Добірка наукової літератури з теми "Cold atomics physics"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Cold atomics physics".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Статті в журналах з теми "Cold atomics physics"

1

Zhuang, Wei, Yang Zhao, Shaokai Wang, Zhanjun Fang, Fang Fang, and Tianchu Li. "Ultranarrow bandwidth Faraday atomic filter approaching natural linewidth based on cold atoms." Chinese Optics Letters 19, no. 3 (2021): 030201. http://dx.doi.org/10.3788/col202119.030201.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Ghasemian, E., and M. K. Tavassoly. "Population dynamics of ultra-cold atoms interacting with radiation fields in the presence of inter-atomic collisions." Chinese Optics Letters 19, no. 12 (2021): 122701. http://dx.doi.org/10.3788/col202119.122701.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Li Wenwen, 李文文, 刘乾 Liu Qian, 梁昂昂 Liang Ang’ang, 谢昱 Xie Yu, 李琳 Li Lin, 李蕊 Li Rui, 孟洁 Meng Jie та ін. "空间超冷原子实验两维磁光阱系统的集成设计与实现". Chinese Journal of Lasers 49, № 11 (2022): 1112001. http://dx.doi.org/10.3788/cjl202249.1112001.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Zhai, Hui. "Spin-Orbit Coupled Quantum Gases." Asia Pacific Physics Newsletter 01, no. 02 (September 2012): 13. http://dx.doi.org/10.1142/s2251158x12000227.

Повний текст джерела
Анотація:
Spin-orbit coupling is an important effect in many areas of physics, for instance, it plays an important role in determining atomic and nuclei structure and it gives birth to topological insulators. However, for long time spinorbit coupling was not discussed in the physics of ultracold atomic gases, because there is no spin-orbit coupling for the motion of neutral atoms. Recently, there are many proposals of generating various types of spin-orbit coupling in cold atom systems, and in particular, in 2011, Ian Speilman's group in NIST has realized one of these proposals experimentally in Rb-87 Bose condensate. These progresses generate a lot of interests and many good results have been published in the last couple years. Spin-orbit coupled quantum gases have now become one of the hottest research directions in cold atom physics. This review article reviews most recent theoretical and experimental progresses on this direction.
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Ahmed, Mushtaq, Daniel V. Magalhães, Aida Bebeachibuli, Stella T. Müller, Renato F. Alves, Tiago A. Ortega, John Weiner, and Vanderlei S. Bagnato. "The Brazilian time and frequency atomic standards program." Anais da Academia Brasileira de Ciências 80, no. 2 (June 2008): 217–52. http://dx.doi.org/10.1590/s0001-37652008000200002.

Повний текст джерела
Анотація:
Cesium atomic beam clocks have been the workhorse for many demanding applications in science and technology for the past four decades. Tests of the fundamental laws of physics and the search for minute changes in fundamental constants, the synchronization of telecommunication networks, and realization of the satellite-based global positioning system would not be possible without atomic clocks. The adoption of optical cooling and trapping techniques, has produced a major advance in atomic clock precision. Cold-atom fountain and compact cold-atom clocks have also been developed. Measurement precision of a few parts in 10(15) has been demonstrated for a cold-atom fountain clock. We present here an overview of the time and frequency metrology program based on cesium atoms under development at USP São Carlos. This activity consists of construction and characterization of atomic-beam, and several variations of cold-atom clocks. We discuss the basic working principles, construction, evaluation, and important applications of atomic clocks in the Brazilian program.
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Vishveshwara, Smitha. "A glimpse of quantum phenomena in optical lattices." Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 370, no. 1969 (June 28, 2012): 2916–29. http://dx.doi.org/10.1098/rsta.2011.0248.

Повний текст джерела
Анотація:
Optical lattices in cold atomic systems offer an excellent setting for realizing quantum condensed matter phenomena. Here, a glimpse of such a setting is provided for the non-specialist. Some basic aspects of cold atomic gases and optical lattices are reviewed. Quantum many-body physics is explored in the case of interacting bosons on a lattice. Quantum behaviour in the presence of a potential landscape is examined for three different cases: a hexagonal lattice potential, a quasi-periodic potential and a disorder potential.
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Xiaojun Jiang, Xiaojun Jiang, Xiaolin Li Xiaolin Li, Haichao Zhang Haichao Zhang, and and Yuzhu Wang and Yuzhu Wang. "Smooth Archimedean-spiral ring waveguide for cold atomic gyroscope." Chinese Optics Letters 14, no. 7 (2016): 070201–70204. http://dx.doi.org/10.3788/col201614.070201.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Ren, Wei, Tang Li, Qiuzhi Qu, Bin Wang, Lin Li, Desheng Lü, Weibiao Chen, and Liang Liu. "Development of a space cold atom clock." National Science Review 7, no. 12 (August 31, 2020): 1828–36. http://dx.doi.org/10.1093/nsr/nwaa215.

Повний текст джерела
Анотація:
Abstract Atomic clocks with cold atoms play important roles in the field of fundamental physics as well as primary frequency standards. Operating such cold atom clocks in space paves the way for further exploration in fundamental physics, for example dark matter and general relativity. We developed a space cold atom clock (SCAC), which was launched into orbit with the Space Lab TG-2 in 2016. Before it deorbited with TG-2 in 2019, the SCAC had been working continuously for almost 3 years. During the period in orbit, many scientific experiments and engineering tests were performed. In this article, we summarize the principle, development and in-orbit results. These works provide the basis for construction of a space-borne time-frequency system in deep space.
Стилі APA, Harvard, Vancouver, ISO та ін.
9

KELLER, JOCHEN, RALF HOFMANN, and FRANCESCO GIACOSA. "CORRELATION OF ENERGY DENSITY IN DECONFINING SU(2) YANG–MILLS THERMODYNAMICS." International Journal of Modern Physics A 23, no. 32 (December 30, 2008): 5181–200. http://dx.doi.org/10.1142/s0217751x08042535.

Повний текст джерела
Анотація:
We compute the two-point correlation of the energy density for the massless mode in deconfining SU(2) Yang–Mills thermodynamics and point towards a possible application for the physics of cold, dilute, and stable clouds of atomic hydrogen within the Milky Way.
Стилі APA, Harvard, Vancouver, ISO та ін.
10

KETTERLE, WOLFGANG. "NEW FORMS OF QUANTUM MATTER NEAR ABSOLUTE ZERO TEMPERATURE." International Journal of Modern Physics D 16, no. 12b (December 2007): 2413–19. http://dx.doi.org/10.1142/s0218271807011462.

Повний текст джерела
Анотація:
In my talk at the workshop on fundamental physics in space I described the nanokelvin revolution which has taken place in atomic physics. Nanokelvin temperatures have given us access to new physical phenomena including Bose–Einstein condensation, quantum reflection, and fermionic superfluidity in a gas. They also enabled new techniques of preparing and manipulating cold atoms. At low temperatures, only very weak forces are needed to control the motion of atoms. This gave rise to the development of miniaturized setups including atom chips. In Earth-based experiments, gravitational forces are dominant unless they are compensated by optical and magnetic forces. The following text describes the work which I used to illustrate the nanokelvin revolution in atomic physics. Strongest emphasis is given to superfluidity in fermionic atoms. This is a prime example of how ultracold atoms are used to create well-controlled strongly interacting systems and obtain new insight into many-body physics.
Стилі APA, Harvard, Vancouver, ISO та ін.

Дисертації з теми "Cold atomics physics"

1

Peyronel, Thibault (Thibault Michel Max). "Quantum nonlinear optics using cold atomic ensembles." Thesis, Massachusetts Institute of Technology, 2013. http://hdl.handle.net/1721.1/84393.

Повний текст джерела
Анотація:
Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Physics, 2013.
Cataloged from PDF version of thesis.
Includes bibliographical references (pages 219-232).
The fundamental properties of light derive from its constituent particles, photons, which are massless and do no interact with each other. The realization of interactions between photons could enable a wide variety of scientific and engineering applications. In particular, coherent interactions would open the path for the simulation of quantum systems with light. Photon-photon interactions can be mediated by matter, in our case cold atomic ensembles, which provide a nonlinear medium. In conventional nonlinear media, the nonlinearities are negligibly weak at intensities corresponding to single photons and nonlinear optics at the few-photon level is a long-standing goal of optical and quantum science. In this thesis, we report on two different experimental approaches to create optical media with giant nonlinearities. Both approaches rely on Electromagnetically Induced Transparency, in which photons traveling in the medium are best described as part-matter part-light quantum particles, called polaritons. In our first approach, we achieve low-light nonlinearities by loading ensembles of cold atoms in a hollow-core photonic crystal fiber to enhance the polariton-photon interactions. In our second approach, the photons are coupled to strongly interacting Rydberg atoms, which mediate large interactions between single quanta of light. Moreover, the intrinsic nature of these interactions can be tailored to take on a coherent dispersive form.
by Thibault Peyronel.
Ph.D.
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Miller, Daniel E. (Daniel Edward). "Studying coherence in ultra-cold atomic gases." Thesis, Massachusetts Institute of Technology, 2006. http://hdl.handle.net/1721.1/45398.

Повний текст джерела
Анотація:
Thesis (Sc. D.)--Massachusetts Institute of Technology, Dept. of Physics, September 2007.
Includes bibliographical references (leaves 130-141).
This thesis will discuss the study of coherence properties of ultra-cold atomic gases. The atomic systems investigated include a thermal cloud of atoms, a Bose-Einstein condensate and a fermion pair condensate. In each case, a different type of measurement is performed. However, all of the experiments share a common tool: an optical lattice which is used to probe these atomic gases. In the first case, we use an auto-correlation technique to study the interference pattern produced by a gas of atoms, slightly above the Bose -Einstein condensate transition temperature. A moving optical lattice is used to split and recombine the single particle atomic wavefunction. Analogous to a Young's double slit experiment, we observe high contrast interference which is well described by the model which we develop. When we address only a velocity subset of the thermal sample, however, the contrast is enhanced and deviates from this model. In a second experiment we measure the coherence of a diatomic molecular gas, as well as the atomic Bose-Einstein condensate from which it was created. We use Bragg spectroscopy, in which atoms exchange photons with a moving optical lattice, transferring momentum to the atoms. This process can reveal the velocity distribution of the sample as energy and momentum are conserved only for a specific velocity class. Based on this measurement, we find that the atomic coherence is transferred directly to the molecular gas. We also discuss similar preliminary measurements performed on a fermion pair condensate in the BEC-BCS crossover. In a third experiment we study a fermion pair condensate into a 3D optical lattice. Such a system shares many similarities with electrons in solid materials which exhibit superconductivity, and can offer insight into mechanism which result in this behavior. We infer coherence from the sharp interference pattern observed in the expanding gas, after release. Finally, we study the abrupt onset of dissipation observed in a fermion pair condensate, as a function of velocity, in a moving optical lattice.
(cont.) We equate this threshold with the Landau critical velocity, and take measurements throughout the BEC-BCS crossover. The critical velocity is found to be maximum near unitarity, where the loss mechanism is predicted to crossover from phonon-like excitations to pair breaking.
by Daniel E. Miller.
Sc.D.
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Drayna, Garrett Korda. "Novel Applications of Buffer-Gas Cooling to Cold Atoms, Diatomic Molecules, and Large Molecules." Thesis, Harvard University, 2016. http://nrs.harvard.edu/urn-3:HUL.InstRepos:26718757.

Повний текст джерела
Анотація:
Cold gases of atoms and molecules provide a system for the exploration of a diverse set of physical phenomena. For example, cold gasses of magnetically and electrically polar atoms and molecules are ideal systems for quantum simulation and quantum computation experiments, and cold gasses of large polar molecules allow for novel spectroscopic techniques. Buffer-gas cooling is a robust and widely applicable method for cooling atoms and molecules to temperatures of approximately 1 Kelvin. In this thesis, I present novel applications of buffer-gas cooling to obtaining gases of trapped, ultracold atoms and diatomic molecules, as well as the study of the cooling of large organic molecules. In the first experiment of this thesis, a buffer-gas beam source of atoms is used to directly load a magneto-optical trap. Due to the versatility of the buffer-gas beam source, we obtain trapped, sub-milliKelvin gases of four different lanthanide species using the same experimental apparatus. In the second experiment of this thesis, a buffer-gas beam is used as the initial stage of an experiment to directly laser cool and magneto-optically trap the diatomic molecule CaF. In the third experiment of this thesis, buffer-gas cooling is used to study the cooling of the conformational state of large organic molecules. We directly observe conformational relaxation of gas-phase 1,2-propanediol due to cold collisions with helium gas. Lastly, I present preliminary results on a variety of novel applications of buffer-gas cooling, such as mixture analysis, separation of chiral mixtures, the measurement of parity-violation in chiral molecules, and the cooling and spectroscopy of highly unstable reaction intermediates.
Chemical Physics
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Schwonek, James Phillip. "A study of a cold atomic hydrogen beam source." Thesis, Massachusetts Institute of Technology, 1990. http://hdl.handle.net/1721.1/37496.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Keilmann, Tassilo. "Strongly correlated quantum physics with cold atoms." Diss., lmu, 2009. http://nbn-resolving.de/urn:nbn:de:bvb:19-107331.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Huillery, Paul. "Few and Many-body Physics in cold Rydberg gases." Thesis, Paris 11, 2013. http://www.theses.fr/2013PA112040/document.

Повний текст джерела
Анотація:
Au cours de cette thèse, la physique des systèmes en interaction à été étudié expérimentalement à partir de gaz froids d'atomes de Rydberg. Les atomes de Rydberg sont des atomes dans un état fortement excités et ils ont la propriété d'interagir fortement du fait d'interactions électrostatiques à longue portée. Le premier résultat majeur de cette thèse est l'observation expérimentale d'un processus à quatre corps. Ce processus consiste en l'échange d'énergie interne entre quatre atomes de Rydberg induit par leurs interactions mutuelles. Il a été possible, en plus de son observation expérimentale, de décrire théoriquement ce processus, au niveau quantique. L'excitation par laser des gaz d'atomes de Rydberg en forte interaction a aussi été étudiée durant cette thèse. Cette situation donne lieu à de très intéressants comportements à N-corps. Ce sujet d'intérêt fondamental pourrait aussi amener à d'éventuelles applications pour la réalisation de simulateurs quantiques ou de sources de lumière non classiques. Un second résultat majeur de cette thèse est l'observation expérimentale d'une statistique fortement sub-poissonienne, i.e corrélée de l'excitation Rydberg. Ce résultat confirme le caractère à N-corps de tels systèmes. Le troisième résultat majeur de cette thèse est le développement d'un modèle théorique pour l'excitation par laser des gaz d'atomes de Rydberg en forte interaction. En utilisant les états quantiques dit états collectifs de Dicke, il a été possible de mettre au jour de nouveaux mécanismes liés au comportement à N-corps de ces sytèmes atomiques en forte interaction
Uring this thesis, the Physics of interacting systems has been investigated experimentally using Cold Rydberg gases. Rydberg atoms are highly excited atoms and have the property to interact together through long-range electrostatic interactions.The first highlight of this thesis is the direct experimental observation of a 4-body process. This process consists in the exchange of internal energy between 4 Rydbergs atoms due to their mutual interactions. In addition to its observation, it has been possible to describ this process theoretically at a quantum level.The laser excitation of strongly interacting Rydberg gases has been also investigated during this thesis. In this regime, the interactions between Rydberg atoms give rise to very interesting many-body behaviors. In addition to fundamental interest, such systems could be used to realyze quantum simulators or non-classical light sources.A second highlight of this thesis is the experimental observation of a highly sub-poissonian, i.e correlated, excitation statistics. This result confirms the many-body character of the investigated system.The third highlight of this thesis is the development of a theoretical model to describ the laser excitation of strongly interacting Rydberg gases. Using the so-called Dicke collective states it has been possible to point out new mechanismes related to the many-body character of strongly atomic interacting systems
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Côté, Joseph Noël Robin. "Ultra-cold collisions of identcial atoms." Thesis, Massachusetts Institute of Technology, 1995. http://hdl.handle.net/1721.1/32632.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Sanguinetti, Stefano. "ATOMIC PARITY VIOLATION IN HEAVY ALKALIS: Detection by Stimulated Emission for Cesium and Traps for Cold Francium." Phd thesis, Université Pierre et Marie Curie - Paris VI, 2004. http://tel.archives-ouvertes.fr/tel-00006785.

Повний текст джерела
Анотація:
Le travail présenté porte sur les progrès récents d'expériences de spectroscopie atomique sur césium et francium, visant à des mesures précises de violation de parité (PV) dans ces atomes. Dans le cadre d'une “thèse en cotutelle”, le candidat s'est consacré d'une part aux mesures PV préliminaires (8% de précision) de l'actuelle expérience Cs au LKB à Paris, et d'autre part à la préparation d'un échantillon d'atomes radioactifs de Fr (production et piégeage) aux LNL (INFN) en Italie. Ces deux expériences sont à des stades très différents. Les mesures présentées pour le Cs s'inscrivent en fait dans la lignée d'un travail commencé en 1991, pour la détection de PV par émission stimulée. L'expérience italienne est par contre à ses débuts: pour pouvoir sonder les propriétés du Fr, instable, il faut d'abord produire et rassembler un nombre suffisant d'atomes. La conception de montages PV qui ont démontré leur validité sur le césium constitue une solide base de départ pour le cas du francium.
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Mudarikwa, Lawrence. "Cold atoms in a ring cavity." Thesis, University of Birmingham, 2015. http://etheses.bham.ac.uk//id/eprint/5843/.

Повний текст джерела
Анотація:
An ensemble of atoms coupled to a high finesse optical cavity is an ideal test bed for the study of the cooperative behaviour of atom-photon systems. Dicke showed that an ensemble of excited atoms coupled to a light field interacts with the light in a collective and coherent fashion leading to the emission of highly directional spontaneous emission whose intensity scales with the square of the number of atoms, a phenomenon known as superradiance. This thesis describes the build of an experiment to study cooperative atom-photon interactions in a ring cavity. Particular focus is given to the cavities used in the experiment. Firstly a transfer cavity used for transferring stability to off-resonant lasers in the experiment, this was developed with the capability of exploiting Gouy phase degeneracies to produce tightly spaced frequency discriminants to be used as lock points. Secondly the ring cavity for the experiment which is atypical in its design allowing for bidirectional probing of the cavity mode and dynamic manipulation of the intra-cavity optical lattice. An intra-cavity MOT was produced and collective strong coupling was observed in the cavity with an Neff=6400 atoms coupled to the cavity mode.
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Trachy, Marc Lawrence. "Photoassociative ionization in cold rubidium." Diss., Manhattan, Kan. : Kansas State University, 2008. http://hdl.handle.net/2097/695.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Книги з теми "Cold atomics physics"

1

Collaborative Computational Project on Molecular Quantum Dynamics and Daresbury Laboratory, eds. Interactions of cold atoms and molecules. Daresbury, Warrington [England]: Collaborative Computational Project on Molecular Quantum Dynamics, Daresbury Laboratory, 2002.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

The science of cold fusion phenomenon. Amsterdam: Elsevier, 2006.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Kozima, Hideo. The science of the cold fusion phenomenon. Oxford: Elsevier, 2006.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

service), SpringerLink (Online, ed. Collisional Narrowing and Dynamical Decoupling in a Dense Ensemble of Cold Atoms. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

E, Jones Steven, Scaramuzzi Franco, and Worledge D. H, eds. Anomalous nuclear effects in deuterium/solid systems: Provo, UT, 1990. New York: American Institute of Physics, 1991.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Friedrich, Bretislav, William C. Stwalley, and Roman V. Krems. Cold Molecules. Taylor & Francis Group, 2009.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Mendonça, J. T. T., and Hugo Terças. Physics of Ultra-Cold Matter: Atomic Clouds, Bose-Einstein Condensates and Rydberg Plasmas. Springer, 2014.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Terças, Hugo, and J. T. Mendonça. Physics of Ultra-Cold Matter: Atomic Clouds, Bose-Einstein Condensates and Rydberg Plasmas. Springer London, Limited, 2012.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Sagi, Yoav. Collisional Narrowing and Dynamical Decoupling in a Dense Ensemble of Cold Atoms. Springer Berlin / Heidelberg, 2014.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Roman, Krems, Friedrich Bretislav, and Stwalley William C. 1942-, eds. Cold molecules: Theory, experiment, applications. Boca Raton: Taylor & Francis, 2009.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Частини книг з теми "Cold atomics physics"

1

Mendonça, J. T., and Hugo Terças. "Atomic Clouds." In Physics of Ultra-Cold Matter, 63–88. New York, NY: Springer New York, 2012. http://dx.doi.org/10.1007/978-1-4614-5413-7_4.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Borovsky, Andrew V., Andrew L. Galkin, Oleg B. Shiryaev, and Thierry Auguste. "Fundamentals of Cold Plasma Electrodynamics." In Springer Series on Atomic, Optical, and Plasma Physics, 13–25. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003. http://dx.doi.org/10.1007/978-3-662-05242-6_2.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Zwerger, Wilhelm. "Cold Atoms in Optical Lattices." In Advances in Solid State Physics 44, 277–98. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004. http://dx.doi.org/10.1007/978-3-540-39970-4_22.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Chen, Jiefei, Heejeong Jeong, Michael M. T. Loy, and Shengwang Du. "Observation of Optical Precursors in Cold Atoms." In SpringerBriefs in Physics, 45–64. Singapore: Springer Singapore, 2013. http://dx.doi.org/10.1007/978-981-4451-94-9_4.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Almeida, Neil D., Kenneth Sack, and Jonathan H. Sherman. "Clinical Applications of Cold Atmospheric Plasma." In Springer Series on Atomic, Optical, and Plasma Physics, 289–99. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-49966-2_12.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Orlov, D. A., U. Weigel, M. Hoppe, D. Schwalm, A. S. Jaroshevich, A. S. Terekhov, and A. Wolf. "Cold Electrons from Cryogenic GaAs Photocathodes: Energetic and Angular Distributions." In Atomic Physics at Accelerators: Stored Particles and Fundamental Physics, 215–18. Dordrecht: Springer Netherlands, 2003. http://dx.doi.org/10.1007/978-94-007-0946-1_34.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Letokhov, V. S. "Electromagnetic Trapping of Cold Atoms: An Overview." In Trapped Particles and Fundamental Physics, 11–40. Dordrecht: Springer Netherlands, 2002. http://dx.doi.org/10.1007/978-94-010-0440-4_2.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Laroussi, Mounir, Lan Lan Nie, and XinPei Lu. "Cold Atmospheric Pressure Plasma Sources for Cancer Applications." In Springer Series on Atomic, Optical, and Plasma Physics, 15–51. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-49966-2_2.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Ertürk, E., L. Spielberger, M. Achler, L. Schmidt, R. Dörner, Th Weber, O. Jagutzki, et al. "Electron Impact Ionization of Helium [(e,2e) & (e,3e)] Investigated with Cold Target Recoil-Ion Momentum Spectroscopy." In New Directions in Atomic Physics, 179–83. Boston, MA: Springer US, 1999. http://dx.doi.org/10.1007/978-1-4615-4721-1_14.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Debnath, Argha, and Ayan Khan. "Jacobi Elliptic Functions and their Application in Ultra-cold Atomic Gases." In Springer Proceedings in Physics, 617–31. Singapore: Springer Singapore, 2022. http://dx.doi.org/10.1007/978-981-16-7691-8_60.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Тези доповідей конференцій з теми "Cold atomics physics"

1

Verhaar, B. J., D. J. Wineland, C. E. Wieman, and S. J. Smith. "Cold Collision Phenomena." In ATOMIC PHYSICS 14: Fourteenth International Conference on Atomic Physics. AIP, 1994. http://dx.doi.org/10.1063/1.2946016.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Marcassa, L. G. "Continuous Production of Cold KRb." In ATOMIC PHYSICS 19: XIX International Conference on Atomic Physics; ICAP 2004. AIP, 2005. http://dx.doi.org/10.1063/1.1928851.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Phillips, William D. "Experiments with Cold Atoms in Optical Lattices." In ATOMIC PHYSICS 19: XIX International Conference on Atomic Physics; ICAP 2004. AIP, 2005. http://dx.doi.org/10.1063/1.1928837.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Sauer, B. E., H. T. Ashworth, J. J. Hudson, M. R. Tarbutt, and E. A. Hinds. "Probing the Electron EDM with Cold Molecules." In ATOMIC PHYSICS 20: XX International Conference on Atomic Physics - ICAP 2006. AIP, 2006. http://dx.doi.org/10.1063/1.2400632.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Cesar, C. L. "Cold Antihydrogen at ATHENA: Experimental Observation and Beyond." In ATOMIC PHYSICS 19: XIX International Conference on Atomic Physics; ICAP 2004. AIP, 2005. http://dx.doi.org/10.1063/1.1928839.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Julienne, Paul S., and Bo Gao. "Simple Theoretical Models for Resonant Cold Atom Interactions." In ATOMIC PHYSICS 20: XX International Conference on Atomic Physics - ICAP 2006. AIP, 2006. http://dx.doi.org/10.1063/1.2400656.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Westbrook, C. I., P. S. Jessen, C. E. Tanner, P. D. Lett, S. L. Rolston, R. N. Watts, and W. D. Phillips. "Measurements of fluorescence from cold atoms: Localization in three-dimensional standing waves." In Atomic physics 12. AIP, 1991. http://dx.doi.org/10.1063/1.41004.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Ye, Jun, Sebastian Blatt, Martin M. Boyd, Seth M. Foreman, Eric R. Hudson, Tetsuya Ido, Benjamin Lev, et al. "Precision Measurement Based on Ultracold Atoms and Cold Molecules." In ATOMIC PHYSICS 20: XX International Conference on Atomic Physics - ICAP 2006. AIP, 2006. http://dx.doi.org/10.1063/1.2400637.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Salomon, C. "Cold atom clocks." In XVII international conference ICAP 2000 (Atomic Physics 17). AIP, 2001. http://dx.doi.org/10.1063/1.1354337.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Weidemüller, M. "Ultralong-Range Interactions and Blockade of Excitation in a Cold Rydberg Gas." In ATOMIC PHYSICS 19: XIX International Conference on Atomic Physics; ICAP 2004. AIP, 2005. http://dx.doi.org/10.1063/1.1928850.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії