Добірка наукової літератури з теми "COEFFICIENTS FOR INTERACTION"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "COEFFICIENTS FOR INTERACTION".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Статті в журналах з теми "COEFFICIENTS FOR INTERACTION"
Kučera, J., K. Stránský та J. Dojiva. "Diffusion interaction coefficients βCi and thermodynamic interaction coefficients ϵCi of carbon in alloyed austenitic steels". Materials Science and Engineering: A 125, № 1 (травень 1990): 75–82. http://dx.doi.org/10.1016/0921-5093(90)90255-2.
Повний текст джерелаMcDowell, Sean A. C., Ashok Kumar, and William J. Meath. "Anisotropic and isotropic triple-dipole dispersion energy coefficients for all three-body interactions involving He, Ne, Ar, Kr, Xe, H2, N2, and CO." Canadian Journal of Chemistry 74, no. 6 (June 1, 1996): 1180–86. http://dx.doi.org/10.1139/v96-132.
Повний текст джерелаAllisy, A., W. A. Jennings, A. M. Kellerer, J. W. Müller, H. H. Rossi, and S. M. Seltzer. "3. Interaction Coefficients and Related Quantities." Journal of the International Commission on Radiation Units and Measurements os31, no. 1 (December 30, 1998): 9–12. http://dx.doi.org/10.1093/jicru/os31.1.9.
Повний текст джерелаAllisy, A., W. A. Jennings, A. M. Kellerer, J. W. Müller, H. H. Rossi, and S. M. Seltzer. "3. Interaction Coefficients and Related Quantities." Reports of the International Commission on Radiation Units and Measurements os-31, no. 1 (December 1998): 9–12. http://dx.doi.org/10.1093/jicru_os31.1.9.
Повний текст джерелаHernandez, Maria-Josefina. "Spatiotemporal dynamics in variable population interactions with density-dependent interaction coefficients." Ecological Modelling 214, no. 1 (June 2008): 3–16. http://dx.doi.org/10.1016/j.ecolmodel.2008.01.007.
Повний текст джерелаPathak, Jai, Sean Nugent, Michael Bender, Christopher Roberts, Robin Curtis, and Jack Douglas. "Comparison of Huggins Coefficients and Osmotic Second Virial Coefficients of Buffered Solutions of Monoclonal Antibodies." Polymers 13, no. 4 (February 17, 2021): 601. http://dx.doi.org/10.3390/polym13040601.
Повний текст джерелаPopov, V. S., and Yu V. Kashirin. "Interaction between the signal amplitude coefficient and the harmonic coefficients and nonlinear distortions." Measurement Techniques 31, no. 6 (June 1988): 527–30. http://dx.doi.org/10.1007/bf00867518.
Повний текст джерелаPiekarski, Henryk, and Gus Somsen. "Enthalpies of solution of urea in water–alkanol mixtures and the enthalpic pair interaction coefficients of urea and several nonelectrolytes in water." Canadian Journal of Chemistry 64, no. 9 (September 1, 1986): 1721–24. http://dx.doi.org/10.1139/v86-284.
Повний текст джерелаRedheffer, Ray. "Lotka–Volterra systems with constant interaction coefficients." Nonlinear Analysis: Theory, Methods & Applications 46, no. 8 (December 2001): 1151–64. http://dx.doi.org/10.1016/s0362-546x(00)00166-8.
Повний текст джерелаLebedev, Vladimir V., and Victor S. L’vov. "Symmetries and Interaction Coefficients of Kelvin Waves." Journal of Low Temperature Physics 161, no. 5-6 (September 2, 2010): 548–54. http://dx.doi.org/10.1007/s10909-010-0215-2.
Повний текст джерелаДисертації з теми "COEFFICIENTS FOR INTERACTION"
Yilmazok, Ozgun. "An Investigation Of Accuracy Of Inertial Interaction Analyses With Frequency-independent Impedance Coefficients." Master's thesis, METU, 2007. http://etd.lib.metu.edu.tr/upload/12609030/index.pdf.
Повний текст джерелаzgü
n M.S., Department of Civil Engineering Supervisor: Assoc. Prof. Dr. B. Sadik Bakir November 2007, 79 pages The inertial interaction between the soil and structure alters dynamic response characteristics of a structure due to foundation deformability, such that the flexibility and energy dissipation capability of surrounding soil may lead to a significant increase in period and damping of structural oscillations. The inertial interaction analyses can be accomplished through utilisation of frequency dependent foundation impedance coefficients that are reported in literature for various soil conditions and foundation types. However, such analyses should be performed in frequency domain, and applicable to only cases that linear structural response is considered. Alternatively, equivalent frequencyindependent foundation impedance coefficients can be employed, such that a constant excitation frequency is assumed in calculation of these coefficients. In this study, it is assumed that the fundamental frequency of a fixed-base structure, which can be obtained through employing available empirical relationships or a modal analysis, can be substituted for excitation terms in impedance expressions. The error induced in calculation of peak structural distortions is investigated through comparisons of structural response due to frequency-dependent and frequency-independent foundation impedance coefficients. For analyses, a linear single-degree of freedom oscillator is considered for modeling the structure. The frequency-dependent impedance of a rigid disk foundation resting on elastic halfspace is simulated by a limited number of discrete elements. The response calculations are performed in frequency domain, through employing 72 acceleration records. It is concluded that, the natural frequency of fixed-base building can be considered as effective excitation frequency for calculation of foundation impedance coefficients, when the effect of inertial interaction on structural response is moderate. Through employing equivalent-linear approximation for the structural response, it is shown that the conclusion is also valid in cases that nonlinear structural response is considered. However, when the inertial interaction has more profound effects on the structural response, the use of natural frequency of flexible-base structure, which is calculated iteratively due to its dependence on foundation-impedance factors is recommended.
Ticona, A. M., M. A. Rosales, and J. D. Orihuela. "Correction coefficients of distortion and vibration period for buildings due to soil-structure interaction." OP Publishing Ltd, 2020. http://hdl.handle.net/10757/656571.
Повний текст джерелаRandall, Richard John. "Fluid-structure interaction of submerged shells." Thesis, Brunel University, 1990. http://bura.brunel.ac.uk/handle/2438/5446.
Повний текст джерелаNordanstorm, Nika. "Evaluation of distribution coefficients (KOC and Kd) for per- and polyfluoroalkyl substances." Thesis, Linnéuniversitetet, Institutionen för biologi och miljö (BOM), 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:lnu:diva-101693.
Повний текст джерелаStamos, Dimitrios Georgios. "Experimental Analysis of the Interaction of Water Waves With Flexible Structures." Diss., Virginia Tech, 2000. http://hdl.handle.net/10919/27567.
Повний текст джерелаPh. D.
Crofoot, Robert F. "Investigations of scalar transfer coefficients in fog during the Coupled Boundary Layers and Air Sea Transfer Experiment : a case study." Thesis, Monterey, California. Naval Postgraduate School, 2004. http://hdl.handle.net/10945/1202.
Повний текст джерелаBOULANGER, DANIEL. "Theorie du champ de ligandes des coefficients de couplage orbite-reseau et spin-reseau des ions d**(5) dans les composes ii-vi." Paris 6, 1988. http://www.theses.fr/1988PA066098.
Повний текст джерелаMahfouf, Ali. "Calcul des coefficients de transport dans des plasmas hors de l'équilibre." Thesis, Clermont-Ferrand 2, 2016. http://www.theses.fr/2016CLF22719/document.
Повний текст джерелаTransport properties at high temperature in gases and/or in plasmas are of very importance in various fields, namely in the field of breaking technology in arc, cutting plasma, welding or burning. Knowledge of transport coefficients is necessary for any modeling involving hydrodynamic equations. As part of the kinetic theory of diluted gas, an approximate solution of the integro-differential Boltzmann equation governing distribution functions was proposed by Chapman-Enskog. Transport coefficients are classically computed using the method of Chapman-Enskog through the collision integrals. In our study we have developed, initially, a numerical code to obtain these collision integral taking into account the singularities that may occur in the calculation of the cross sections relating to interactions between particles forming the gas and/or plasmas. Secondly, we have studied the influence of the choice of parameters of interaction potentials on transport coefficients. Subsequently, we have used the numerical code developed for evaluating and helium plasma transport coefficients by studying the influence of the choice of method for calculating chemical composition on these coefficients. Finally, a simplified model of an interaction between an electromagnetic wave and a helium plasma has been proposed as a direct application of the transport coefficients
Crofoot, Robert Farrington. "Investigations of scalar transfer coefficients in fog during the Coupled Boundary Layers and Air Sea Transfer experiment : a case study." Thesis, Massachusetts Institute of Technology, 2004. http://hdl.handle.net/1721.1/39165.
Повний текст джерелаIncludes bibliographical references (leaves 70-72).
The uncertainty in the determination of the momentum and scalar fluxes remains one of the main obstacles to accurate numerical forecasts in low to moderate wind conditions. For example, latent heat fluxes computed from data using direct covariance and bulk aerodynamic methods show that there is good agreement in unstable conditions when the latent heat flux values are generally positive. However, the agreement is relatively poor in stable conditions, particularly when the moisture flux is directed downward. If the direct covariance measurements are indeed accurate, then they clearly indicate that the bulk aerodynamic formula overestimate the downward moisture flux in stable conditions. As a result, comparisons of the Dalton number for unstable and stable conditions indicate a marked difference in value between the two stability regimes. Investigations done for this thesis used data taken primarily at the Air-Sea Interaction Tower (ASIT) during the Coupled Boundary Layers and Air-Sea Transfer (CBLAST) Experiment 2003 from the 20-27 August 2003. Other data from the shore based Martha's Vineyard Coastal Observatory (MVCO) and moored buoys in the vicinity of the ASIT were also incorporated.
(cont.) During this eight day period, the boundary layer was often characterized by light winds, a stably stratified surface layer and a swell dominated wave field. Additionally, the advection of warm moist air over cooler water resulted in fog formation and a downward flux of moisture on at least three occasions. Therefore, a primary objective of this thesis is to present a case study to investigate the cause of this shortcoming in the bulk formula under these conditions by examining the physical processes that are unique to these boundary layers. Particular attention will be paid to the behavior of the Dalton number in a stable marine atmospheric boundary layer under foggy conditions using insights derived from the study of fog formation and current flux parameterization methods.
by Robert Farrington Crofoot.
S.M.
Ullberg, Malin. "Effects of pH and Cation Composition on Sorption of Per- and Polyfluoroalkyl Substances (PFASs) to Soil Particles." Thesis, Uppsala universitet, Institutionen för geovetenskaper, 2015. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-256415.
Повний текст джерелаPer- och polyfluoroalkylsubstanser (PFAS:er) har dragit stor uppmärksamhet till sig på senare tid, på grund av deras persistenta egenskaper, potentiella toxicitet och globala utbredning. PFAS är en stor grupp ämnen, kännetecknad av en perflourinerad kolkedja och en funktionell grupp. Alla PFAS är syntetiska och har använts i stor utsträckning sedan 1950-talet på grund av deras unika egenskaper av att vara både vatten- och fettavstötande, vilket gör dem användbara för många industriella tillämpningar. För att kunna förutsäga var dessa föroreningars hamnar i miljön och få mer detaljerad förstående för transportprocesserna, måste deras fördelningbeteende mellan jordpartiklar och vattenundersökas för en rad olika parametrar. Syftet med denna studie var att undersöka effekterna av förändrat pH, katjonsammansättning, funktionell grupp och perfluorkolkedjelängd på sorption av PFAS:er till jordpartiklar. Detta gjordes med sorptionsexperiment i laboratorieskala. Laboratorieexperimentet kompletterades med modellering av nettoladdning, för att se huruvida detta väl kunde förklara sorptionen till jordpartiklar. 14 PFAS:er av varierande längd och med tre olika funktionella grupper studerades (PFBA, PFPeA, PFHxA, PFHpA, PFOA, PFNA, PFDA, PFUnDA, PFDoDA, PFTeDA, PFBS, PFHxS, PFOS och FOSA). Effekten på sorption av Na+, Ca2+ (två olika koncentrationer) och Al3+ undersöktes vid pH-intervallet 3-6. Modellering av nettoladdning utfördes i den geokemiska modellen Visual MINTEQ. Jorden som användes hade en halt av organiskt kol på 45%. Adsorptionen av PFAS:er var starkt positivt korrelerad med kedjelängden på de perfluorinerade kolkedjan. Ju längre kolkedja (dvs. mer hydrofob), desto starkare adsorption till partiklar. Relationen mellan sorptionen (här uttryckt som partitioneringskofficienten log Kd) och kedjelängd var linjär för alla PFSA och för C3 till C10 för PFCA. PFSA (sulfonat) adsorberade starkare än PFCA (karboxyl), och FOSA (sulfonamid) adsorberades starkast. För de flesta PFCA, (C5-C13) fanns en allmän trend där log Kd (dvs. sorption) minskade med ökande pH, på grund av pH-beroende förändringar på jordpartiklarna. För korta och medellånga PFCA (C5-C8) och för PFHxS hade katjonsammansättningen en tydlig effekt på sorptionen. Aluminiumjoner (trevärd, Al(NO3)3) hade den största effekten, följt av kalcium (tvåvärd, Ca(NO3)2) där den högre koncentrationen resulterade i starkare sorption. Natrium (envärd, NaNO3) hade minst påverkan på sorptionen till jordpartiklar. Visual MINTEQ tar hänsyn till många parametrar (inklusive pH), när nettoladdningen på jordpartiklarnas yta räknas ut. När log Kd för olika PFAS:er jämfördes med endera pH eller negativ nettoladdning, drogs slutsatsen att nettoladdning korrelerade bättre med sorption än pH.
Книги з теми "COEFFICIENTS FOR INTERACTION"
Marenkov, O. S. Handbook of photon interaction coefficients in radioisotope-excited x-ray fluorescence analysis. New York: Nova Science Publishers, 1991.
Знайти повний текст джерелаKalmykov, Sergey, and Nikolay Pashin. Social advertising: designing effective interaction with the target audience. ru: INFRA-M Academic Publishing LLC., 2017. http://dx.doi.org/10.12737/23289.
Повний текст джерелаJ, Van Wie Bernard, and National Institute of Standards and Technology (U.S.), eds. Evaluation of data availability and quality for interaction second virial coefficients of use to the gas industry. Gaithersburg, MD: U.S. Dept. of Commerce, National Bureau of Standards, 1988.
Знайти повний текст джерелаCenter, Langley Research, ed. Finite-perturbation intermediate-neglect-of-differential-overlap molecular orbital calculations of nuclear magnetic resonance spin-spin coupling constants for polycyclic aromatic hydrocarbons and aromatic nitrogen heterocyclics. Raleigh, N.C: North Carolina State University, 1985.
Знайти повний текст джерелаBera, Anil K. Interaction between autocorrelation and conditional heteroskedasticity: A random coefficient approach. [Urbana, Ill.]: College of Commerce and Business Administration, University of Illinois at Urbana-Champaign, 1989.
Знайти повний текст джерелаJ, Roth Don, and United States. National Aeronautics and Space Administration., eds. PSIDD (II): A protoype post-scan interactive data display system for detailed analysis of ultrasonic scans. [Washington, DC]: National Aeronautics and Space Administration, 1997.
Знайти повний текст джерелаJ, Roth Don, and United States. National Aeronautics and Space Administration., eds. PSIDD (II): A protoype post-scan interactive data display system for detailed analysis of ultrasonic scans. [Washington, DC]: National Aeronautics and Space Administration, 1997.
Знайти повний текст джерелаJ, Roth Don, and United States. National Aeronautics and Space Administration., eds. PSIDD (II): A protoype post-scan interactive data display system for detailed analysis of ultrasonic scans. [Washington, DC]: National Aeronautics and Space Administration, 1997.
Знайти повний текст джерелаA, Hoffbauer Mark, and Lyndon B. Johnson Space Center., eds. Measurement of momentum transfer coefficients for H₂, N₂, CO, and CO₂ incident upon spacecraft surfaces. Houston, Tex: National Aeronautics and Space Administration, Lyndon B. Johnson Space Center, 1997.
Знайти повний текст джерелаG, Hunter Louis, and United States. National Aeronautics and Space Administration., eds. CFD study of turbo-Ramjet interactions in hypersonic airbreathing propulsion system: Final report : under contract NAG3-1500. [Washington, DC: National Aeronautics and Space Administration, 1997.
Знайти повний текст джерелаЧастини книг з теми "COEFFICIENTS FOR INTERACTION"
Aichinger, Horst, Joachim Dierker, Sigrid Joite-Barfuß, and Manfred Säbel. "Interaction Coefficients." In Radiation Exposure and Image Quality in X-Ray Diagnostic Radiology, 181–98. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-11241-6_14.
Повний текст джерелаAichinger, Horst, Joachim Dierker, Sigrid Joite-Barfuß, and Manfred Säbel. "Interaction Coefficients." In Radiation Exposure and Image Quality in X-Ray Diagnostic Radiology, 135–42. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004. http://dx.doi.org/10.1007/978-3-662-09654-3_13.
Повний текст джерелаMayles, W. P. M., A. E. Nahum, and J. C. Rosenwald. "Tables L3: Photon Interaction Coefficients." In Handbook of Radiotherapy Physics, Vol2:1303—Vol2:1304. 2nd ed. Boca Raton: CRC Press, 2021. http://dx.doi.org/10.1201/9780429201493-76.
Повний текст джерелаIbrohimbek, Yusupov, Nurmurodov Javohir, Ibragimov Sanjarbek, Gofurjonov Muhammadali, and Qobilov Sirojiddin. "Calculation of Spectral Coefficients of Signals on the Basis of Haar by the Method of Machine Learning." In Intelligent Human Computer Interaction, 547–58. Cham: Springer Nature Switzerland, 2023. http://dx.doi.org/10.1007/978-3-031-27199-1_56.
Повний текст джерелаBurgot, Jean-Louis. "Virial Coefficients in Terms of Interaction Potential Energies: Mayer’s Theory." In The Notion of Activity in Chemistry, 365–73. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-46401-5_33.
Повний текст джерелаKarahoda, Bertan, Krenare Pireva, and Ali Shariq Imran. "Mel Frequency Cepstral Coefficients Based Similar Albanian Phonemes Recognition." In Human Interface and the Management of Information: Information, Design and Interaction, 491–500. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-40349-6_47.
Повний текст джерелаPing, Robert A. "A Suggested Standard Error for Interaction Coefficients in Latent Variable Regression." In New Meanings for Marketing in a New Millennium, 283–88. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-11927-4_94.
Повний текст джерелаNeumann, Erzsébet Néher. "On Emf Titrations Proposed for the Determination of Some Interaction Coefficients [1]." In Advanced Potentiometry, 181–97. Dordrecht: Springer Netherlands, 2009. http://dx.doi.org/10.1007/978-1-4020-9525-2_6.
Повний текст джерелаKushner, G. A. "Stiffness Coefficients and Elastic Forces Under Interaction Between Shafts and Plain Bearings." In Lecture Notes in Mechanical Engineering, 832–40. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-54814-8_96.
Повний текст джерелаHammami, Maroua, Olfa Ksentini, Nabih Feki, Mohamed Slim Abbes, and Mohamed Haddar. "Dynamic Interaction Between Transmission Error and Friction Coefficients for FZG-A10 Spur Gears." In Applied Condition Monitoring, 136–44. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-76517-0_16.
Повний текст джерелаТези доповідей конференцій з теми "COEFFICIENTS FOR INTERACTION"
Gallagher, Suzanne Renick, and Debra S. Goldberg. "Clustering Coefficients in Protein Interaction Hypernetworks." In BCB'13: ACM-BCB2013. New York, NY, USA: ACM, 2013. http://dx.doi.org/10.1145/2506583.2506635.
Повний текст джерелаAldeia, Guilherme Seidyo Imai, and Fabrício Olivetti de França. "Interaction-transformation evolutionary algorithm with coefficients optimization." In GECCO '22: Genetic and Evolutionary Computation Conference. New York, NY, USA: ACM, 2022. http://dx.doi.org/10.1145/3520304.3533987.
Повний текст джерелаHuettmann, Gereon, Juergen Rosperich-Palm, Reginald Birngruber, Ralf Engelhardt, and Yingtian Pan. "Measurement of optical-transport coefficients of Intralipid in visible and NIR range." In Laser-Tissue Interaction V. SPIE, 1994. http://dx.doi.org/10.1117/12.182954.
Повний текст джерелаSteiner, Rudolf W., Alwin Kienle, and Raimund Hibst. "Use of a neural network and Monte Carlo simulations to determine the optical coefficients with spatially resolved transmittance measurements." In Laser-Tissue Interaction V. SPIE, 1994. http://dx.doi.org/10.1117/12.182955.
Повний текст джерелаMarie, Hazel. "Dynamic Simulation of Finger Seal-Rotor Interaction Using Variable Dynamic Coefficients." In 42nd AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2006. http://dx.doi.org/10.2514/6.2006-4931.
Повний текст джерелаDatye, Deepak V. "On the Calibration of Coefficients of Friction for Pipeline-Seabed Interaction." In ASME 2010 29th International Conference on Ocean, Offshore and Arctic Engineering. ASMEDC, 2010. http://dx.doi.org/10.1115/omae2010-20447.
Повний текст джерелаKanevskii, G. I., A. M. Klubnichkin, and K. Ye Sazonov. "Ice Propulsion Performance Calculation As per Alternative System of Propeller-Hull Interaction Coefficients." In ASME 2018 37th International Conference on Ocean, Offshore and Arctic Engineering. American Society of Mechanical Engineers, 2018. http://dx.doi.org/10.1115/omae2018-77210.
Повний текст джерелаMentzoni, Fredrik, Mia Abrahamsen-Prsic, and Trygve Kristiansen. "Hydrodynamic Coefficients of Simplified Subsea Structures." In ASME 2018 37th International Conference on Ocean, Offshore and Arctic Engineering. American Society of Mechanical Engineers, 2018. http://dx.doi.org/10.1115/omae2018-78315.
Повний текст джерелаCerri, G., P. Boatto, W. F. O’Brien, and A. Sorrenti. "Optimization of Rotor-Stator-Strut Potential Flow Interaction Including Rotor Feedback Effects." In ASME 1994 International Gas Turbine and Aeroengine Congress and Exposition. American Society of Mechanical Engineers, 1994. http://dx.doi.org/10.1115/94-gt-274.
Повний текст джерелаAlsiraji, Hasan Alrajhi. "Assessment of Graphene Band Gap Based on Varying the Interaction Energy Coefficients." In 2019 IEEE Jordan International Joint Conference on Electrical Engineering and Information Technology (JEEIT). IEEE, 2019. http://dx.doi.org/10.1109/jeeit.2019.8717435.
Повний текст джерелаЗвіти організацій з теми "COEFFICIENTS FOR INTERACTION"
Van Wie, Bernard J. Evaluation of data availability and quality for interaction second virial coefficients of use to the gas industry. Gaithersburg, MD: National Bureau of Standards, 1988. http://dx.doi.org/10.6028/nbs.tn.1249.
Повний текст джерелаSand, J. R. An analytical method of predicting Lee-Kesler-Ploecker binary interaction coefficients: Part 1, For non-polar hydrocarbon mixtures. Office of Scientific and Technical Information (OSTI), December 1994. http://dx.doi.org/10.2172/105495.
Повний текст джерелаBeavers. L51557 Pressure Losses in Compressor Station Yard Pipework - Phase II. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), June 1987. http://dx.doi.org/10.55274/r0010277.
Повний текст джерелаWeidner, Martin, Hyungsik Roger Moon, and Matthew Shum. Estimation of random coefficients logit demand models with interactive fixed effects. Institute for Fiscal Studies, March 2012. http://dx.doi.org/10.1920/wp.cem.2012.0812.
Повний текст джерелаShum, Matthew, Hyungsik Roger Moon, and Martin Weidner. Estimation of random coefficients logit demand models with interactive fixed effects. Institute for Fiscal Studies, April 2014. http://dx.doi.org/10.1920/wp.cem.2014.2014.
Повний текст джерелаMoon, Hyungsik Roger, Matthew Shum, and Martin Weidner. Estimation of random coefficients logit demand models with interactive fixed effects. The IFS, February 2017. http://dx.doi.org/10.1920/wp.cem.2017.1217.
Повний текст джерелаGoetsch, Arthur L., Yoav Aharoni, Arieh Brosh, Ryszard (Richard) Puchala, Terry A. Gipson, Zalman Henkin, Eugene D. Ungar, and Amit Dolev. Energy Expenditure for Activity in Free Ranging Ruminants: A Nutritional Frontier. United States Department of Agriculture, June 2009. http://dx.doi.org/10.32747/2009.7696529.bard.
Повний текст джерелаTsidylo, Ivan M., Serhiy O. Semerikov, Tetiana I. Gargula, Hanna V. Solonetska, Yaroslav P. Zamora, and Andrey V. Pikilnyak. Simulation of intellectual system for evaluation of multilevel test tasks on the basis of fuzzy logic. CEUR Workshop Proceedings, June 2021. http://dx.doi.org/10.31812/123456789/4370.
Повний текст джерелаMenéses-González, María Fernanda, Angélica María Lizarazo-Cuéllar, Diego Cuesta-Mora, and Daniel Esteban Osorio-Ramírez. Financial Development and Monetary Policy Transmission. Banco de la República Colombia, November 2022. http://dx.doi.org/10.32468/be.1219.
Повний текст джерелаDuvvuri, Sarvani, and Srinivas S. Pulugurtha. Researching Relationships between Truck Travel Time Performance Measures and On-Network and Off-Network Characteristics. Mineta Transportation Institute, July 2021. http://dx.doi.org/10.31979/mti.2021.1946.
Повний текст джерела