Добірка наукової літератури з теми "Collision reaction"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Collision reaction".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Статті в журналах з теми "Collision reaction"

1

ANCHISHKIN, D., V. VOVCHENKO, and S. YEZHOV. "HADRONIC REACTION ZONES IN RELATIVISTIC NUCLEUS–NUCLEUS COLLISIONS." International Journal of Modern Physics E 22, no. 06 (June 2013): 1350042. http://dx.doi.org/10.1142/s0218301313500420.

Повний текст джерела
Анотація:
On the basis of the proposed algorithm for calculation of the hadron reaction rates, the space-time structure of the relativistic nucleus–nucleus collisions is studied. The reaction zones and the reaction frequencies for various types of reactions are calculated for Alternating Gradient Synchrotron (AGS) and Super Proton Synchrotron (SPS) energies within the microscopic transport model. The relation of the reaction zones to the kinetic and chemical freeze-out processes is discussed. It is shown that the space-time freeze-out layer is most extended in time in the central region, while, especially for higher collision energies, the layer becomes very narrow at the sides. The parametrization of freeze-out hypersurface in the form of specific hyperbola of constant proper time was confirmed. The specific characteristic time moments of the fireball evolution are introduced. It is found that the time of the division of a reaction zone into two separate parts does not depend on the collision energy. Calculations of the hadronic reaction frequency show that the evolution of nucleus–nucleus collision can be divided into two hadronic stages.
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Anggara, Kelvin, Lydie Leung, Matthew J. Timm, Zhixin Hu, and John C. Polanyi. "Approaching the forbidden fruit of reaction dynamics: Aiming reagent at selected impact parameters." Science Advances 4, no. 10 (October 2018): eaau2821. http://dx.doi.org/10.1126/sciadv.aau2821.

Повний текст джерела
Анотація:
Collision geometry is central to reaction dynamics. An important variable in collision geometry is the miss-distance between molecules, known as the “impact parameter.” This is averaged in gas-phase molecular beam studies. By aligning molecules on a surface prior to electron-induced dissociation, we select impact parameters in subsequent inelastic collisions. Surface-collimated “projectile” molecules, difluorocarbene (CF2), were aimed at stationary “target” molecules characterized by scanning tunneling microscopy (STM), with the observed scattering interpreted by computational molecular dynamics. Selection of impact parameters showed that head-on collisions favored bimolecular reaction, whereas glancing collisions led only to momentum transfer. These collimated projectiles could be aimed at the wide variety of adsorbed targets identifiable by STM, with the selected impact parameter assisting in the identification of the collision geometry required for reaction.
Стилі APA, Harvard, Vancouver, ISO та ін.
3

He, Xiaohu, Victor Wei-Keh Chao (Wu), Keli Han, Ce Hao, and Yan Zhang. "Collision time of a triatomic chemical reaction A + BC." Canadian Journal of Chemistry 93, no. 6 (June 2015): 607–14. http://dx.doi.org/10.1139/cjc-2014-0527.

Повний текст джерела
Анотація:
The collision time is an important quantity of an elementary chemical reaction and describes the speed of the collision process in a collision reaction. In this study, we present a generalized method to calculate the collision time of a triatomic reaction in which the collision time is defined by the sum of the incoming time, the intermediate complex time, and the outgoing time. Two variables including the total distance Rtotal and Ravg, the average value of Rtotal over time, are used to compute the three components of the collision time. We compute three triatomic reactions including Ca + HCl → CaCl + H, O + HCl → OH + Cl/OCl + H, and O + HF → OH + F at different collision energies and initial diatomic vibrational levels using the quasi-classical trajectory method to confirm that the method could be reliable and reasonable. The time evolutions of Rtotal could efficiently classify the direct and indirect reactive mechanisms and reveal a distinct discrepancy of the two mechanisms. As the collision energy and initial diatomic vibrational level increase, the percentage of direct reaction trajectories increases. At the same time, the average and maximal values of collision time decrease. Comparing the maximal collision time and the reactive probability distributions of the products, it could be found that most reactive trajectories’ collision time is less than 2 ps. Moreover, the present calculations indicate that the method could be applicable to estimate the lifetime of the intermediate complex for the reaction systems with deep potential wells and the collision time of the reactions with a direct abstraction mechanism.
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Gilbert, RG, and MJ McEwan. "The Pressure Dependance of Ion-Molecule Reaction Rate Coefficients: CH3+ + HCN/He." Australian Journal of Chemistry 38, no. 2 (1985): 231. http://dx.doi.org/10.1071/ch9850231.

Повний текст джерела
Анотація:
Illustrative calculations are presented on the application to termolecular ion-molecule reactions of methods recently developed for the study of fall-off effects in neutral thermal unimolecular reactions. The energy-dependent microscopic reaction rate, k(E), is obtained from RRKM theory with activated complex parameters first estimated by using ab initio and spectroscopic data and then refined to yield the appropriate pressure-saturated rate. The collisional energy transfer probability distribution function, P(E,E′), is obtained by fitting the fall-off data, guided by information from trajectory calculations. Overall rate coefficients are computed from accurate solutions to the appropriate integral master equation. The illustrative calculations are for the CH3+ + HCN+He → C2H4N+ +He system. It is shown that pressure-dependent data for ion-molecule systems can yield reliable information on P(E,E′). Collisions with the bath gas (He) are comparatively weak, with the average downward energy transferred per collision being c. 8 kJ mol-1. The product of the reaction before any isomerization can occur is shown to be protonated methyl isocyanide , H3CNCH+.
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Gilbert, RG. "Mechanism and Models for Collisional Energy Transfer in Highly Excited Large Polyatomic Molecules." Australian Journal of Chemistry 48, no. 11 (1995): 1787. http://dx.doi.org/10.1071/ch9951787.

Повний текст джерела
Анотація:
Collisional energy transfer in highly excited molecules (say, 200-500 kJ mol-1 above the zero-point energy of reactant, or of product, for a recombination reaction) is reviewed. An understanding of this energy transfer is important in predicting and interpreting the pressure dependence of gas-phase rate coefficients for unimolecular and recombination reactions. For many years it was thought that this pressure dependence could be calculated from a single energy-transfer quantity, such as the average energy transferred per collision. However, the discovery of 'supercollisions' (a small but significant fraction of collisions which transfer abnormally large amounts of energy) means that this simplistic approach needs some revision. The 'ordinary' (non-super) component of the distribution function for collisional energy transfer can be quantified either by empirical models (e.g., an exponential-down functional form) or by models with a physical basis, such as biased random walk (applicable to monatomic or diatomic collision partners) or ergodic (for polyatomic collision partners) treatments. The latter two models enable approximate expressions for the average energy transfer to be estimated from readily available molecular parameters. Rotational energy transfer, important for finding the pressure dependence for recombination reactions, can for these purposes usually be taken as transferring sufficient energy so that the explicit functional form is not required to predict the pressure dependence. The mechanism of 'ordinary' energy transfer seems to be dominated by low-frequency modes of the substrate, whereby there is sufficient time during a vibrational period for significant energy flow between the collision partners. Supercollisions may involve sudden energy flow as an outer atom of the substrate is squashed between the substrate and the bath gas, and then is moved away from the interaction by large-amplitude motion such as a ring vibration or a rotation; improved experimental and theoretical understanding of this phenomenon is seen as an important area for future development.
Стилі APA, Harvard, Vancouver, ISO та ін.
6

ZHANG, LI, CHAO-YONG ZHU, GANG JIANG, CHAOYUAN ZHU, and Z. H. ZHU. "A QUASICLASSICAL TRAJECTORY STUDY OF REACTIVE SCATTERING ON AN ANALYTICAL POTENTIAL ENERGY SURFACE FOR GeH2 SYSTEM." Journal of Theoretical and Computational Chemistry 10, no. 02 (April 2011): 147–63. http://dx.doi.org/10.1142/s0219633611006426.

Повний текст джерела
Анотація:
A quasiclassical trajectory method was employed to study reaction Ge+H 2 (v=0, j=0) and reverse reaction H+GeH (v=0, j=0) on an analytical potential energy surface obtained from simplified many-body expansion method with fitting to B3P86/CC-pVTZ calculations around a global minimum and a long-range van de Waals well plus spectroscopy data for diatomic molecules GeH and H2 . Reaction probabilities from both reaction and reverse reaction were calculated. Dominant reaction is complex-forming reaction Ge+H2 (v=0, j=0) → GeH2 , and its cross section is 10 times bigger than that of complex-forming reaction from the reverse reaction. There is no threshold effect for complex-forming reaction and the cross sections for both complex-forming reactions decrease with the increase of collision energy. Life time of complex is shown to be decreasing with increase of collision energy. Dominant reverse reaction is reaction H + GeH (v=0,j=0) → Ge+H2 ; the reaction probability decreases with the increase of collision energy and differential cross section shows that this reverse reaction has almost equal angular distribution at low collision energy and mostly forward scattering at high collision energy.
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Blaisten-Barojas, Estela. "MOLECULAR DYNAMICS STUDY OF CLUSTER GROWTH AND POLYMER DEGRADATION." International Journal of Modern Physics B 06, no. 23n24 (December 1992): 3643–55. http://dx.doi.org/10.1142/s0217979292001705.

Повний текст джерела
Анотація:
This work is an overview on two molecular dynamics studies of processes at temperatures characteristic of a flame — growth of silicon clusters from binary cluster collisions and thermal degradation of polymers. In the first study, silicon clusters grow as a consequence of cluster-cluster collisions by forming transient agglomerates that coalesce in a few picoseconds. The collision energy accommodates within the cluster favoring the formation of globular larger clusters regardless of the collision energy and of the impact parameter. On the average the probability for the clusters to stick upon collision is almost 1, showing clearly that the process is irreversible. The second study concerns simple polymeric chains undergoing fragmentation when they burn. These fragments are products of thermal degradation. The consorted sequence of depolymerization reactions arises after fragmentation. As a result, a sample of degrading fragments is formed where the polymer chains have dramatically coiled. These fragments self trap themselves in coiled conformations due to the cooling effect produced by the depolymerization reaction.
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Dong, Yan Hua, and Xiao Jia Li. "Ab Initio Molecular Dynamics Simulations on High-Temperature Reaction Rates of Reactions KO+CO==K+CO2, KO+C=K+CO, and K2O+CO2==K2CO3." Advanced Materials Research 875-877 (February 2014): 1037–41. http://dx.doi.org/10.4028/www.scientific.net/amr.875-877.1037.

Повний текст джерела
Анотація:
In this paper, we present a novel approach for calculating chemical reaction rates based on molecular collision theory, in which molecular collision cross sections are calculated by averaging over all reactive trajectories from ab initio molecular dynamics simulations. The molecular collision radius is determined by both reactive and non-reactive trajectories of molecular dynamics under constant temperature. Thus, both steric and temperature effects have been take into account for molecular collision cross sections. We have applied this approach to calculate reaction rates of reactions KO+CO==K+CO2, KO+C==K+CO, and K2O+CO2==K2CO3 under high temperature. It also shows that under higher temperature, the probabilities of a successful reaction resulting from particle collision are low, because the products are not stable.
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Wu, Jun-Lin, Zhi-Hui Li, Ao-Ping Peng, Xing-Cai Pi, and Xin-Yu Jiang. "Utility computable modeling of a Boltzmann model equation for bimolecular chemical reactions and numerical application." Physics of Fluids 34, no. 4 (April 2022): 046111. http://dx.doi.org/10.1063/5.0088440.

Повний текст джерела
Анотація:
A Boltzmann model equation (kinetic model) involving the chemical reaction of a multicomponent gaseous mixture is derived based on Groppi's work [“A Bhatnagar–Gross–Krook-type approach for chemically reacting gas mixtures,” Phys. Fluids 16, 4273 (2004)], in which the relaxation parameters of elastic collision frequency for rigid elastic spheres are obtained based on the collision term, and the pivotal collision frequency of the chemical reaction is deduced from the chemical reaction rate that is determined by the direct simulation Monte Carlo (DSMC) method. This kinetic model is shown to be conservative, and the H theorem for an endothermic reaction is proven. In the framework of the gas-kinetic unified algorithm, the discrete velocity method, finite volume method, and implicit scheme are applied to solve the proposed kinetic model by introducing a suitable boundary condition at the wall surface. For hypersonic flows around a cylinder, the proposed kinetic model and the corresponding numerical methods are verified for both endothermic and exothermic reactions by comparison of the model's results with results from the DSMC method. The different influences of endothermic and exothermic reactions are also given. Finally, the proposed kinetic model is also used to simulate an exothermic reaction-driven flow in a square cavity.
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Kang, Lihua, and Bin Dai. "Effect of collision energy on cross sections and product alignments for the C(1D) + H2 (v = 0, j = 0) insertion reactions." Canadian Journal of Chemistry 88, no. 5 (May 2010): 453–57. http://dx.doi.org/10.1139/v10-014.

Повний текст джерела
Анотація:
Quasi-classical trajectory (QCT) calculations of total reaction probabilities and vibrationally state-resolved reaction probabilities at total angular momentum J = 0 as a function of collision energy for the C(1D) + H2 (v = 0, j = 0) reactions have been performed on an ab initio potential-energy surface [ J. Chem. Phys. 2001, 115, 10701]. In addition, the integral cross sections as a function of collision energy have been carried out for the same reaction. The product rotational alignments have also been calculated, which are almost invariant with respect to collision energies.
Стилі APA, Harvard, Vancouver, ISO та ін.

Дисертації з теми "Collision reaction"

1

Keane, Norman Washington. "Reaction dynamics of short lived collision complexes." Thesis, University of Manchester, 1988. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.329286.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

GYLLING, MARTIN. "Sensorless collision detection with safe reaction for a robot manipulator." Thesis, KTH, Skolan för industriell teknik och management (ITM), 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-263829.

Повний текст джерела
Анотація:
This thesis is about collision detection and reaction for robot manipulators without joint torque sensors. The method for detecting collisions used by [1], [2] is based on an algorithm that estimates the residual torque i.e. the friction- and external torque in each joint by only using position data from encoders and the currents in each joint on the robot. The dynamic models for the robot in the residual torque estimation algorithm are calculated using the Lagrangian formulation. These models consist of different components that influence the joint torques such as inertia, centripetal acceleration, coriolis acceleration and gravity. By modelling the friction torque in the joints, it is possible to compare the modelled friction torque with the estimated residual torque from the algorithm. The difference between these torques results in an estimation of the external torque acting on each joint. Thresholds for the external torques are experimentally determined, when the external torques exceed these, a collision is detected by the robot. After a collision has been detected, the robot needs to react in a safe way to minimize the risk of damaging the robot and its environment. Collision reaction strategies have been proposed by [3], a few of these are implemented and compared between each other for different cases of collision in this thesis. The collision detection and different collision reactions were implemented on a UR5-e robot from Universal robots. The results showed that the simple reaction of braking the robot and then maintaining the position using position control is the quickest way of stopping the motion of the robot after a collision has been detected. Due to the hazard of someone getting stuck between the robot and the environment the former explained strategies were not chosen as an optimal collision strategy, instead a strategy where the robot brakes and then switches to a compliant control mode showed to be a better solution since the stopping time is only slightly longer but the impulse of the collision is the best of all the different strategies that were tested. Where the previous research in the field of sensorless collision detection that has been referenced in this report only has focused on the method of detecting the collision, this thesis continues the research by applying different reaction strategies on a robot without torque sensors and torque control capabilities. By combining the method for collision detection from [1], [2] together with reaction strategies from [3], this thesis has shown how robot manipulators that do not have expensive torque sensors in each joint can be made safer.
Detta examensarbete handlar om kollisionsdetektering och kollisionsreaktion för robotarmar utan vridmomentssensorer. Detekteringsmetoden som tidigare använts av [1], [2] bygger på en algoritm som uppskattar residual vridmomentet d.v.s. friktions- samt det externa vridmomentet i varje axel genom att enbart nyttja positionsgivare och strömsensorer på roboten. De dynamiska modellerna för roboten som används i algoritmen för beräkning av residual vridmomentet framtags med hjälp av Lagranges ekvationer, dessa modeller består av olika komponenter som påverkar vridmomenten i robotens leder så som tröghetsmoment, centripetalacceleration, corioliseffekt samt gravitation. Genom att ta fram modeller för friktionsvridmomenten i robotens axlar går det att jämföra de beräknade friktionsvridmomenten från modellerna med de uppskattade residual vridmomenten från algoritmen, skillnaden mellan dessa två vridmoment blir då en uppskattning på det externa vridmomentet som roboten utsätts för. Tröskelvärden för de externa vridmomenten bestäms genom experiment, dessa tröskelvärden är till för att upptäcka kollisioner genom att övervaka när de externa vridmomenten överskrider dessa värden. Till följd av att en kollision har upptäckts måste roboten reagera på ett sätt som minimerar risken att roboten eller omgivningen tar skada. Strategier för hur en robot kan reagera då en kollision inträffar har tagits fram av [3], ett par av dessa implementeras och jämförs för olika kollisionsfall i denna rapport. Kollisionsdetekteringen samt olika reaktionsstrategier implementerades på en UR5-e robot från Universal robots. Resultaten visade att den enkla reaktionen där roboten bromsar och sedan bibehåller positionen med hjälp av positionsreglering var den reaktion som var snabbast att stoppa rörelsen av roboten. På grund av risken att någon kan fastna mellan roboten och omgivningen valdes inte strategin som tidigare beskrevs. En strategi där roboten bromsar och sedan går in i ett fridrifts läge visade sig vara en bättre lösning då tiden att få stopp på roboten var bara något längre än den 2 snabbaste strategin samt att impulsen vid en kollision i genomsnitt var lägst av alla strategier som prövades. Då tidigare forskning i området för sensorlös kollisonsdetektering som refereras i denna rapport enbart har fokuserat på kollision detekteringen, bygger denna rapport vidare på den forskning som utförts genom att lägga till och implementera olika strategier för kollisionsreaktion på en robot utan vridmomentsensorer eller vridmomentsreglering. Genom att kombinera metoden för kollisionsdetektering tagen från [1], [2] med reaktions strategier från [3] har detta examensarbete visat hur en robotarm som inte har dyra vridmomentssensorer kan göras säkrare.
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Dexter, Matthew A. "Thermodynamic and parametric optimisation of collision/reaction cells in plasma-source mass spectrometry." Thesis, Loughborough University, 2003. https://dspace.lboro.ac.uk/2134/34294.

Повний текст джерела
Анотація:
Inductively coupled plasma mass spectrometry (ICP-MS) is an established technique for elemental analysis. Collision/reaction cell ICP-MS is a recently established variation of the technique that facilitates the determination of elements suffering from spectral interference. Two distinct collision cell ion energy effects have been identified: the ion kinetic energy effect (IKEE) and kinetic energy discrimination (KED). IKEE influences the reactivity of the cell by altering the ion energy. Slowing ions by increasing the potential difference between the hexapole pole bias and plasma increases the rate of exothermic reactions in the cell. KED excludes slow, cell-formed ions from the mass analyser by the use of an appropriate potential difference between the quadrupole and hexapole pole biases.
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Neves, Denise Regina das [UNESP]. "Avaliação de interface de reação e colisão para eliminar interferências poliatômicas na análise de etanol combustível por ICP-MS." Universidade Estadual Paulista (UNESP), 2010. http://hdl.handle.net/11449/97823.

Повний текст джерела
Анотація:
Made available in DSpace on 2014-06-11T19:29:07Z (GMT). No. of bitstreams: 0 Previous issue date: 2010-10-04Bitstream added on 2014-06-13T18:38:47Z : No. of bitstreams: 1 neves_dr_me_araiq.pdf: 1981084 bytes, checksum: 865cb404889acf20e4c3ed4fe5b2320e (MD5)
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
A espectrometria de massa com plasma acoplado indutivamente empregando interface de reação/colisão (CRI-ICP-MS) foi avaliada para determinação simultânea de Al, Ba, Co, Cu, Cr, Fe, Mg, Mn, Mo, Na, Ni, Pb, Sb, Si, V e Zn em etanol combustível. Para as análises, amostras de etanol combustível foram diluídas vinte vezes de modo a conter 1% v/v de ácido nítrico e 10 μg L-1 Y utilizado como padrão interno. As calibrações foram feitas por ajuste de matriz utilizando etanol P.A.. Como gás de reação/colisão utilizou-se o hidrogênio e como gases auxiliares foram utilizados argônio e oxigênio. A CRI foi fundamental para a determinação da maioria dos analitos, principalmente Fe, Cr, Si e Mg. A escolha da melhor vazão do gás e a otimização dos parâmetros instrumentais foram estudadas utilizando soluções etanólicas contendo 10 μg L-1 dos analitos. Os limites de detecção para 27Al, 138Ba, 59Co,63Cu, 55Mn, 98Mo, 23Na, 58Ni, 208Pb, 121Sb, 51V e 64Zn em etanol por CRI-ICP-MS utilizando 20 mL min-1 de H2 no skimmer foram 0,2; 0,1; 0,005; 0,3; 0,02; 0,05; 0,8 0,2; 0,01; 0,1; 0,4 e 0,3 μg L-1, respectivamente. Os limites de detecção para 52Cr, 56Fe, 24Mg, 28Si em etanol utilizando 60 mL min-1 de H2 no skimmer foram 0,2; 0,1; 0,2 e 13,9 μg L-1. A validação do método foi feita por meio de testes de adição e recuperação dos analitos. Os intervalos de recuperação encontrados para 27Al, 138Ba, 59Co, 63Cu, 55Mn, 98Mo, 23Na, 58Ni, 208Pb, 121Sb, 51V, 64Zn, 52Cr, 56Fe, 24Mg, 28Si se apresentaram entre 78 e 114%
The use of inductively coupled plasma mass spectrometry with collision/reaction interface (CRI) was evaluated for simultaneous determination of Al, Ba, Co, Cu, Cr, Fe, Mg, Mn, Mo, Na, Ni, Pb, Sb, Si, V e Zn in ethanol fuel. Samples were diluted 1:20 v/v in a solution containing 1% v/v nitric acid and 10 μg L-1 Y used as internal standard. For all elements the instrument was operated in CRI-ICP-MS mode. The use of CRI was mandatory for Fe, Cr, Si e Mg. Hydrogen was evaluated as the reaction/collision gas and argon and oxygen were used as auxiliary gas. Selection of best reaction gas flow rate and optimization of the instrumental parameters were carried out using ethanolic solutions containing analytes at 10 μg L-1. Limits of detection for 27Al, 138Ba, 59Co, 63Cu, 55Mn, 98Mo, 23Na, 58Ni, 208Pb, 121Sb, 51V e 64Zn in ethanol fuel by CRI-ICP-MS using 20 mL min-1 H2 in the skimmer cone 0.2; 0.1; 0.005; 0.3; 0.02; 0.05; 0.8; 0.2; 0.01; 0.1; 0.4 and 0.3 μg L-1, respectively. The detection limits for 52Cr, 56Fe, 24Mg, 28Si using 60 mL min-1 H2 in the skimmer cone were respectively 0.2; 0.1; 0.2 and 13.9 μg L-1. Method validation was accomplished by the addition and recovery studies. Recoveries found for 27Al, 138Ba, 59Co, 63Cu, 55Mn, 98Mo, 23Na, 58Ni, 208Pb, 121Sb, 51V e 64Zn, 52Cr, 56Fe, 24Mg, 28Si were within the 78 - 114% interval
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Schreiner, Lisa Marie. "An Investigation of the Effectiveness of A Strobe Light As An Imminent Rear Warning Signal." Thesis, Virginia Tech, 2000. http://hdl.handle.net/10919/35887.

Повний текст джерела
Анотація:
Strobe lights have been used successfully in many transportation applications to increase conspicuity. It was hoped that a strobe signal could also be applied to more effectively warn distracted drivers of an unexpected rear end conflict. This "proof of concept study" used a 2 x 2 between-subjects design using thirty-three subjects (16 subjects in the strobe condition, 17 subjects in the no strobe condition) who were divided into two age groups: younger (25-35) and older (60-70). The driver unexpectedly encountered a stopped "surrogate" vehicle in the roadway (with or without a rear-facing strobe light) in a controlled on-road study at the Smart Road located at the Virginia Tech Transportation Institute (VTTI). Results suggested that younger subjects' perception times improved as a result of being exposed to the strobe signal. Faster perception of the situation allowed more time to initiate a brake response. Older subjects perception and response times remained unchanged by the strobe signal. More severe initial steering rate and subjective responses indicated that the strobe conveyed a sense of urgency irrespective of age. Visual distraction of subjects proved difficult. Hence, the impact of the strobe on attracting the attention of a visually distracted driver to the stimulus could not be as fully investigated as originally hoped. The formulation of a more difficult distraction task was suggested for future research to truly assess the ability of the strobe light at alerting visually distracted drivers.
Master of Science
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Girard, Bertrand. "Etude de la collision reactive ii + f -> if + i par fluorescence induite par laser." Paris 6, 1987. http://www.theses.fr/1987PA066398.

Повний текст джерела
Анотація:
Etude de cette collision par la methode des faisceaux croises et grace a la transition (b <- x) intense, dans le visible, apres analyse de la saturation du processus d'excitation laser de cette transition de if forme. Deduction des populations des differents niveaux rovibrationnels de l'etat x. Etablissement d'une cartographie detaillee de la distribution rotationnelle des niveaux vibrationnels v = 8 a 20 de l'etat x de if: aspect bimodal qui implique la coexistence de deux chemins reactionnels differents. Attribution a un artefact de l'important signal observe anterieurement pour v = 0. Mesures preliminaires de la section efficace differentielle par effet doppler
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Wright, Victoria E. "Ion mobility-mass spectrometry studies of organic and organometallic complexes and reaction monitoring." Thesis, Loughborough University, 2013. https://dspace.lboro.ac.uk/2134/14275.

Повний текст джерела
Анотація:
Ion mobility (IM) spectrometry is a gas-phase electrophoretic technique in which ions are separated on the basis of their relative mobility in the presence of a weak electric field gradient and a buffer gas. Ion mobility-mass spectrometry (IM-MS) has the capability of separating ions based on m/z, size and shape, providing additional structural information compared to using mass spectrometry on its own. In this thesis, IM-MS has been used to investigate organic and organometallic complexes and identify reactants, intermediates and products in reaction mixtures. Collision cross sections (CCS) have been measured for three salen ligands, and their complexes with copper and zinc using travelling-wave ion mobility-mass spectrometry (TWIMS) and drift tube ion mobility-mass spectrometry (DTIMS), allowing a comparative size evaluation of the ligands and complexes. CCS measurements using TWIMS were determined using peptide and TAAH calibration standards with good intra-day and inter-day reproducibility. TWIMS measurements gave significantly larger CCS than DTIMS derived data in helium, indicating that the choice of calibration standards is important in ensuring the accuracy of TWIMS derived CCS measurements. The CCS data obtained from IM-MS measurements have been compared to CCS values obtained from X-ray coordinates and modelled structures. The analysis of small organic and organometallic molecules has been extended to investigations of the potential of IM-MS for reaction monitoring and structural studies of the components of catalytic cycles. Reaction mixtures of an organocatalysed Diels-Alder cycloaddition reaction have been monitored using IM-MS and high-field asymmetric waveform ion mobility-mass spectrometry (FAIMS-MS). Reactant, product, catalyst and reaction intermediates, including an intermediate not previously detected, were identified and the catalyst and intermediates monitored over time. An organometallic catalytic cycle using a palladium catalyst has been analysed using IM-MS and the CCS of reactants, intermediates and products have been measured and compared to theoretical CCS calculations. Good agreement was observed between measured and calculated data. Species not amenable to electrospray ionisation were covalently bound to an ionisable tag containing a quaternary ammonium ion allowing the tagged molecules to be detected by IM-MS.
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Seamons, Scott Andrew. "The collision dynamics of OH(A)+H2." Thesis, University of Oxford, 2015. http://ora.ox.ac.uk/objects/uuid:36319557-1efa-4840-8f46-c15479945a0c.

Повний текст джерела
Анотація:
This thesis presents a joint experimental and theoretical study of a bimolecular collision between OH(A) and H2 diatoms. The study focuses on the relationship between the initial, j, and final rotational angular momentum, j'. This relationship is explored from both a scalar point of view by measuring rotational energy transfer (RET), and a vectorial viewpoint by considering the collisional depolarisation. The experimental technique used in this investigation, Zeeman quantum beat spectroscopy, is first demonstrated by applying it to the determination of the lab-frame orientation of OH(X) photofragments following the photolysis of H2O2. The H2O2 is photolysed by circularly-polarised light at 248 nm, and Zeeman quantum beat spectroscopy probes the angular momentum orientation as a function of the photofragment spin-rotation level. The results of this experiment are compared with orientation parameters predicted by a simulation that couples the rotation of the parent molecule to the torsional motion during bond cleavage. The calculations from the model agree qualitatively with those from the experiment. The Zeeman quantum beat spectroscopy technique is then used to monitor the evolution of angular momentum polarisation of OH(A) radicals during collisions with H2. The technique allows for the determination of depolarisation cross sections for oriented and aligned distributions, as a result of collisions with H2. Alongside this, cross sections for collisional quenching to non-reactive OH(X)+H2 and reactive H2O+H products are determined. By resolving the fuorescence with a monochromator the contributions to depolarisation from elastic collisions (the elastic depolarisation cross sections) are measured alongside cross sections for RET. Cross sections for total depolarisation and rotational energy transfer demonstrate only weak dependence on the rotational quantum number of the OH(A) radical, NOH. Competing quenching processes that fall with NOH are likely a considerable cause of this weak dependence. Furthermore, the polarisation of the angular momentum of OH(A) is randomised following RET. The elastic depolarisation cross sections make only a small contribution to the depolarisation and fall with increasing NOH. Collectively these trends have not been seen previously in similar studies on OH(A) collisions with atomic colliders. For the theoretical calculations, a four-atom quasi-classical trajectory (QCT) method has been developed, utilising Lagrangian multipliers to fix the OH(A) and H2 bonds. The calculations demonstrate that collisions involving the formation of complexes that survive for several rotational periods are prevalent in this collision system, and that these lead to large amounts of depolarisation. The calculations also demonstrate that RET in the H2 diatom supports higher levels of RET in OH(A) than seen in previous triatomic systems. Additionally, when one diatom is depolarised the accompanying diatom is typically also depolarised. These trends, at least in part, are owed to the highly attractive and anisotropic potential energy surface (PES) describing the interaction. The QCT calculations overestimate the experimentally-measured cross sections by more than a factor of 2. The calculations are adiabatic and do not account for the non-adiabatic activity associated with this collision system, and this is likely one cause of the discrepancies. In an attempt to further account for this overestimation, alternative angular momentum binning approaches for the QCT calculations are developed, but with limited success. Further exploration of the topology of the PES used in the calculations suggests that inadequacies in this surface are a major contributor to the discrepancies.
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Neves, Denise Regina das. "Avaliação de interface de reação e colisão para eliminar interferências poliatômicas na análise de etanol combustível por ICP-MS /." Araraquara : [s.n.], 2010. http://hdl.handle.net/11449/97823.

Повний текст джерела
Анотація:
Orientador: José Anchieta Gomes Neto
Banca: Márcia Andréia Mesquita Silva da Veiga
Banca: Joaquim de Araujo Nóbrega
Resumo: A espectrometria de massa com plasma acoplado indutivamente empregando interface de reação/colisão (CRI-ICP-MS) foi avaliada para determinação simultânea de Al, Ba, Co, Cu, Cr, Fe, Mg, Mn, Mo, Na, Ni, Pb, Sb, Si, V e Zn em etanol combustível. Para as análises, amostras de etanol combustível foram diluídas vinte vezes de modo a conter 1% v/v de ácido nítrico e 10 μg L-1 Y utilizado como padrão interno. As calibrações foram feitas por ajuste de matriz utilizando etanol P.A.. Como gás de reação/colisão utilizou-se o hidrogênio e como gases auxiliares foram utilizados argônio e oxigênio. A CRI foi fundamental para a determinação da maioria dos analitos, principalmente Fe, Cr, Si e Mg. A escolha da melhor vazão do gás e a otimização dos parâmetros instrumentais foram estudadas utilizando soluções etanólicas contendo 10 μg L-1 dos analitos. Os limites de detecção para 27Al, 138Ba, 59Co,63Cu, 55Mn, 98Mo, 23Na, 58Ni, 208Pb, 121Sb, 51V e 64Zn em etanol por CRI-ICP-MS utilizando 20 mL min-1 de H2 no skimmer foram 0,2; 0,1; 0,005; 0,3; 0,02; 0,05; 0,8 0,2; 0,01; 0,1; 0,4 e 0,3 μg L-1, respectivamente. Os limites de detecção para 52Cr, 56Fe, 24Mg, 28Si em etanol utilizando 60 mL min-1 de H2 no skimmer foram 0,2; 0,1; 0,2 e 13,9 μg L-1. A validação do método foi feita por meio de testes de adição e recuperação dos analitos. Os intervalos de recuperação encontrados para 27Al, 138Ba, 59Co, 63Cu, 55Mn, 98Mo, 23Na, 58Ni, 208Pb, 121Sb, 51V, 64Zn, 52Cr, 56Fe, 24Mg, 28Si se apresentaram entre 78 e 114%
Abstract: The use of inductively coupled plasma mass spectrometry with collision/reaction interface (CRI) was evaluated for simultaneous determination of Al, Ba, Co, Cu, Cr, Fe, Mg, Mn, Mo, Na, Ni, Pb, Sb, Si, V e Zn in ethanol fuel. Samples were diluted 1:20 v/v in a solution containing 1% v/v nitric acid and 10 μg L-1 Y used as internal standard. For all elements the instrument was operated in CRI-ICP-MS mode. The use of CRI was mandatory for Fe, Cr, Si e Mg. Hydrogen was evaluated as the reaction/collision gas and argon and oxygen were used as auxiliary gas. Selection of best reaction gas flow rate and optimization of the instrumental parameters were carried out using ethanolic solutions containing analytes at 10 μg L-1. Limits of detection for 27Al, 138Ba, 59Co, 63Cu, 55Mn, 98Mo, 23Na, 58Ni, 208Pb, 121Sb, 51V e 64Zn in ethanol fuel by CRI-ICP-MS using 20 mL min-1 H2 in the skimmer cone 0.2; 0.1; 0.005; 0.3; 0.02; 0.05; 0.8; 0.2; 0.01; 0.1; 0.4 and 0.3 μg L-1, respectively. The detection limits for 52Cr, 56Fe, 24Mg, 28Si using 60 mL min-1 H2 in the skimmer cone were respectively 0.2; 0.1; 0.2 and 13.9 μg L-1. Method validation was accomplished by the addition and recovery studies. Recoveries found for 27Al, 138Ba, 59Co, 63Cu, 55Mn, 98Mo, 23Na, 58Ni, 208Pb, 121Sb, 51V e 64Zn, 52Cr, 56Fe, 24Mg, 28Si were within the 78 - 114% interval
Mestre
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Salbaing, Thibaud. "Thermalisation dans une nanogoutte : évaporation versus réactivité." Thesis, Lyon, 2019. http://www.theses.fr/2019LYSE1163/document.

Повний текст джерела
Анотація:
Les systèmes moléculaires sous irradiation sont présents dans le monde vivant et la matière inerte. D’un point de vue macroscopique, ils sont constitués d’un très grand nombre de molécules mais l’action d’un rayonnement agit à travers les électrons localisés sur une molécule, créant ainsi, localement et sur des échelles de temps courts, une situation manifestement très éloignée de l’équilibre thermodynamique. Etudier les nanosystèmes moléculaires sous irradiation permet d’accéder à la manière dont l’énergie déposée dans une molécule va être redistribuée dans le système, via les interactions entre molécules. Les distributions de vitesses d’une molécule évaporée mesurées pour les nanogouttes de méthanol protonées présentent un comportement bimodal avec, comme observé pour l’eau, l’évaporation de molécules avec des vitesses nettement supérieures à celles attendues après redistribution complète de l’énergie. De plus, une réaction dans l’agrégat, conduisant à la formation du diméthyléther protoné avec élimination d’une molécule d’eau, a été observée. La possibilité d’étudier la compétition suite à l’irradiation entre l’évaporation moléculaire et une réaction d’élimination pourra contribuer à contraindre les hypothèses quant à la formation de molécules prébiotiques en conditions interstellaires.Les résultats sur les nanogouttes mixtes eau-méthanol ont été comparés à ceux obtenus avec celles dopées en pyridine et celles d’eau pure. L’analyse de la partie basse vitesse des distributions de vitesses des molécules d’eau évaporées montrent que l’évaporation intervient avant la redistribution complète de l’énergie dans l’ensemble de l’agrégat. Il apparaît qu’il y a moins d’énergie disponible pour l’évaporation d’une molécule d’eau quand l’excitation initiale est déposée sur le méthanol protoné ou sur l’ion pyrimidium. Ainsi, à la différence de l’ion hydronium qui est parfaitement solvaté, les impuretés favorisent la croissance de ces petits agrégats d’eau dont la présence dans l’atmosphère facilite les premières étapes de la formation des aérosols
Molecular systems under irradiation are present in the living as well as in inert matter. From a macroscopic point of view, the matter is made up of a very large number of molecules but the action of radiation acts through the electrons located on a molecule and thus, creating locally and on short time scales a situation clearly far from the thermodynamic equilibrium. Studying molecular nanosystems under irradiation provides access to understanding of how the energy deposited in a molecule will be redistributed into the system through interactions between surrounding molecules.The velocity distributions of evaporated molecules measured for irradiated protonated methanol nanodroplets have a bimodal behaviour, as observed for water, including evaporation of molecules with much higher velocities than expected after complete redistribution of energy. In addition, a reaction in the cluster leading to the formation of protonated dimethyl-ether with elimination of a water molecule was observed. The possibility of studying the competition between molecular evaporation and an elimination reaction following irradiation of a nanodroplet will contribute to constrain the hypothesis on the formation of prebiotic molecules under interstellar conditions. The results for the water-methanol mixed nanodroplets were compared with those obtained with pyridine doped water nanodroplets and protonated water nanodroplets. Analysis of the low velocity part of the velocity distributions of the evaporated water molecules shows that evaporation occurs before the complete redistribution of energy in the cluster. It appears that there is less energy available for evaporation of a water molecule when the initial excitation is located on the protonated methanol ion or on the pyrimidium. Thus, unlike the hydronium ion which is fully solvated, impurities promote the growth of these small water clusters, whose presence in the atmosphere facilitates the early stages of aerosol formation
Стилі APA, Harvard, Vancouver, ISO та ін.

Книги з теми "Collision reaction"

1

Garbarino, John R. Determination of elements in natural-water, biota, sediment, and soil samples using collision/reaction cell inductively coupled plasma-mass spectrometry. Reston, Va: U.S. Geological Survey, 2006.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Usypchuk, Laurie Lillian. A study of reactive collisions in a quadrupole collision cell. Ottawa: National Library of Canada = Bibliothèque nationale du Canada, 1991.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Fullerene collision reactions. Dordrecht: Kluwer Academic, 2003.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Campbell, Eleanor E. B. Fullerene Collision Reactions. Dordrecht: Springer Netherlands, 2004.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

B, Aubert, and Montanet L, eds. Physics in collision 5. Gif sur Yvette: Editions Frontieres, 1985.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Broglia, R. A. Heavy ion reactions: Lecture notes. Redwood City, Calif: Addison-Wesley, 1991.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

International Conference on Physics in Collision: High-Energy ee/ep/pp Interactions (4th : 1984 : Santa Cruz, Calif.) and University of California, Santa Cruz, eds. Proceedings of Physics in collision 4. Gif-sur-Yvette, France: Editions Frontières, 1985.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

V, Anisovich V., ed. Quark model and high energy collisions. Singapore: World Scientific, 1985.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

V, Anisovich V., ed. Quark model and high energy collisions. 2nd ed. Singapore: World Scientific, 2004.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Wang, Jinjin. Dynamics of reactions proceeding via persistent collision complexes. Manchester: University of Manchester, 1996.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Частини книг з теми "Collision reaction"

1

Koyanagi, Gregory K., Diethard K. Bohme, and Dmitry R. Bandura. "Collision and Reaction Cells." In Inductively Coupled Plasma Mass Spectrometry Handbook, 336–84. Oxford, UK: Blackwell Publishing Ltd., 2009. http://dx.doi.org/10.1002/9781444305463.ch8.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

van Santen, R. A., and J. W. Niemantsverdriet. "Collision and Reaction-Rate Theory." In Chemical Kinetics and Catalysis, 105–67. Boston, MA: Springer US, 1995. http://dx.doi.org/10.1007/978-1-4757-9643-8_4.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Widom, B. "Collision Theory of Chemical Reaction Rates." In Advances in Chemical Physics, 353–86. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2007. http://dx.doi.org/10.1002/9780470143513.ch8.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Zhu, Zhihong, Zhihao Gong, Yuexiang Zhang, Simin Chen, Zhiqiang Zhao, Xing Zhou, Meng Gao, and Shifeng Huang. "Research on Collision Detection and Collision Reaction of Collaborative Robots." In Intelligent Robotics and Applications, 510–20. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-89098-8_48.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Janev, Ratko K., William D. Langer, Douglass E. Post, and Kenneth Evans. "Collision Processes and Reaction of H2+ Ions." In Elementary Processes in Hydrogen-Helium Plasmas, 167–79. Berlin, Heidelberg: Springer Berlin Heidelberg, 1987. http://dx.doi.org/10.1007/978-3-642-71935-6_4.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Avaldi, L., R. Camilloni, Yu V. Popov, and G. Stefani. "e-e Correlation in (e-2e) Reaction: A Semiclassical Approach." In Fundamental Processes in Atomic Collision Physics, 633–40. Boston, MA: Springer US, 1985. http://dx.doi.org/10.1007/978-1-4613-2125-5_30.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Adams, T. E., M. B. Knickelbein, D. A. Webb, and E. R. Grant. "Dynamics of the Collision Free Unimolecular Fragmentation of Primary Alkyl Epoxides." In Advances in Chemical Reaction Dynamics, 415–24. Dordrecht: Springer Netherlands, 1986. http://dx.doi.org/10.1007/978-94-009-4734-4_25.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Leforestier, C. "The Time Dependent Wavepacket Method: Application to Collision Induced Dissociation Processes." In The Theory of Chemical Reaction Dynamics, 235–46. Dordrecht: Springer Netherlands, 1986. http://dx.doi.org/10.1007/978-94-009-4618-7_10.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Nonose, S., H. Tanaka, T. Mizuno, F. Ishizaki, and T. Kondow. "Reaction dynamics of Na n + in collision with molecular oxygen." In Small Particles and Inorganic Clusters, 75–77. Berlin, Heidelberg: Springer Berlin Heidelberg, 1997. http://dx.doi.org/10.1007/978-3-642-60854-4_18.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Hecht, K. T. "A Specific Example of a Rearrangement Collision: The (d, p) Reaction on Nucleus A." In Quantum Mechanics, 493–502. New York, NY: Springer New York, 2000. http://dx.doi.org/10.1007/978-1-4612-1272-0_50.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Тези доповідей конференцій з теми "Collision reaction"

1

De Luca, Alessandro, and Lorenzo Ferrajoli. "Exploiting Robot Redundancy in Collision Detection and Reaction." In 2008 IEEE/RSJ International Conference on Intelligent Robots and Systems. IEEE, 2008. http://dx.doi.org/10.1109/iros.2008.4651204.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Aladele, Victor, and Seth Hutchinson. "Collision Reaction Through Internal Stress Loading in Cooperative Manipulation." In 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE, 2020. http://dx.doi.org/10.1109/iros45743.2020.9341221.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Hawkins, Kelsey, and Panagiotis Tsiotras. "Anticipating Human Collision Avoidance Behavior for Safe Robot Reaction." In 2018 IEEE Conference on Decision and Control (CDC). IEEE, 2018. http://dx.doi.org/10.1109/cdc.2018.8619849.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Yu, James J. Q., Victor O. K. Li, and Albert Y. S. Lam. "An inter-molecular adaptive collision scheme for Chemical Reaction Optimization." In 2014 IEEE Congress on Evolutionary Computation (CEC). IEEE, 2014. http://dx.doi.org/10.1109/cec.2014.6900234.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Jirovsky, Vaclav. "Entropy in Reaction Space - Upgrade of Time-to-Collision Quantity." In WCX™ 17: SAE World Congress Experience. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 2017. http://dx.doi.org/10.4271/2017-01-0113.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

De Luca, Alessandro, and Fabrizio Flacco. "Integrated control for pHRI: Collision avoidance, detection, reaction and collaboration." In 2012 4th IEEE RAS & EMBS International Conference on Biomedical Robotics and Biomechatronics (BioRob 2012). IEEE, 2012. http://dx.doi.org/10.1109/biorob.2012.6290917.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Yin, Xiuxia, and Qingcao Zhang. "Collision avoidance of singular C–S model with reaction delays." In 2021 China Automation Congress (CAC). IEEE, 2021. http://dx.doi.org/10.1109/cac53003.2021.9728313.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Gallis, Michael, Ryan Bond, and John Torczynski. "Assessment of Reaction-Rate Predictions of a Collision-Energy Approach for Chemical Reactions in Atmospheric Flows." In 10th AIAA/ASME Joint Thermophysics and Heat Transfer Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2010. http://dx.doi.org/10.2514/6.2010-4499.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Scott, Jeffrey J., and Rob Gray. "Comparison of Driver Brake Reaction Times to Multimodal Rear-end Collision Warnings." In Driving Assessment Conference. Iowa City, Iowa: University of Iowa, 2007. http://dx.doi.org/10.17077/drivingassessment.1251.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

De Luca, Alessandro, Alin Albu-Schaffer, Sami Haddadin, and Gerd Hirzinger. "Collision Detection and Safe Reaction with the DLR-III Lightweight Manipulator Arm." In 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems. IEEE, 2006. http://dx.doi.org/10.1109/iros.2006.282053.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Звіти організацій з теми "Collision reaction"

1

Lester, M. I. Spectroscopy and reaction dynamics of collision complexes containing hydroxyl radicals. Office of Scientific and Technical Information (OSTI), February 1992. http://dx.doi.org/10.2172/5710534.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Valentini, J. J. Single-collision studies of hot atom energy transfer and chemical reaction. Office of Scientific and Technical Information (OSTI), January 1991. http://dx.doi.org/10.2172/5872757.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Valentini, J. J. Single-collision studies of hot atom energy transfer and chemical reaction. Final report. Office of Scientific and Technical Information (OSTI), December 1991. http://dx.doi.org/10.2172/10124118.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Valentini, J. J. Single-collision studies of energy transfer and chemical reaction. Progress report, April 1992--March 1993. Office of Scientific and Technical Information (OSTI), July 1993. http://dx.doi.org/10.2172/10166359.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Lester, M. I. Spectroscopy and reaction dynamics of collision complexes containing hydroxyl radicals. Progress report, June 1, 1991--May 31, 1992. Office of Scientific and Technical Information (OSTI), February 1992. http://dx.doi.org/10.2172/10127584.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Padhi, Radhakant, Amit K. Tripathi, and Ramsingh G. Raja. Reactive Collision Avoidance of UAVs withStereovision Sensing. Fort Belvoir, VA: Defense Technical Information Center, January 2014. http://dx.doi.org/10.21236/ada595808.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Stimson, Stephanie. Collision-induced dissociation reactions and pulsed field ionization photoelectron. Office of Scientific and Technical Information (OSTI), February 1999. http://dx.doi.org/10.2172/348884.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Neiderer, Andrew M. Simulating Collision Avoidance by a Reactive Agent Using VRML. Fort Belvoir, VA: Defense Technical Information Center, August 2005. http://dx.doi.org/10.21236/ada439893.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Flannery, M. R. Recombination, Electron-Excited Atom Collisions and Ion-Molecule Reactions. Fort Belvoir, VA: Defense Technical Information Center, December 1995. http://dx.doi.org/10.21236/ada303623.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Smoliar, Laura Ann. Dynamics of inelastic and reactive gas-surface collisions. Office of Scientific and Technical Information (OSTI), April 1995. http://dx.doi.org/10.2172/86302.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії