fractional solution for them. We exhibit infinite families, called generalized quadrangles, of vertex-transitive graphs with integer and fractional identifying codes of order |V|^k with k in {1/4,1/3,2/5}. The second problem concerns (r,a,b)-covering codes of the infinite grid already studied by Axenovich and Puzynina. We introduce the notion of constant 2-labellings of weighted graphs and study them in four particular weighted cycles. We present a method to link these labellings with covering codes. Finally, we determine the precise values of the constants a and b of any (r,a,b)-covering code of the infinite grid with |a-b|>4. This is an extension of a theorem of Axenovich
Larico, Mullisaca Celso Ever. "Un Algoritmo GRASP-Reactivo para resolver el problema de cortes 1D." Bachelor's thesis, Universidad Nacional Mayor de San Marcos, 2010. https://hdl.handle.net/20.500.12672/2649.
Повний текст джерелаIt has a set of requirements of parts with an unlimited number of bars of some kind of standard size and material and this has increased the group size requirements. The cutting stock problem 1D describes the use of standard-size bars of making cuts on them, so that it meets all requirements with the least number of standard size bars. The problem is listed as NP-Hard [Garey+79], and is widely used in various industry sectors such as wood, glass, paper, steel, and so on. This thesis proposes two algorithms Reactive GRASP to the cutting stock problem 1D, based on the algorithms GRASP BFD and GRASP FFD proposed by [Mauricio+02], also, developed an optimization system based on the proposed algorithms. Numerical experiments are conducted of the proposed algorithm on 100 instances of testing, where you get an average efficiency of 97.04% and a weighted efficiency of 97,04%, also be seen that the GRASP BFD with improvement converges faster to find a solution average of 1237 iterations. The numerical results show an improvement of reactive GRASP with respect to the basic GRASP implemented by Ganoza and Solano [Ganoza+02], who obtained an average efficiency of 96,73%. These improvements can be explained as the relaxation parameter and is set automatically and is guided in the search for a better solution.
Tesis
Passuello, Alberto. "Semidefinite programming in combinatorial optimization with applications to coding theory and geometry." Phd thesis, Université Sciences et Technologies - Bordeaux I, 2013. http://tel.archives-ouvertes.fr/tel-00948055.
Повний текст джерелаКниги з теми "Combinatorics of cores"
1951-, Cohen G., ed. Covering codes. Amsterdam: Elsevier, 1997.
Знайти повний текст джерелаTonchev, Vladimir. Combinatorial configurations: Designs, codes, graphs. Harlow, Essex, England: Longman Scientific & Technical, 1988.
Знайти повний текст джерелаTonchev, Vladimir D. Combinatorial configurations: Designs, codes, graphs. Harlow: Longman Scientific & Technical, 1988.
Знайти повний текст джерелаVladimir, Tonchev, ed. Codes, designs, and geometry. Boston: Kluwer Academic Pub., 1996.
Знайти повний текст джерелаGerardus Joannes Maria Van Wee. Covering codes, perfect codes, and codes from algebraic curves. Helmond [Netherlands]: Wibro Dissertatiedrukkerij, 1991.
Знайти повний текст джерелаBeth, Thomas, and Michael Clausen, eds. Applicable Algebra, Error-Correcting Codes, Combinatorics and Computer Algebra. Berlin, Heidelberg: Springer Berlin Heidelberg, 1988. http://dx.doi.org/10.1007/bfb0039172.
Повний текст джерела1949-, Beth Thomas, and Clausen Michael, eds. Applicable algebra, error-correcting codes, combinatorics and computer algebra: Proceedings. Berlin: Springer-Verlag, 1988.
Знайти повний текст джерелаD, Key J., ed. Designs and their codes. Cambridge: Cambridge University Press, 1992.
Знайти повний текст джерелаVictor, Zinoviev, ed. Codes on Euclidean spheres. Amsterdam: Elsevier, 2001.
Знайти повний текст джерелаTonchev, Vladimir. Codes, Designs and Geometry. Boston, MA: Springer US, 1996.
Знайти повний текст джерелаЧастини книг з теми "Combinatorics of cores"
Jukna, Stasys. "Combinatorics of Codes." In Texts in Theoretical Computer Science. An EATCS Series, 237–51. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-17364-6_17.
Повний текст джерелаShokrollahi, Amin. "LDPC Codes: An Introduction." In Coding, Cryptography and Combinatorics, 85–110. Basel: Birkhäuser Basel, 2004. http://dx.doi.org/10.1007/978-3-0348-7865-4_5.
Повний текст джерелаAhmed, Maya, Jesús De Loera, and Raymond Hemmecke. "Polyhedral Cones of Magic Cubes and Squares." In Algorithms and Combinatorics, 25–41. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003. http://dx.doi.org/10.1007/978-3-642-55566-4_2.
Повний текст джерелаRehfinger, Thomas, N. Suresh Babu, and Karl-Heinz Zimmermann. "New Good Codes via CQuest — A System for the Silicon Search of Linear Codes." In Algebraic Combinatorics and Applications, 294–306. Berlin, Heidelberg: Springer Berlin Heidelberg, 2001. http://dx.doi.org/10.1007/978-3-642-59448-9_19.
Повний текст джерелаLi, Lei, and Shoulun Long. "New Constructions of Constant-Weight Codes." In Coding, Cryptography and Combinatorics, 209–22. Basel: Birkhäuser Basel, 2004. http://dx.doi.org/10.1007/978-3-0348-7865-4_13.
Повний текст джерелаSheekey, John. "13. MRD codes: constructions and connections." In Combinatorics and Finite Fields, edited by Kai-Uwe Schmidt and Arne Winterhof, 255–86. Berlin, Boston: De Gruyter, 2019. http://dx.doi.org/10.1515/9783110642094-013.
Повний текст джерелаPatrou, Bruno. "Zigzag codes and z-free hulls." In Combinatorics and Computer Science, 263–74. Berlin, Heidelberg: Springer Berlin Heidelberg, 1996. http://dx.doi.org/10.1007/3-540-61576-8_88.
Повний текст джерелаGuo, Yuqi, Yun Liu, and Shoufeng Wang. "Some Common-Used Codes." In Topics on Combinatorial Semigroups, 27–75. Singapore: Springer Nature Singapore, 2024. http://dx.doi.org/10.1007/978-981-99-9171-6_2.
Повний текст джерелаSolé, Patrick. "Covering codes and combinatorial optimization." In Applied Algebra, Algebraic Algorithms and Error-Correcting Codes, 426–33. Berlin, Heidelberg: Springer Berlin Heidelberg, 1991. http://dx.doi.org/10.1007/3-540-54522-0_130.
Повний текст джерелаGiulietti, Massimo, Arianna Sabatini, and Marco Timpanella. "PIR Codes from Combinatorial Structures." In Arithmetic of Finite Fields, 169–82. Cham: Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-031-22944-2_10.
Повний текст джерелаТези доповідей конференцій з теми "Combinatorics of cores"
Sabary, Omer, Inbal Preuss, Ryan Gabrys, Zohar Yakhini, Leon Anavy, and Eitan Yaakobi. "Error-Correcting Codes for Combinatorial Composite DNA." In 2024 IEEE International Symposium on Information Theory (ISIT), 109–14. IEEE, 2024. http://dx.doi.org/10.1109/isit57864.2024.10619334.
Повний текст джерелаAydin, Nuh, Thomas Guidotti, and Peihan Liu. "New Linear Codes as Quasi-Twisted Codes from Long Constacyclic Codes." In 2020 Algebraic and Combinatorial Coding Theory (ACCT). IEEE, 2020. http://dx.doi.org/10.1109/acct51235.2020.9383237.
Повний текст джерелаAggarwal, Divesh, Yevgeniy Dodis, and Shachar Lovett. "Non-malleable codes from additive combinatorics." In STOC '14: Symposium on Theory of Computing. New York, NY, USA: ACM, 2014. http://dx.doi.org/10.1145/2591796.2591804.
Повний текст джерелаRousseva, Assia, and Ivan Landjev. "Codes related to caps and the non-existence of some Griesmer codes." In 2020 Algebraic and Combinatorial Coding Theory (ACCT). IEEE, 2020. http://dx.doi.org/10.1109/acct51235.2020.9383359.
Повний текст джерелаChee, Yeow Meng, Fei Gao, Samuel Tien Ho Teo, and Hui Zhang. "Combinatorial systematic switch codes." In 2015 IEEE International Symposium on Information Theory (ISIT). IEEE, 2015. http://dx.doi.org/10.1109/isit.2015.7282453.
Повний текст джерелаZhang, Hui, Eitan Yaakobi, and Natalia Silberstein. "Multiset combinatorial batch codes." In 2017 IEEE International Symposium on Information Theory (ISIT). IEEE, 2017. http://dx.doi.org/10.1109/isit.2017.8006916.
Повний текст джерелаVerma, Ram Krishna, Om Prakash, and Ashutosh Singh. "Quantum codes from skew constacyclic codes over Fp m + vFp m + v2Fp m." In 2020 Algebraic and Combinatorial Coding Theory (ACCT). IEEE, 2020. http://dx.doi.org/10.1109/acct51235.2020.9383402.
Повний текст джерелаSidorenko, Vladimir, Wenhui Li, and Gerhard Kramer. "On interleaved rank metric codes." In 2020 Algebraic and Combinatorial Coding Theory (ACCT). IEEE, 2020. http://dx.doi.org/10.1109/acct51235.2020.9383406.
Повний текст джерелаDaskalov, Rumen, and Elena Metodieva. "New QC Codes over GF(11)." In 2020 Algebraic and Combinatorial Coding Theory (ACCT). IEEE, 2020. http://dx.doi.org/10.1109/acct51235.2020.9383337.
Повний текст джерелаBoyvalenkov, P., K. Delchev, D. V. Zinoviev, and V. A. Zinoviev. "On two-weight (linear and nonlinear) codes." In 2020 Algebraic and Combinatorial Coding Theory (ACCT). IEEE, 2020. http://dx.doi.org/10.1109/acct51235.2020.9383353.
Повний текст джерелаЗвіти організацій з теми "Combinatorics of cores"
Altstein, Miriam, and Ronald J. Nachman. Rational Design of Insect Control Agent Prototypes Based on Pyrokinin/PBAN Neuropeptide Antagonists. United States Department of Agriculture, August 2013. http://dx.doi.org/10.32747/2013.7593398.bard.
Повний текст джерела