Добірка наукової літератури з теми "Combinatorial algorithms on string"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Combinatorial algorithms on string".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Статті в журналах з теми "Combinatorial algorithms on string"
Bernardini, Giulia, Huiping Chen, Alessio Conte, Roberto Grossi, Grigorios Loukides, Nadia Pisanti, Solon P. Pissis, Giovanna Rosone, and Michelle Sweering. "Combinatorial Algorithms for String Sanitization." ACM Transactions on Knowledge Discovery from Data 15, no. 1 (January 6, 2021): 1–34. http://dx.doi.org/10.1145/3418683.
Повний текст джерелаTAKAOKA, TADAO, and STEPHEN VIOLICH. "FUSING LOOPLESS ALGORITHMS FOR COMBINATORIAL GENERATION." International Journal of Foundations of Computer Science 18, no. 02 (April 2007): 263–93. http://dx.doi.org/10.1142/s0129054107004681.
Повний текст джерелаAmbainis, Andris, and Ashley Montanaro. "Quantum algorithms for search with wildcards and combinatorial group testing." Quantum Information and Computation 14, no. 5&6 (May 2014): 439–53. http://dx.doi.org/10.26421/qic14.5-6-4.
Повний текст джерелаMoraglio, A., J. Togelius, and S. Silva. "Geometric Differential Evolution for Combinatorial and Programs Spaces." Evolutionary Computation 21, no. 4 (November 2013): 591–624. http://dx.doi.org/10.1162/evco_a_00099.
Повний текст джерелаNazeen, Sumaiya, M. Sohel Rahman, and Rezwana Reaz. "Indeterminate string inference algorithms." Journal of Discrete Algorithms 10 (January 2012): 23–34. http://dx.doi.org/10.1016/j.jda.2011.08.002.
Повний текст джерелаGraf, Alessandra, David G. Harris, and Penny Haxell. "Algorithms for Weighted Independent Transversals and Strong Colouring." ACM Transactions on Algorithms 18, no. 1 (January 31, 2022): 1–16. http://dx.doi.org/10.1145/3474057.
Повний текст джерелаHamad, Ibrahim Ismael, and Mohammad S. Hasan. "A Review: On using ACO Based Hybrid Algorithms for Path Planning of Multi-Mobile Robotics." International Journal of Interactive Mobile Technologies (iJIM) 14, no. 18 (November 10, 2020): 145. http://dx.doi.org/10.3991/ijim.v14i18.16371.
Повний текст джерелаSaud, Suhair, Halife Kodaz, and İsmail Babaoğlu. "Solving Travelling Salesman Problem by Using Optimization Algorithms." KnE Social Sciences 3, no. 1 (January 15, 2018): 17. http://dx.doi.org/10.18502/kss.v3i1.1394.
Повний текст джерелаCLÉMENT, JULIEN, and LAURA GIAMBRUNO. "Representing prefix and border tables: results on enumeration." Mathematical Structures in Computer Science 27, no. 2 (May 22, 2015): 257–76. http://dx.doi.org/10.1017/s0960129515000146.
Повний текст джерелаFONTAINE, MARC, STEFAN BURKHARDT, and JUHA KÄRKKÄINEN. "BDD-BASED ANALYSIS OF GAPPED q-GRAM FILTERS." International Journal of Foundations of Computer Science 16, no. 06 (December 2005): 1121–34. http://dx.doi.org/10.1142/s0129054105003698.
Повний текст джерелаДисертації з теми "Combinatorial algorithms on string"
BERNARDINI, GIULIA. "COMBINATORIAL METHODS FOR BIOLOGICAL DATA." Doctoral thesis, Università degli Studi di Milano-Bicocca, 2021. http://hdl.handle.net/10281/305220.
Повний текст джерелаThe main goal of this thesis is to develop new algorithmic frameworks to deal with (i) a convenient representation of a set of similar genomes and (ii) phylogenetic data, with particular attention to the increasingly accurate tumor phylogenies. A “pan-genome” is, in general, any collection of genomic sequences to be analyzed jointly or to be used as a reference for a population. A phylogeny, in turn, is meant to describe the evolutionary relationships among a group of items, be they species of living beings, genes, natural languages, ancient manuscripts or cancer cells. With the exception of one of the results included in this thesis, related to the analysis of tumor phylogenies, the focus of the whole work is mainly theoretical, the intent being to lay firm algorithmic foundations for the problems by investigating their combinatorial aspects, rather than to provide practical tools for attacking them. Deep theoretical insights on the problems allow a rigorous analysis of existing methods, identifying their strong and weak points, providing details on how they perform and helping to decide which problems need to be further addressed. In addition, it is often the case where new theoretical results (algorithms, data structures and reductions to other well-studied problems) can either be directly applied or adapted to fit the model of a practical problem, or at least they serve as inspiration for developing new practical tools. The first part of this thesis is devoted to methods for handling an elastic-degenerate text, a computational object that compactly encodes a collection of similar texts, like a pan-genome. Specifically, we attack the problem of matching a sequence in an elastic-degenerate text, both exactly and allowing a certain amount of errors, and the problem of comparing two degenerate texts. In the second part we consider both tumor phylogenies, describing the evolution of a tumor, and “classical” phylogenies, representing, for instance, the evolutionary history of the living beings. In particular, we present new techniques to compare two or more tumor phylogenies, needed to evaluate the results of different inference methods, and we give a new, efficient solution to a longstanding problem on “classical” phylogenies: to decide whether, in the presence of missing data, it is possible to arrange a set of species in a phylogenetic tree that enjoys specific properties.
Toopsuwan, Chalita. "Algorithms and combinatorics of repetitions in strings." Thesis, King's College London (University of London), 2017. https://kclpure.kcl.ac.uk/portal/en/theses/algorithms-and-combinatorics-of-repetitions-in-strings(a20776fa-6a15-4c37-bf87-505211309fd7).html.
Повний текст джерелаWright, Colin Douglas. "Combinatorial algorithms." Thesis, University of Cambridge, 1990. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.357944.
Повний текст джерелаPinzon, Yoan Jose. "String algorithms on sequence comparison." Thesis, King's College London (University of London), 2001. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.395648.
Повний текст джерелаAslidis, Anastasios Haralampos. "Combinatorial algorithms for stacking problems." Thesis, Massachusetts Institute of Technology, 1989. http://hdl.handle.net/1721.1/33478.
Повний текст джерелаNaji, Azimi Zahra <1982>. "Algorithms for Combinatorial Optimization Problems." Doctoral thesis, Alma Mater Studiorum - Università di Bologna, 2010. http://amsdottorato.unibo.it/2695/1/Naji_Azimi_Zahra_Tesi.pdf.
Повний текст джерелаNaji, Azimi Zahra <1982>. "Algorithms for Combinatorial Optimization Problems." Doctoral thesis, Alma Mater Studiorum - Università di Bologna, 2010. http://amsdottorato.unibo.it/2695/.
Повний текст джерелаFischer, Johannes. "Data Structures for Efficient String Algorithms." Diss., lmu, 2007. http://nbn-resolving.de/urn:nbn:de:bvb:19-75053.
Повний текст джерелаNewman, Alantha. "Algorithms for string and graph layout." Thesis, Massachusetts Institute of Technology, 2004. http://hdl.handle.net/1721.1/28745.
Повний текст джерелаIncludes bibliographical references (p. 121-125).
Many graph optimization problems can be viewed as graph layout problems. A layout of a graph is a geometric arrangement of the vertices subject to given constraints. For example, the vertices of a graph can be arranged on a line or a circle, on a two- or three-dimensional lattice, etc. The goal is usually to place all the vertices so as to optimize some specified objective function. We develop combinatorial methods as well as models based on linear and semidefinite programming for graph layout problems. We apply these techniques to some well-known optimization problems. In particular, we give improved approximation algorithms for the string folding problem on the two- and three-dimensional square lattices. This combinatorial graph problem is motivated by the protein folding problem, which is central in computational biology. We then present a new semidefinite programming formulation for the linear ordering problem (also known as the maximum acyclic subgraph problem) and show that it provides an improved bound on the value of an optimal solution for random graphs. This is the first relaxation that improves on the trivial "all edges" bound for random graphs.
by Alantha Newman.
Ph.D.
Cruz, Mencía Francisco. "Enhancing performance on combinatorial optimization algorithms." Doctoral thesis, Universitat Autònoma de Barcelona, 2018. http://hdl.handle.net/10803/665199.
Повний текст джерелаLa optimización combinatoria es un tipo específico de optimización donde el dominio de las variables es discreto. Este tipo de problemas de optimización tienen una gran aplicabilidad debido a su capacidad de optimización sobre objetos unitarios y no divisibles. Más allá de los algoritmos genéricos, la comunidad investigadora es muy activa proponiendo algoritmos capaces de abordar problemas de optimización combinatoria para problemas específicos. El objetivo de esta tesis es investigar cómo ampliar la aplicabilidad de algoritmos de optimización combinatoria que explotan la estructura de los problemas a resolver. Lo hacemos desde la perspectiva del hardware de una computadora, persiguiendo la explotación total de los recursos computacionales que ofrece el hardware actual. Para alcanzar generalidad trabajamos con tres problemas diferentes. Primero abordamos el problema de generación de estructuras de la coalición (CSGP). Encontramos que el algoritmo de última generación es IDP. Proponemos un algoritmo optimizado y paralelo capaz de resolver el CSGP. Conseguimos esto deniendo un nuevo metodo para llevar a cabo la operacion mas crtica -Splitting-, así como deniendo un nuevo método para dividir la operación del algoritmo en los diferente subprocesos. A continuación, estudiamos el problema de determinación del ganador (WDP) para las subastas combinatorias (CA). Encontramos que la escalabilidad de los solucionadores de vanguardia es limitada. Más concretamente, mostramos cómo mejorar la resolución de resultados de relajación LP para el WDP en subastas combinatorias de gran escala mediante la aplicación del algoritmo AD³. A continuación, contribuimos con una versión optimizada de AD³ que también se puede ejecutar en un escenario paralelo de memoria compartida. Finalmente, estudiamos la aplicación de AD³ para resolver las relajaciones LP de un problema más exigente de la computacionalmente: El problema de la predición de cadenas laterales (SCP). Presentamos una manera optimizada de resolver la operación más crítica, la resolución de un problema cuadrático para un factor arbitrario. En todos los casos proponemos algoritmos optimizados que se pueden escalar de forma paralela y que mejoran notablemente el estado de la técnica. Tres órdenes de magnitud en IDP, y un orden de magnitud en AD³. El objetivo nal de este trabajo es demostrar como un diseño algoritmo consciente de hardware puede conducir a mejoras de rendimiento signicativas. Mostramos estrategias exportables a algoritmos de optimización combinatoria similares. Estas estrategias ayudarán al diseñador de algoritmos lograr más eficiencia en las CPU modernas.
Combinatorial Optimization is a specific type of mathematical optimization where variables' domain is discrete. This kind of optimization problems have an enormous applicability due to its ability to optimize over unitary and non-divisible objects. Beyond generic algorithms, the research community is very active proposing algorithms able to tackle specific combinatorial optimization problems. The goal of this thesis is to investigate how to widen the applicability of Combinatorial Optimization algorithms that exploit the structure of the problems to solve. We do so from a computer's hardware perspective, pursuing the full exploitation of computational resources offered by today's hardware. For the sake of generality we work on three different problems. First we tackle the Coalition Structure Generation Problem (CSGP). We find that the state-of-the-art algorithm is IDP. We propose an optimized and parallel algorithm able to solve the CSGP. We reach this by defining a novel method to perform the most critical operation --Splitting-- as well as by defining a novel method to divide the the algorithm's operation in threads. Then, we study the Winner Determination Problem (WDP) for Combinatorial Auctions (CA), which is very related to the CSGP. We find that state-of-the-art solvers' scalability is limited. More specifically we show how to improve results solving LP relaxations for the WDP in Large Scale Combinatorial Auctions by applying the AD³ algorithm. Then we contribute with an optimized version of AD³ which is also able to run in a shared-memory parallel scenario. Finally we study the application of AD³ to solve the LP relaxations of a more CPU demanding problem: The Side-Chain Prediction (SCP). We present an optimized way to solve the most critical operation which is solving a Quadratic Problem for an Arbitrary Factor. In all the cases we propose optimized algorithms that are scalable in parallel and that improve significantly the state-of-the-art. Three orders of magnitude speedup on IDP, one order of magnitude speedup in AD³. The ultimate purpose of this work is to demonstrate how a hardware-aware algorithmic design can lead to significant speedups. We show strategies that are exportable to similar Combinatorial Optimization algorithms. Such strategies will help the algorithm designer to achieve more efficiency in modern CPUs.
Книги з теми "Combinatorial algorithms on string"
Combinatorial algorithms. Bristol: Adam Hilger, 1990.
Знайти повний текст джерелаFlocchini, Paola, and Lucia Moura, eds. Combinatorial Algorithms. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-79987-8.
Повний текст джерелаBazgan, Cristina, and Henning Fernau, eds. Combinatorial Algorithms. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-06678-8.
Повний текст джерелаFiala, Jiří, Jan Kratochvíl, and Mirka Miller, eds. Combinatorial Algorithms. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-642-10217-2.
Повний текст джерелаColbourn, Charles J., Roberto Grossi, and Nadia Pisanti, eds. Combinatorial Algorithms. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-25005-8.
Повний текст джерелаLipták, Zsuzsanna, and William F. Smyth, eds. Combinatorial Algorithms. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-29516-9.
Повний текст джерелаGąsieniec, Leszek, Ralf Klasing, and Tomasz Radzik, eds. Combinatorial Algorithms. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-48966-3.
Повний текст джерелаMäkinen, Veli, Simon J. Puglisi, and Leena Salmela, eds. Combinatorial Algorithms. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-44543-4.
Повний текст джерелаJan, Kratochvíl, Mirka Miller, and Dalibor Froncek, eds. Combinatorial Algorithms. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-19315-1.
Повний текст джерелаBrankovic, Ljiljana, Joe Ryan, and William F. Smyth, eds. Combinatorial Algorithms. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-78825-8.
Повний текст джерелаЧастини книг з теми "Combinatorial algorithms on string"
Broder, Andrei. "Two counting problems solved via string encodings." In Combinatorial Algorithms on Words, 229–40. Berlin, Heidelberg: Springer Berlin Heidelberg, 1985. http://dx.doi.org/10.1007/978-3-642-82456-2_15.
Повний текст джерелаPinter, Ron Y. "Efficient String Matching with Don’t-Care Patterns." In Combinatorial Algorithms on Words, 11–29. Berlin, Heidelberg: Springer Berlin Heidelberg, 1985. http://dx.doi.org/10.1007/978-3-642-82456-2_2.
Повний текст джерелаLee, Jee-Soo, Dong Kyue Kim, Kunsoo Park, and Yookun Cho. "Efficient algorithms for approximate string matching with swaps." In Combinatorial Pattern Matching, 28–39. Berlin, Heidelberg: Springer Berlin Heidelberg, 1997. http://dx.doi.org/10.1007/3-540-63220-4_47.
Повний текст джерелаChang, William I., and Jordan Lampe. "Theoretical and empirical comparisons of approximate string matching algorithms." In Combinatorial Pattern Matching, 175–84. Berlin, Heidelberg: Springer Berlin Heidelberg, 1992. http://dx.doi.org/10.1007/3-540-56024-6_14.
Повний текст джерелаChen, Zhi-Zhong, Bin Ma, and Lusheng Wang. "Randomized and Parameterized Algorithms for the Closest String Problem." In Combinatorial Pattern Matching, 100–109. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-07566-2_11.
Повний текст джерелаAllauzen, Cyril, and Mathieu Raffinot. "Simple Optimal String Matching Algorithm." In Combinatorial Pattern Matching, 364–74. Berlin, Heidelberg: Springer Berlin Heidelberg, 2000. http://dx.doi.org/10.1007/3-540-45123-4_30.
Повний текст джерелаRaskhodnikova, Sofya, Dana Ron, Ronitt Rubinfeld, and Adam Smith. "Sublinear Algorithms for Approximating String Compressibility." In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques, 609–23. Berlin, Heidelberg: Springer Berlin Heidelberg, 2007. http://dx.doi.org/10.1007/978-3-540-74208-1_44.
Повний текст джерелаBarth, Gerhard. "Relating the Average-Case Costs of the Brute-Force and Knuth-Morris-Pratt String Matching Algorithm." In Combinatorial Algorithms on Words, 45–58. Berlin, Heidelberg: Springer Berlin Heidelberg, 1985. http://dx.doi.org/10.1007/978-3-642-82456-2_4.
Повний текст джерелаBaeza-Yates, Ricardo, and Gonzalo Navarro. "A faster algorithm for approximate string matching." In Combinatorial Pattern Matching, 1–23. Berlin, Heidelberg: Springer Berlin Heidelberg, 1996. http://dx.doi.org/10.1007/3-540-61258-0_1.
Повний текст джерелаOdlyzko, A. M. "Enumeration of Strings." In Combinatorial Algorithms on Words, 205–28. Berlin, Heidelberg: Springer Berlin Heidelberg, 1985. http://dx.doi.org/10.1007/978-3-642-82456-2_14.
Повний текст джерелаТези доповідей конференцій з теми "Combinatorial algorithms on string"
Callanan, Jesse, Oladapo Ogunbodede, Maulikkumar Dhameliya, Jun Wang, and Rahul Rai. "Hierarchical Combinatorial Design and Optimization of Quasi-Periodic Metamaterial Structures." In ASME 2018 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2018. http://dx.doi.org/10.1115/detc2018-85914.
Повний текст джерелаFu, Yan, R. J. Yang, and Isheng Yeh. "Optimal Design of an Inflatable Knee Bolster Using Genetic Algorithms." In ASME 2001 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2001. http://dx.doi.org/10.1115/imece2001/amd-25460.
Повний текст джерелаTschiatschek, Sebastian, Aytunc Sahin, and Andreas Krause. "Differentiable Submodular Maximization." In Twenty-Seventh International Joint Conference on Artificial Intelligence {IJCAI-18}. California: International Joint Conferences on Artificial Intelligence Organization, 2018. http://dx.doi.org/10.24963/ijcai.2018/379.
Повний текст джерелаLladser, Manuel E. "Markovian embeddings of general random strings." In 2008 Proceedings of the Fifth Workshop on Analytic Algorithmics and Combinatorics (ANALCO). Philadelphia, PA: Society for Industrial and Applied Mathematics, 2008. http://dx.doi.org/10.1137/1.9781611972986.2.
Повний текст джерелаGhosh, Subhroshekhar, Thomas M. Liggett, and Robin Pemantle. "Multivariate CLT follows from strong Rayleigh property." In 2017 Proceedings of the Fourteenth Workshop on Analytic Algorithmics and Combinatorics (ANALCO). Philadelphia, PA: Society for Industrial and Applied Mathematics, 2017. http://dx.doi.org/10.1137/1.9781611974775.14.
Повний текст джерелаHagerup, Torben. "Optimal parallel string algorithms." In the twenty-sixth annual ACM symposium. New York, New York, USA: ACM Press, 1994. http://dx.doi.org/10.1145/195058.195202.
Повний текст джерелаPogarskaia, Tatiana, Sergey Lupuleac, Julia Shinder, and Philipp Westphal. "Optimization of the Installation Sequence for the Temporary Fasteners in the Aircraft Industry." In ASME 2021 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2021. http://dx.doi.org/10.1115/imece2021-69579.
Повний текст джерелаShaw, Peter. "Combinatorial Algorithms in Machine Learning." In 2018 First International Conference on Artificial Intelligence for Industries (AI4I). IEEE, 2018. http://dx.doi.org/10.1109/ai4i.2018.8665720.
Повний текст джерелаCormode, Graham, and S. Muthukrishnan. "Combinatorial Algorithms for Compressed Sensing." In 2006 40th Annual Conference on Information Sciences and Systems. IEEE, 2006. http://dx.doi.org/10.1109/ciss.2006.286461.
Повний текст джерелаBansal, Nikhil, and Ryan Williams. "Regularity Lemmas and Combinatorial Algorithms." In 2009 IEEE 50th Annual Symposium on Foundations of Computer Science (FOCS). IEEE, 2009. http://dx.doi.org/10.1109/focs.2009.76.
Повний текст джерелаЗвіти організацій з теми "Combinatorial algorithms on string"
Pinar, Ali. High-performance combinatorial algorithms. Office of Scientific and Technical Information (OSTI), October 2003. http://dx.doi.org/10.2172/820273.
Повний текст джерелаPothen, Alex. Combinatorial Algorithms in Scientific Computing. Office of Scientific and Technical Information (OSTI), February 2021. http://dx.doi.org/10.2172/1765882.
Повний текст джерелаLeighton, Tom. Parallel and Distributed Computing Combinatorial Algorithms. Fort Belvoir, VA: Defense Technical Information Center, October 1993. http://dx.doi.org/10.21236/ada277333.
Повний текст джерелаLaub, Alan J., and Charles Kenney. Numerically Stable Algorithms in String Dynamics. Fort Belvoir, VA: Defense Technical Information Center, September 1993. http://dx.doi.org/10.21236/ada275898.
Повний текст джерелаGoldberg, Andrew V., Serge A. Plotkin, and Eva Tardos. Combinatorial Algorithms for the Generalized Circulation Problem. Fort Belvoir, VA: Defense Technical Information Center, May 1988. http://dx.doi.org/10.21236/ada197409.
Повний текст джерелаPlotkin, Serge. Research in Graph Algorithms and Combinatorial Optimization. Fort Belvoir, VA: Defense Technical Information Center, March 1995. http://dx.doi.org/10.21236/ada292630.
Повний текст джерелаShepherd, F. B. Fundamentals of Combinatorial Optimization and Algorithms Design: December Report. Fort Belvoir, VA: Defense Technical Information Center, February 2005. http://dx.doi.org/10.21236/ada429923.
Повний текст джерелаDarbha, Swaroop, Sivakumar Rathinam, and K. R. Rajagopal. Combinatorial Motion Planning Algorithms for a Heterogeneous Collection of Unmanned Vehicles. Fort Belvoir, VA: Defense Technical Information Center, October 2013. http://dx.doi.org/10.21236/ada590747.
Повний текст джерелаBoman, Erik G., Umit V. Catalyurek, Cedric Chevalier, Karen D. Devine, Assefaw H. Gebremedhin, Paul D. Hovland, Alex Pothen, et al. Combinatorial Algorithms to Enable Computational Science and Engineering: Work from the CSCAPES Institute. Office of Scientific and Technical Information (OSTI), January 2015. http://dx.doi.org/10.2172/1167393.
Повний текст джерелаBennett, Janine Camille, David Minot Day, and Scott A. Mitchell. Summary of the CSRI Workshop on Combinatorial Algebraic Topology (CAT): Software, Applications, & Algorithms. Office of Scientific and Technical Information (OSTI), November 2009. http://dx.doi.org/10.2172/1324989.
Повний текст джерела