Добірка наукової літератури з теми "Colloidal hydrogel"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Colloidal hydrogel".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Статті в журналах з теми "Colloidal hydrogel"

1

Serpe, M. J., J. Kim, and L. A. Lyon. "Colloidal Hydrogel Microlenses." Advanced Materials 16, no. 2 (January 16, 2004): 184–87. http://dx.doi.org/10.1002/adma.200305675.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Maikovych, O. V., I. A. Dron, N. M. Bukartyk, O. Yu Bordeniuk та N. G. Nosova. "Іnvestigation of gel formation peculiarities and properties of hydrogels obtained by the structuring of acrylamide prepolymers". Chemistry, Technology and Application of Substances 4, № 1 (1 червня 2021): 179–85. http://dx.doi.org/10.23939/ctas2021.01.179.

Повний текст джерела
Анотація:
The paper represents the results of the investigation of the formation of a polymeric matrix of hydrogel due to the structuring of polyacrylamide using its reactive polymeric derivative – poly-N- (hydroxymethyl) acrylamide. Research determined zones of optimum conditions of synthesis and characterized hydrogel depending on pH of media, the ratio between the concentration of prepolymers, and time of synthesis. The investigation of the reaction mixture showed that the hydrogen index of the synthesis of hydrogels is one of the important factors, which in the design of the polymer framework of hydrogels allows regulating their colloidal chemical properties in a wide range.
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Sahiner, Nurettin. "Colloidal nanocomposite hydrogel particles." Colloid and Polymer Science 285, no. 4 (November 3, 2006): 413–21. http://dx.doi.org/10.1007/s00396-006-1583-7.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Sun, Bo, Wenxin Zhang, Yangyang Liu, Min Xue, Lili Qiu, and Zihui Meng. "A Biomass Based Photonic Crystal Hydrogel Made of Bletilla striata Polysaccharide." Biosensors 12, no. 10 (October 8, 2022): 841. http://dx.doi.org/10.3390/bios12100841.

Повний текст джерела
Анотація:
Bletilla striata is an herb with a good medicinal value whose main active ingredient is Bletilla striata polysaccharide (BSP) in the tuber of Bletilla striata. In this study, a polysaccharide-based semi-interpenetrating network hydrogel was constructed by introducing BSP into polyacrylamide (PAM) hydrogel. The introduction of the BSP chain no only maintains the excellent mechanical properties of PAM, but also endows it with good biocompatibility. By implanting the colloidal crystal array into the above hydrogels, we obtained a novel biomass-based photonic crystal with good stimulus responsiveness that is sensitive to volatile organic compounds (VOCs), especially alcohol vapor. In addition, due to the scavenging ability of BSP to hydroxyl radicals, the photonic crystal hydrogel also has a good response to hydrogen peroxide (H2O2).
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Tang, Wenwei, and Cheng Chen. "Hydrogel-Based Colloidal Photonic Crystal Devices for Glucose Sensing." Polymers 12, no. 3 (March 9, 2020): 625. http://dx.doi.org/10.3390/polym12030625.

Повний текст джерела
Анотація:
Diabetes, a common epidemic disease, is increasingly hazardous to human health. Monitoring body glucose concentrations for the prevention and therapy of diabetes has become very important. Hydrogel-based responsive photonic crystal (PC) materials are noninvasive options for glucose detection. This article reviews glucose-sensing materials/devices composed of hydrogels and colloidal photonic crystals (CPCs), including the construction of 2D/3D CPCs and 2D/3D hydrogel-based CPCs (HCPCs). The development and mechanisms of glucose-responsive hydrogels and the achieved technologies of HCPC glucose sensors were also concluded. This review concludes by showing a perspective for the future design of CPC glucose biosensors with functional hydrogels.
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Weiler, M., and C. Pacholski. "Soft colloidal lithography." RSC Advances 7, no. 18 (2017): 10688–91. http://dx.doi.org/10.1039/c7ra00338b.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Xu, Jia-Yu, Chun-Xiao Yan, Xiao-Chun Hu, Chao Liu, Hua-Min Tang, Chao-Hua Zhou, and Fei Xue. "Study on a Photonic Crystal Hydrogel Material for Chemical Sensing." International Journal of Nanoscience 14, no. 01n02 (February 2015): 1460025. http://dx.doi.org/10.1142/s0219581x14600254.

Повний текст джерела
Анотація:
There is intense interest in the applications of photonic crystal hydrogel materials for the detection of glucose, metal ions, organophosphates and so on. In this paper, monodisperse polystyrene spheres with diameters between 100 ~ 440 nm were synthesized by emulsion polymerization. Highly charged polystyrene spheres readily self-assembled into crystalline colloidal array because of electrostatic interactions. Photonic crystal hydrogel materials were formed by polymerization of acrylamide hydrogel around the crystalline colloidal arrays of polystyrene spheres. After chemical modification of hydrogel backbone with carboxyl groups, our photonic crystals hydrogel materials are demonstrated to be excellent in response to pH and ionic strength changes.
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Klučáková, Martina. "Effect of Chitosan as Active Bio-colloidal Constituent on the Diffusion of Dyes in Agarose Hydrogel." Gels 9, no. 5 (May 9, 2023): 395. http://dx.doi.org/10.3390/gels9050395.

Повний текст джерела
Анотація:
Agarose hydrogel was enriched by chitosan as an active substance for the interactions with dyes. Direct blue 1, Sirius red F3B, and Reactive blue 49 were chosen as representative dyes for the study of the effect of their interaction with chitosan on their diffusion in hydrogel. Effective diffusion coefficients were determined and compared with the value obtained for pure agarose hydrogel. Simultaneously, sorption experiments were realized. The sorption ability of enriched hydrogel was several times higher in comparison with pure agarose hydrogel. Determined diffusion coefficients decreased with the addition of chitosan. Their values included the effects of hydrogel pore structure and interactions between chitosan and dyes. Diffusion experiments were realized at pH 3, 7, and 11. The effect of pH on the diffusivity of dyes in pure agarose hydrogel was negligible. Effective diffusion coefficients obtained for hydrogels enriched by chitosan increased gradually with increasing pH value. Electrostatic interactions between amino group of chitosan and sulfonic group of dyes resulted in the formation of zones with a sharp boundary between coloured and transparent hydrogel (mainly at lower pH values). A concentration jump was observed at a given distance from the interface between hydrogel and the donor dye solution.
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Hu, Xiaohong, Lingyun Hao, Huaiqing Wang, Xiaoli Yang, Guojun Zhang, Guoyu Wang, and Xiao Zhang. "Hydrogel Contact Lens for Extended Delivery of Ophthalmic Drugs." International Journal of Polymer Science 2011 (2011): 1–9. http://dx.doi.org/10.1155/2011/814163.

Повний текст джерела
Анотація:
Soft contact lenses can improve the bioavailability and prolong the residence time of drugs and, therefore, are ideal drug carriers for ophthalmic drug delivery. Hydrogels are the leading materials of soft contact lenses because of their biocompatibility and transparent characteristic. In order to increase the amount of load drug and to control their release at the expected intervals, many strategies are developed to modify the conventional contact lens as well as the novel hydrogel contact lenses that include (i) polymeric hydrogels with controlled hydrophilic/hydrophobic copolymer ratio; (ii) hydrogels for inclusion of drugs in a colloidal structure dispersed in the contact lenses; (iii) ligand-containing hydrogels; (iv) molecularly imprinted polymeric hydrogels; (v) hydrogel with the surface containing multilayer structure for drugs loading and releasing. The advantages and disadvantages of these strategies in modifying or designing hydrogel contact lenses for extended ophthalmic drug delivery are analyzed in this paper.
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Xue, Fei, Zihui Meng, Fengyan Wang, Qiuhong Wang, Min Xue, and Zhibin Xu. "A 2-D photonic crystal hydrogel for selective sensing of glucose." J. Mater. Chem. A 2, no. 25 (2014): 9559–65. http://dx.doi.org/10.1039/c4ta01031k.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Дисертації з теми "Colloidal hydrogel"

1

McGrath, Jonathan G. "Synthesis and Characterization of Core/Shell Hydrogel Nanoparticles and Their Application to Colloidal Crystal Optical Materials." Diss., Georgia Institute of Technology, 2007. http://hdl.handle.net/1853/14537.

Повний текст джерела
Анотація:
This dissertation describes the use of spherical micro- and nanoparticles as building blocks for the fabrication of colloidal crystals. The polymer component used in all of the projects that are described herein is poly-N-isopropylacrylamide (pNIPAm). The polymeric identity of particles composed of this soft, hydrogel material, which is also thermoresponsive, contributes to particle self-assembly to form ordered structures. Specifically, particles that possess a core/shell topology were investigated to allow for the localization of distinct polymeric properties. Chapter 2 examines a characterization technique using fluorescence resonance energy transfer (FRET) that was explored to investigate the structure of pNIPAm particles that possess this core/shell topology. Chapters 4-6 investigate strategies to impart both stability and flexibility to the particles so that these properties could assist in particle self-assembly as well as provide a stable construct for the production of robust crystalline materials. Styrene was used as the main monomer component in a copolymer synthesis with NIPAm to achieve poly(styrene-co-N-isopropylacrylamide particles (pS-co-NIPAm) that exhibited both hard and soft properties. Simple drying procedures were used to form crystal assemblies with these particles and the application of these pS-co-NIPAm particle suspensions as processable, photonic inks is also investigated. Chapter 7 examines the ability to physically cross-link colloidal crystals composed of pS-co-NIPAm particles by simple heating methods to produce robust films. The optical properties of these crystal films could be tuned by simple rehydration of the film due to the hydrogel character of the crystal building blocks. Chapters 3 and 5 examine the synthesis and self-assembly strategies of core/shell particles using the properties of pNIPAm shell layers that have been added to different types of core particles (silver or pS-co-NIPAm) for the purposes of fabricating colloidal crystals with enhanced properties using thermal annealing procedures. Chapter 8 explores the use of silver particles as tracers for the characterization of colloidal crystals composed of thermally annealed colloidal crystals composed of pNIPAm hydrogel particles.
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Johnson, Elizabeth Edna. "Colloidal gas aphron foams : a novel approach to a hydrogel based tissue engineered myocardial patch /." Thesis, Connect to this title online; UW restricted, 2006. http://hdl.handle.net/1773/10579.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Cho, Jae Kyu. "The dynamics and phase behavior of suspensions of stimuli-responsive colloids." Diss., Atlanta, Ga. : Georgia Institute of Technology, 2009. http://hdl.handle.net/1853/31682.

Повний текст джерела
Анотація:
Thesis (Ph.D)--Chemical Engineering, Georgia Institute of Technology, 2010.
Committee Chair: Victor Breedveld; Committee Member: Eric W. Weeks; Committee Member: Hang Lu; Committee Member: J. Carson Meredith; Committee Member: L. Andrew Lyon. Part of the SMARTech Electronic Thesis and Dissertation Collection.
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Duret, Bérénice. "Mise au point de dispersiοns aqueuses de particules d’huiles gélifiées et applications à la prοtectiοn de la peau". Electronic Thesis or Diss., Normandie, 2024. http://www.theses.fr/2024NORMLH39.

Повний текст джерела
Анотація:
Cette thèse vise à développer des formules cosmétiques éco-responsables à faible nombre d’ingrédients, en lien avec le contexte actuel du « Clean-label » dans ce secteur. Nous nous sommes intéressés à des dispersions de particules d’huile gélifiée, nommées « dispersions de gélosomes », encore inexplorées pour une utilisation cosmétique. Connues pour être stables et capables d’encapsuler des actifs hydrophobe, la question de leur texture et de leur application sur la surface de la peau reste aujourd’hui non renseignée. Elles sont préparées par émulsification à chaud d’un organogel, composé d’huile et de gélifiant lipophile (acide 12-hydroxystéarique), en présence d’un agent stabilisant (alcool polyvinylique hydrolysé à 80%). L’émulsion formée conduit, après refroidissement, à une dispersion de particules d’organogel. Nous avons d’abord démontré la possibilité de réaliser des dispersions de gélosomes avec des huiles cosmétiques et un conservateur. Des textures très variées ont été obtenues allant de liquides fluides à des gels fermes et cassants. L’analyse physico-chimique et l’observation microscopique de ces nouvelles formules ont permis d’identifier leurs microstructures : dans certaines conditions, des connexions se forment entre les gélosomes, et un hydrogel colloïdal est obtenu. L’étude des interactions à l’interface a permis de déterminer les facteurs et les mécanismes menant à des gélosomes individualisés ou connectés. Les dispersions de gélosomes, même les plus fluides, ont montré une grande stabilité. Enfin, de nouvelles dispersions de gélosomes ont pu être formulées à partir de stabilisants de nature et de modes de stabilisation variés. La méthodologie employée au cours de ce travail a permis d’établir un lien entre le stabilisant et les propriétés des dispersions. Des mécanismes différents ont pu être identifiés, induisant des microstructures et des propriétés applicatives intéressantes et variées. Pour la première fois, les propriétés de texture des dispersions, caractéristiques d’une application topique ont été collectées sur l’ensemble des systèmes par une approche combinée d’analyses rhéologiques in vitro et d’analyses sensorielles in vivo ; les perceptions ont été décrites et explicitées en fonction de l’influence de la nature de l’huile, du stabilisant et du type de microstructure
This thesis aims to develop eco-responsible cosmetic formulas with a low number of ingredients, in line with the current context of “Clean-label” in this sector. We focused on dispersions of gelled oil particles, called “gelosome dispersions”, which have not yet been explored for cosmetic use. Known to be stable and capable of encapsulating hydrophobic active ingredients, the question of their texture and their application onto the surface of the skin remains unanswered to date. They are prepared by hot emulsification of an organogel, composed of oil and a lipophilic gelator (12-hydroxystearic acid), in the presence of a stabilizing agent (80% hydrolyzed polyvinyl alcohol). Upon cooling, the emulsion leads to a dispersion of organogel particles. We first demonstrated the possibility of making gelosome dispersions with cosmetic oils and a preservative. A wide variety of textures was obtained, ranging from fluid liquids to firm and brittle gels. Physicochemical analysis and microscopic observation of these new formulas made it possible to identify their microstructures: under certain conditions, connections are formed between the gelosomes, and a colloidal hydrogel is obtained. The factors and mechanisms leading to individualized or connected gelosomes were determined by the study of interactions at the interface. Gelosome dispersions, even the most fluid, showed great stability. Finally, new dispersions of gelosomes were formulated using stabilizers of various types and stabilization modes. The methodology used during this work enabled the establishment of a link between the stabilizer and the properties of the dispersions. Different mechanisms could be identified, inducing interesting and varied microstructures and application properties. For the first time, the texture properties of the dispersions, characteristic of a topical application, were collected across all systems using a combined approach of in vitro rheological analyzes and in vivo sensory analyses; the perceptions were described and explained according to the influence of the nature of the oil, the stabilizer and the type of microstructure
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Mohammadi, Aliasghar. "Dynamics of colloidal inclusions in hydrogels." Thesis, McGill University, 2011. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=104772.

Повний текст джерела
Анотація:
The electric-field-induced response of colloidal particles in hydrogels isused as a diagnostic method for probing colloid-hydrogel interfaces, where we measure the electrokinetic potential of polystyrene particles in polyacrylamide hydrogels using an optical tweezers setup with back-focal-plane interferometry and feed-back control to compensate low-frequency drift. A generalization of pertinent relations in the standard electrokinetic model is used to interpret the experiments, showing how the electrokinetic potential depends on ionic strength, surface chemistry, and polymer content of the suspending medium. A similar behaviour for the influence of ionic strength and surface chemistry on the surface potential of polystyrene particles in both hydrogels and deionized water is observed. Whereas the cross-linking ratio, defined as the molar ratio of cross-linking units to the total number of monomers, has a small effect on the colloidal inclusion surface potential, the influence of monomer concentrationis significant. Also, we present theoretical calculations of the dynamics of uncharged spherical inclusions in charged, compressible polymer skeletons to facilitate accurate interpretations of classical and electrical micro-rheology, and electroacoustics. Moreover, we undertake the theoretical analysis of the dynamic response of hydrogels in a parallel-plate channel to external stimuli, such as a pressure gradient and/or electric field.
Le champ electrique induit par la reponse de particules colloidales dans des hydrogels est utilise comme une methode de diagnostic pour sonder interfaces colloide-hydrogel, ou l'on mesure le potentiel electrocinetique des particules de polystyrene dans des hydrogels de polyacrylamide en utilisant une configuration de pinces optiques par interferometrie arriere-plan focal et controle de feed-back pour compenser la derive a basse frequence. Une generalisation de relations pertinentes dans le modele standard electrocinetique est utilise pour interpreter les experiences, en montrant comment le potentiel electrocintique depend de la force ionique, la chimie de surface, et la teneur en polymere du milieu de suspension. Un comportement similaire de l'inuence de la force ionique et de la chimie de surface sur le potentiel de surface des particules de polystyrene dans les deux hydrogels et de l'eau demineralisee est observee. Alors que le taux de reticulation, defini comme le rapport molaire de reticulation unites et le nombre total de monomeres, a un faible effet sur le potentiel de surface collodale inclusion, l'influence de la concentration en monomeres est importante. En outre, nous presentons des calculs theoriques de la dynamique des inclusions non charges spherique chargee, squelettes polymere compressible pour faciliter l'interpretation exacte de classique et electrique micro-rheologie, et l'electroacoustique. En outre, nous nous engageons l'analyse thorique de la reponse dynamique des hydrogels dans un canal a plaques paralleles a des stimuli externes, comme un gradient de pression et/ ou d'un champ electrique.
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Chen, Yunhua. "Multiple hydrogen bond arrays reinforced polymer colloidal materials." Thesis, University of Warwick, 2012. http://wrap.warwick.ac.uk/54479/.

Повний текст джерела
Анотація:
We demonstrate the combination of supramolecular chemistry (multiple hydrogen bonding) with polymer colloidal sciences in the creation of interesting materials. This provides us an access to the unique structures and properties that [sic] not possible to [sic] traditional materials. We first developed cellular polymer films made from 2-ureido-4[H]-pyrimidinone (UPy) quadruple hydrogen bonded soft latexes. The films show colloidal crystalline-type Bragg diffraction features when exposed to solvents, and do not suffer excessive and deteriorative uptake of water and, more remarkably can absorb high amounts of organic solvents. Impressively, Pickering high internal phase emulsion gels can be prepared by using these UPy functionalized particles as stabilizers under extremely low shear stress and short time. Moreover, we first used the UPy functionalzed macromonomer as non-colvalently [sic] crosslinker to prepare thermo-sensitive nanogel particles which are conventionally made using covalent-bond crosslinkers. Templated high internal phase emulsion hydrogel monoliths stabilzed by these nanogels can be prepared through injection moulding, which also exhibit excellent thermo-responsive properties. Alternatively, we also first created interesting Janus micro-beads with highly anisotropic and tunable internal architecture based on complementary hydrogen bonding interactions, rather than UPy self-complementary interactions, by single emulsion-droplet microfluidic technique.
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Ma, Manlung. "Exploration of peptide-based hydrogels /." View abstract or full-text, 2008. http://library.ust.hk/cgi/db/thesis.pl?CHEM%202008%20MA.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Debord, Justin. "Synthesis, characterization and properties of bioconjugated hydrogel nanoparticles." Diss., Available online, Georgia Institute of Technology, 2004:, 2004. http://etd.gatech.edu/theses/available/etd-06072004-131123/unrestricted/debord%5Fjustin%5F200405%5Fphd.pdf.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Zainuddin. "Synthesis and calcification of hydrogel biomaterials /." [St. Lucia, Qld.], 2005. http://www.library.uq.edu.au/pdfserve.php?image=thesisabs/absthe18693.pdf.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Aufderhorst-Roberts, Anders. "Microrheological characterisation of Fmoc derivative hydrogels." Thesis, University of Cambridge, 2013. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.608155.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Книги з теми "Colloidal hydrogel"

1

Rimmer, Steve. Biomedical hydrogels: Biochemistry, manufacture and medical applications. Oxford: Woodhead, 2011.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Li, Hua. Smart hydrogel modelling. Heidelberg: New York, 2009.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Câmara, Fabricio Vitor, and Leandro J. Ferreira. Hydrogels: Synthesis, characterization and applications. New York: Nova Biomedical, 2012.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

1961-, Stein David B., ed. Handbook of hydrogels: Properties, preparation & applications. Hauppauge, NY: Nova Science Publishers, 2009.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

1961-, Stein David B., ed. Handbook of hydrogels: Properties, preparation & applications. Hauppauge, NY: Nova Science Publishers, 2009.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Gerlach, Gerald, and Karl-Friedrich Arndt. Hydrogel sensors and actuators. Heidelberg: Springer, 2009.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

M, Ottenbrite Raphael, Huang Samuel J. 1937-, Park Kinam, American Chemical Society Meeting, and American Chemical Society. Division of Polymer Chemistry. (Washington, D.C.), eds. Hydrogels and biodegradable polymers for bioapplications. Washington, D.C: American Chemical Society, 1996.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Barbucci, Rolando. Hydrogels: Biological Properties and Applications. Milano: Springer-Verlag Milan, 2009.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Okano, Teruo, Raphael M. Ottenbrite, and Kinam Park. Biomedical applications of hydrogels handbook. New York: Springer, 2010.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Nair, Lakshmi S. Injectable hydrogels for regenerative engineering. Hackensack, NJ: Imperial College Press, 2016.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Частини книг з теми "Colloidal hydrogel"

1

Prokop, Ales, Evgenii Kozlov, Gianluca Carlesso, and Jeffrey M. Davidson. "Hydrogel-Based Colloidal Polymeric System for Protein and Drug Delivery: Physical and Chemical Characterization, Permeability Control and Applications." In Filled Elastomers Drug Delivery Systems, 119–73. Berlin, Heidelberg: Springer Berlin Heidelberg, 2002. http://dx.doi.org/10.1007/3-540-45362-8_3.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Kanai, Toshimitsu. "CHAPTER 6. Tunable Colloidal Crystals Immobilized in Soft Hydrogels." In Responsive Photonic Nanostructures, 119–49. Cambridge: Royal Society of Chemistry, 2013. http://dx.doi.org/10.1039/9781849737760-00119.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Roy, Niladri, Nabanita Saha, Takeshi Kitano, Eva Vitkova, and Petr Saha. "Effectiveness of Polymer Sheet Layer to Protect Hydrogel Dressings." In Trends in Colloid and Interface Science XXIV, 127–30. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-19038-4_22.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

McMurrough, I., R. Kelly, and D. Madigan. "Colloidal stabilization of lager beer." In European Brewery Convention, 663–72. Oxford University PressOxford, 1993. http://dx.doi.org/10.1093/oso/9780199634668.003.0073.

Повний текст джерела
Анотація:
Abstract Improvements in methods for determining the effects of pilot-scale dosage of beer with polyvinylpolypyrrolidone (PVPP) and silica hydrogel (SHG) on the removal of polyphenols and proteins, in relation to the colloidal stabilization of beer, were sought with the objectives of: 1) optimization of dosage rates 2) accurate shelf-life prediction 3) understanding better the influences of raw materials and their processing on colloidal stability.
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Rivera-Llabres, V., K. Gentry, and C. M. Rinaldi-Ramos. "Application of Magnetic Colloids in Hydrogels for Tissue Engineering." In Magnetic Soft Matter, 410–45. The Royal Society of Chemistry, 2023. http://dx.doi.org/10.1039/bk9781839169755-00410.

Повний текст джерела
Анотація:
Magnetic colloids have been used for numerous biomedical applications including drug delivery, thermal cancer treatment, imaging contrast agents, cell labeling and separations and in regenerative medicine. Recent efforts have sought to tackle pressing challenges in regenerative medicine by incorporating magnetic colloids into hydrogel matrices, resulting in magnetic hydrogels. The inclusion of magnetic colloids in the hydrogel matrix imparts remote actuation capability and magnetically tunable and anisotropic mechanical properties. In this chapter we discuss the use of magnetic nanoparticles as components of magnetic hydrogels or as sacrificial templates for patterning hydrogels, and we review recent regenerative medicine applications of such hydrogels in nerve, tendon, bone, cartilage and muscle tissue engineering and in stem cell culture.
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Juo, Anthony S. R., and Kathrin Franzluebbers. "Soil Chemistry." In Tropical Soils. Oxford University Press, 2003. http://dx.doi.org/10.1093/oso/9780195115987.003.0006.

Повний текст джерела
Анотація:
Soil chemistry deals with the chemical properties and reactions of soils. It is essentially the application of electrochemistry and colloid chemistry to soil systems. Major topics include surface charge properties of soil colloids, cation and anion sorption and exchange, soil acidity, soil alkalinity, soil salinity, and the effects of these chemical properties and processes on soil biological activity, plant growth, and environmental quality. The ability of the electrically charged surface of soil colloids to retain nutrient cations and anions is an important chemical property affecting the fertility status of the soil. There are two major sources of electrical charges on soil organic and inorganic colloids, namely, permanent or constant charges and variable or pH-dependent charges. Permanent or constant charges are the result of the charge imbalance brought about by isomorphous substitution in a mineral structure of one cation by another of similar size but differing valence (see also section 2.3.2). For example, the substitution of Mg2+ for Al3+ that occurs in Al-dominated octahedral sheets of 2:1 clay minerals results in a negative surface charge in smectite, vermiculite, and chlorite. The excess negative charges are then balanced by adsorbed cations to maintain electrical neutrality. Permanent negative charges of all 2:1 silicate minerals arise from isomorphous substitutions. The l:l-type clay mineral, kaolinite, has only a minor amount of permanent charge due to isomorphic substitution. The negative charges on kaolinite originate from surface hydroxyl groups on the edge of the mineral structure and are pH-dependent. Variable or pH-dependent charges occur on the surfaces of Fe and Al oxides, allophanes, and organic soil colloids. This type of surface charge originates from hydroxyl groups and other functional groups by releasing or accepting H+ ions, resulting in either negative or positive charges. Other functional groups are hydroxyl (OH) groups of Fe and/or Al oxides and allophanes and the COOH and OH groups of soil organic matter. Variable-charge soil colloids bear either a positive or a negative net surface charge depending on the pH of the soil. The magnitude of the charge varies with the electrolyte concentration of the soil solution.
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Nazir, Roshan, Abhay Prasad, Ashish Parihar, Mohammed S. Alqahtani, and Rabbani Syed. "Colloidal Nanocrystal-Based Electrocatalysts for Combating Environmental Problems and Energy Crisis." In Colloids - Types, Preparation and Applications. IntechOpen, 2021. http://dx.doi.org/10.5772/intechopen.95338.

Повний текст джерела
Анотація:
The serious threat that human beings face in near future will be shortage of fossil fuel reserves and abrupt changes in global climate. To prepare for these serious concerns, raised due to climate change and shortage of fuels, conversion of excessive atmospheric CO2 into valuable chemicals and fuels and production of hydrogen from water splitting is seen most promising solutions to combat the rising CO2 levels and energy crises. Amoung the various techniques that have been employed electrocatalytic conversion of CO2 into fuels and hydrogen production from water has gained tremendous interest. Hydrogen is a zero carbon-emitting fuel, can be an alternative to traditional fossil fuels. Therefore, researchers working in these areas are constantly trying to find new electrocatalysts that can be applied on a real scale to deal with environmental issues. Recently, colloidal nanocrystals (C-NCs)-based electrocatalysts have gained tremendous attention due to their superior catalytic selectivity/activity and durability compared to existing bulk electrodes. In this chapter, the authors discuss the colloidal synthesis of NCs and the effect of their physiochemical properties such as shape, size and chemical composition on the electrocatalytic performance and durability towards electrocatalytic H2 evolution reaction (EH2ER) and electrocatalytic CO2 reduction reactions (ECO2RR). The last portion of this chapter presents a brief perspective of the challenges ahead.
Стилі APA, Harvard, Vancouver, ISO та ін.
8

SAIEVAR-IRANIZAD, E. "Colloidal Semiconductors in Solar Hydrogen Production." In Energy and the Environment, 320–24. Elsevier, 1990. http://dx.doi.org/10.1016/b978-0-08-037539-7.50053-3.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Zheltonozhskaya, Tatyana, Nataliya Permyakova, and Boris Eremenko. "INTER- AND INTRAMOLECULAR POLYCOMPLEXES IN POLYDISPERSED COLLOIDAL SYSTEMS." In Hydrogen-Bonded Interpolymer Complexes, 201–34. WORLD SCIENTIFIC, 2009. http://dx.doi.org/10.1142/9789812709776_0008.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Sposito, Garrison. "Soil Colloids." In The Chemistry of Soils. Oxford University Press, 2016. http://dx.doi.org/10.1093/oso/9780190630881.003.0014.

Повний текст джерела
Анотація:
Soil colloidsare solid soil particles with diameters ranging from 0.01 to 10 μm, which means they range from clay to fine silt in size. The chemical composition of these particles may be that of a single mineral or humus, but usually they are heterogeneous mixtures of inorganic and organic materials. Regardless of their composition, the characteristic properties of soil colloids are that they are small in size and relatively insoluble in water. Soil colloids exhibit shapes and sizes that reflect both chemical composition and the effects of weathering processes. Kaolinite particles, for example, are roughly hexagonal plates comprising perhaps 50 unit layers, with each unit layer being a wafer having the thickness of about 0.7 nm, which are stacked irregularly and held together through hydrogen bonding. In soils, weathering produces rounding of the corners of the kaolinite hexagons and coats them with iron oxyhydroxide and humus polymers (Fig. 10.1). Fracturing of the plates also is apparent, along with a stair-step topography caused by the stacking of unit layers with different lateral dimensions. These heterogeneous features lead to soil kaolinite aggregates that are not well organized, with many stair-stepped clusters of stacked plates, interspersed with plates in edge-face contact, evidently because of differing surface charge on the edges and faces. Similar observations have been made for 2:1 clay minerals. Illite, for example, has platy particles comprising unit layers stacked irregularly, although the bonding mechanism for the stacking is cross-linking through an inner sphere surface complex of K+, not hydrogen bonding. These particles also exhibit a stair-step surface topography as well as frayed edges produced by weathering. Coatings of Al-hydroxy and humus polymers may be present. Additional complexity comes from nonuniform isomorphic substitutions, with regions of layer charge approaching 2.0 grading to regions with layer charge near 0.5. Smectite and vermiculite have lesser tendency to form colloids comprising extensive stacks because their layer charge is less than that of illite and, therefore, is less conducive to inner sphere surface complexation with K+.
Стилі APA, Harvard, Vancouver, ISO та ін.

Тези доповідей конференцій з теми "Colloidal hydrogel"

1

Susilowati, Endang, Sulistyo Saputro, Lina Mahardiani, Budi Hastuti, Nanik Dwi Nurhayati, Wirawan Ciptonugroho, and Nur Azizah Febriani. "Synthesis and Characterization of Silver Nanoparticles/Kappa Carrageenan-Chitosan Hydrogel Films as Antibacterial Material." In 8th International Conference on Advanced Material for Better Future, 51–61. Switzerland: Trans Tech Publications Ltd, 2025. https://doi.org/10.4028/p-di9ayq.

Повний текст джерела
Анотація:
This study proposed to synthesize the silver nanoparticle/kappa carrageenan-chitosan (AgNPs/KCar-Chit) hydrogel films and identify the effects of AgNPs on their physical properties and antibacterial performance. The AgNPs/KCar-Chit has been synthesized in 2 stages. The first stage was the synthesis of AgNPs/KCar colloids via the chemical reduction route assisted by microwave irradiation. In the second stage, the silver/kappa carrageenan (AgNPs/KCar) colloid was incorporated with chitosan, and a film was made using the casting technique. The silver nanoparticles formed were validated with a UV-Vis spectrophotometer through the absorption peak at about 400 nm wavelength. FTIR spectra exhibited peaks emerging at the wavenumber 1559.89 cm-1 – 1561.75 cm-1, indicating the formation of the carrageenan-chitosan polyelectrolyte complex. The AgNPs/KCar-Chit hydrogel films had an average solubility of 32%-34%, swelling of 300%-304%, and the surface morphology formed aggregates. The mechanical properties were particularly affected by the incorporation of chitosan. Still, the introduction of AgNPs into the films also influenced the tensile strength, elongation, and elasticity of the AgNPs/KCar-Chit hydrogel film. Further, the greater concentration of AgNPs enhanced the antibacterial performance of the AgNPs/KCar-Chit hydrogel films.
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Desphande, Deepti S., and A. K. Bajpai. "Green synthesis of colloidal silver nanoparticles reinforced PVA-corn starch hydrogel films." In PROF. DINESH VARSHNEY MEMORIAL NATIONAL CONFERENCE ON PHYSICS AND CHEMISTRY OF MATERIALS: NCPCM 2018. Author(s), 2019. http://dx.doi.org/10.1063/1.5098714.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Mell, Sarah, Haley W. Jones, Yuriy Bandera, and Stephen H. Foulger. "Hydrogel Films Encapsulating Fully Organic Scintillating Crystalline Colloidal Arrays with Tunable Emission." In Integrated Photonics Research, Silicon and Nanophotonics. Washington, D.C.: OSA, 2021. http://dx.doi.org/10.1364/iprsn.2021.jtu1a.34.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Cho, Jae Kyu, Zhiyong Meng, L. Andrew Lyon, Victor Breedveld, Albert Co, Gary L. Leal, Ralph H. Colby, and A. Jeffrey Giacomin. "Direct Observation of Phase Transition Dynamics in Suspensions of Soft Colloidal Hydrogel Particles." In THE XV INTERNATIONAL CONGRESS ON RHEOLOGY: The Society of Rheology 80th Annual Meeting. AIP, 2008. http://dx.doi.org/10.1063/1.2964500.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Rutirawut, T., A. Sinsarp, K. Tivakornsasithorn, T. Srikhirin, and T. Osotchan. "Phase shift on reflection from polystyrene colloidal photonic crystal film on hydrogel surface." In International Conference on Photonics Solutions 2015, edited by Surasak Chiangga and Sarun Sumriddetchkajorn. SPIE, 2015. http://dx.doi.org/10.1117/12.2195879.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Yoshida, Koki, Shota Yamawaki, and Hiroaki Onoe. "Ethanol Driven Micro-Robots with Photonic Colloidal Crystal Hydrogel for Exploring and Sensing Stimuli." In 2021 IEEE 34th International Conference on Micro Electro Mechanical Systems (MEMS). IEEE, 2021. http://dx.doi.org/10.1109/mems51782.2021.9375420.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Mell, Sarah, Haley W. Jones, Yuriy Bandera, and Stephen H. Foulger. "Organic X-Ray Radioluminescent Crystalline Colloidal Arrays Encapsulated in Poly(Ethylene Glycol) Methacrylate Based Hydrogel Films." In Bio-Optics: Design and Application. Washington, D.C.: OSA, 2021. http://dx.doi.org/10.1364/boda.2021.jw1a.12.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Nutter, Julia, Nuria Acevedo, and Xiaolei Shi. "Development and characterization of a novel, edible oleocolloid made of rice bran wax oleogel and sodium alginate-kappa-carrageenan hydrogel." In 2022 AOCS Annual Meeting & Expo. American Oil Chemists' Society (AOCS), 2022. http://dx.doi.org/10.21748/ikew5118.

Повний текст джерела
Анотація:
Even though tropical oils are extensively used in the food industry for their physicochemical characteristics; there are environmental concerns regarding their production. Therefore, suitable alternatives to solid fats are a challenge. This work aims to develop and characterize plant-based oleocolloids with the potential to mimic solid fats. Oleocolloids (OC) were prepared by combining an oleogel (OG) composed of 9 wt% rice bran wax (RBW), monoglycerides (MG, 0-2 wt%), and soybean oil with a hydrogel (HG) formulated with 1 wt% sodium alginate and 0.5 wt% kappa-carrageenan in water. Two OG:HG ratios; 7:3 and 8:2 were prepared and analyzed. Homogeneous and self-standing formulations were selected and characterized in their rheological properties by amplitude sweep tests. The microstructure was assessed using confocal scanning laser microscopy (CSLM) and the solid fat content (SFC) profile through pNMR. Micrographs showed that all samples exhibited HG-in-OG structure since HG droplets were dispersed in the OG phase, and their size decreased upon MG addition, accordingly with its emulsifying capacity. Overall, the elastic modulus (G’) and yield stress (σ*) values of 8:2OC were higher than those of 7:3OC. In 8:2OC, G’ and σ* were enhanced with the increase in MG concentration, suggesting that MG participates in the structuring mechanism of the OC, modifies the microstructure, and imparts superior mechanical strength to this matrix. The SFC remained between 6.5 and 8.5% for all OC at temperatures between 10 and 60°C and then it sharply decreased as the temperature approached the melting point (∼70°C). Significance of the work: Oleogel/hydrogel colloidal mixtures have the potential to act as healthy and sustainable alternatives to conventional solid fats; however limited research has been focused on the food applicability of these matrices. This work demonstrated that the novel plant-based oleocolloids developed hold promise to replace solid fats in high-fat foods while enhancing their nutritional profile.
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Eloi, Jean-Charles, Myles P. Worsley, Paul A. Sermon, William Healy, and Christine Dimech. "Design of nanoengineered hybrid PVA/PNIPAm/CaCl2/SiO2-Polystyrene (PSt) colloidal crystal hydrogel coatings that sweat/rehydrate H2O from the atmosphere to give sustainable cooling and self-indicate their state." In SPIE Nanoscience + Engineering, edited by Stefano Cabrini, Gilles Lérondel, Adam M. Schwartzberg, and Taleb Mokari. SPIE, 2016. http://dx.doi.org/10.1117/12.2237561.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Muradov, Nazim Z., and Ali T-Raissi. "Solar Production of Hydrogen Using “Self-Assembled’’ Polyoxometalate Photocatalysts." In ASME 2005 International Solar Energy Conference. ASMEDC, 2005. http://dx.doi.org/10.1115/isec2005-76071.

Повний текст джерела
Анотація:
Near-term and cost-effective production of solar hydrogen from inexpensive and readily available hydrogen containing compounds (HCCs) can boost the prospects of future hydrogen economy. In this paper, we assess the prospects of solar-assisted conversion of HCCs into hydrogen using polyoxometalate (POM) based photocatalysts, such as isopolytunstates (IPT) and silicotungstic acid (STA). Upon exposure to solar photons, IPT aqueous solutions containing various HCCs (e.g. alcohols, alkanes, organic acids, sugars, etc.) produce hydrogen gas and corresponding oxygenated compounds. The presence of small amounts of colloidal platinum increases the rate of hydrogen evolution by one order of magnitude. A solar photocatalytic flat-bed reactor, approximately 1.2 m × 1.2 m in size, was fabricated and tested for production of hydrogen from water-alcohol solutions containing IPT and STA and small amounts of colloidal Pt. The solar photoreactor tests demonstrated steady-state production of hydrogen gas for several days. IPT immobilized on granules of anion exchange resins with quaternary ammonium active groups show good photocatalytic activity for hydrogen production from water-alcohol solutions exposed to near-UV or solar radiation.
Стилі APA, Harvard, Vancouver, ISO та ін.

Звіти організацій з теми "Colloidal hydrogel"

1

Asher, Sanford A. Novel Approaches to Glucose Sensing Based on Polymerized Crystalline Colloidal Array Hydrogel Sensors. Fort Belvoir, VA: Defense Technical Information Center, December 2006. http://dx.doi.org/10.21236/ada631491.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Asenath-Smith, Emily, Emma Ambrogi, Eftihia Barnes, and Jonathon Brame. CuO enhances the photocatalytic activity of Fe₂O₃ through synergistic reactive oxygen species interactions. Engineer Research and Development Center (U.S.), September 2021. http://dx.doi.org/10.21079/11681/42131.

Повний текст джерела
Анотація:
Iron oxide (α-Fe₂O₃, hematite) colloids were synthesized under hydrothermal conditions and investigated as catalysts for the photodegradation of an organic dye under broad-spectrum illumination. To enhance photocatalytic performance, Fe₂O₃ was combined with other transition-metal oxide (TMO) colloids (e.g., CuO and ZnO), which are sensitive to different regions of the solar spectrum (far visible and ultraviolet, respectively), using a ternary blending approach for compositional mixtures. For a variety of ZnO/Fe₂O₃/CuO mole ratios, the pseudo-first-order rate constant for methyl orange degradation was at least double the sum of the individual Fe₂O₃ and CuO rate constants, indicating there is an underlying synergy governing the photocatalysis reaction with these combinations of TMOs. A full compositional study was carried out to map the interactions between the three TMOs. Additional experiments probed the identity and role of reactive oxygen species and elucidated the mechanism by which CuO enhanced Fe₂O₃ photodegradation while ZnO did not. The increased photocatalytic performance of Fe2O3 in the presence of CuO was associated with hydroxyl radical ROS, consistent with heterogeneous photo-Fenton mechanisms, which are not accessible by ZnO. These results imply that low-cost photocatalytic materials can be engineered for high performance under solar illumination by selective pairing of TMOs with compatible ROS.
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії