Добірка наукової літератури з теми "Coastal Ocean Waves"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Coastal Ocean Waves".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Статті в журналах з теми "Coastal Ocean Waves"
Nakayama, Yoshihiro, Kay I. Ohshima, and Yasushi Fukamachi. "Enhancement of Sea Ice Drift due to the Dynamical Interaction between Sea Ice and a Coastal Ocean." Journal of Physical Oceanography 42, no. 1 (January 1, 2012): 179–92. http://dx.doi.org/10.1175/jpo-d-11-018.1.
Повний текст джерелаViola, Cristina, Danielle Verdon-Kidd, and Hannah Power. "CHARACTERISING COASTAL SHELF WAVES ALONG THE NSW COAST." Coastal Engineering Proceedings, no. 36v (December 28, 2020): 37. http://dx.doi.org/10.9753/icce.v36v.waves.37.
Повний текст джерелаAkhmediev, Nail. "Waves that appear from nowhere." Proceedings of the Royal Society of Victoria 135, no. 2 (December 22, 2023): 64–68. http://dx.doi.org/10.1071/rs23011.
Повний текст джерелаMeucci, Alberto, Ian R. Young, Acacia Pepler, Irina Rudeva, and Agustinus Ribal. "MODELLED AND OBSERVED IMPACT OF THE APRIL 2021 SOUTHERN OCEAN STORM." Coastal Engineering Proceedings, no. 37 (September 1, 2023): 2. http://dx.doi.org/10.9753/icce.v37.waves.2.
Повний текст джерелаVoulgaris, George, Brian K. Haus, Paul Work, Lynn K. Shay, Harvey E. Seim, Robert H. Weisberg, and James R. Nelson. "Waves Initiative within SEACOOS." Marine Technology Society Journal 42, no. 3 (September 1, 2008): 68–80. http://dx.doi.org/10.4031/002533208786842507.
Повний текст джерелаBarnez Gramcianinov, Carolina, Ricardo M. Campos, and Ricardo De Camargo. "CLIMATE CHANGE PERSPECTIVES OF THE CYCLONES AND OCEANIC HAZARDS IN THE WESTERN SOUTH ATLANTIC OCEAN." Arquivos de Ciências do Mar 55, Especial (March 18, 2022): 141–62. http://dx.doi.org/10.32360/acmar.v55iespecial.78186.
Повний текст джерелаStaneva, J., K. Wahle, H. Günther, and E. Stanev. "Coupling of wave and circulation models in coastal-ocean predicting systems: a case study for the German Bight." Ocean Science Discussions 12, no. 6 (December 21, 2015): 3169–97. http://dx.doi.org/10.5194/osd-12-3169-2015.
Повний текст джерелаGrimshaw, Roger, Efim Pelinovsky, and Tatiana Talipova. "Modelling Internal Solitary Waves in the Coastal Ocean." Surveys in Geophysics 28, no. 4 (July 7, 2007): 273–98. http://dx.doi.org/10.1007/s10712-007-9020-0.
Повний текст джерелаYuan, T., X. Wang, K. Qu, and L. B. Zhang. "Hydrodynamic Loads and Overtopping Processes of a Coastal Seawall under the Coupled Impact of Extreme Waves and Wind." Journal of Marine Science and Engineering 11, no. 11 (October 31, 2023): 2087. http://dx.doi.org/10.3390/jmse11112087.
Повний текст джерелаShimura, Tomoya, William J. Pringle, Nobuhito Mori, Takuya Miyashita, and Kohei Yoshida. "GLOBAL OCEAN WAVES AND STORM SURGE CHANGES UNDER A WARMING CLIMATE." Coastal Engineering Proceedings, no. 37 (October 2, 2023): 41. http://dx.doi.org/10.9753/icce.v37.management.41.
Повний текст джерелаДисертації з теми "Coastal Ocean Waves"
Trainor, Lincoln Thomas. "Field observations and SWAN model predictions of wave evolution in a muddy coastal environment." Thesis, Monterey, Calif. : Naval Postgraduate School, 2009. http://edocs.nps.edu/npspubs/scholarly/theses/2009/Jun/09Jun%5FTrainor.pdf.
Повний текст джерелаThesis Advisor(s): Herbers, Thomas H. C. ; Janssen, Tim T. "June 2009." Description based on title screen as viewed on July 14, 2009. Author(s) subject terms: ocean waves, continental shelf, mud, littoral, SWAN. Includes bibliographical references (p. 69-71). Also available in print.
Orszaghova, Jana. "Solitary waves and wave groups at the shore." Thesis, University of Oxford, 2011. http://ora.ox.ac.uk/objects/uuid:5b168bdc-4956-4152-a303-b23a6067bf42.
Повний текст джерелаSiddorn, Philip David. "Efficient numerical modelling of wave-structure interaction." Thesis, University of Oxford, 2012. http://ora.ox.ac.uk/objects/uuid:de36bd2f-cd23-4f11-b67f-9d8cd48ecd3c.
Повний текст джерелаMohd, Haniffah Mohd Ridza. "Wave evolution on gentle slopes : statistical analysis and Green-Naghdi modelling." Thesis, University of Oxford, 2013. http://ora.ox.ac.uk/objects/uuid:26270be8-c3ee-4749-a290-7bdb4a174a4a.
Повний текст джерелаMorim, Nascimento Joao M. "Projections of Global Multivariate Wave Climate for the End of The 21st Century: Robustness and Uncertainties." Thesis, Griffith University, 2020. http://hdl.handle.net/10072/398879.
Повний текст джерелаThesis (PhD Doctorate)
Doctor of Philosophy (PhD)
School of Eng & Built Env
Science, Environment, Engineering and Technology
Full Text
Raby, Alison Caroline. "Extreme waves, overtopping and flooding at sea defences." Thesis, University of Oxford, 2003. http://ora.ox.ac.uk/objects/uuid:82fcc770-8838-4f9b-9abe-32eecdd05f9a.
Повний текст джерелаGrice, James Robert. "Prediction of extreme wave-structure interactions for multi-columned structures in deep water." Thesis, University of Oxford, 2013. http://ora.ox.ac.uk/objects/uuid:dd7320c1-7121-4ea7-827f-527af9405e9a.
Повний текст джерелаStuart, Duncan Charles Alistair. "Characterizing long wave agitation in the port of Ngqura using a Boussinesq wave model." Thesis, Stellenbosch : Stellenbosch University, 2013. http://hdl.handle.net/10019.1/85567.
Повний текст джерелаENGLISH ABSTRACT: The port of Ngqura is situated on the east coast of South Africa. Since its first operational winter excessive vessel motions have interrupted container shipping operations and lead to mooring line failure. A major component contributing to the excessive motions is the presence of seiching in the port, resonating long waves. This study investigates the long wave generation, penetration into the port and subsequent resonance in the vicinity of the problem berths. An extensive literature review identified two predominant types of long waves along the coast of South Africa. Long waves with periods over 12 min generated by resonant air-water coupling and then shorter long waves between 30 s and 6 min attributed to bound long wave energy and broadly speaking, surf beat. A review of the state of the art long wave modelling techniques was included and contributed to the methodology in this study. Analysis of simultaneous measurements from the outside and inside of the port confirmed the generating mechanism of the long waves to be storm systems also responsible for generating short waves. Long waves outside the port were found to be on average 8% of the height of the short waves. On average 90% of the long wave height outside the port penetrated the port. The measurements further identified distinct resonating periods of the long wave energy inside the port. Calibrated Boussinesq wave models allowed for identification of how long waves penetrated the port and subsequently resonated. Both surface elevation measurements and white noise spectra were used as inputs. The penetration mechanisms were attributed to direct diffraction around the main breakwater as well as reflection off the beach south of the port leading to refraction and reflection off the lee side of the main breakwater. Tests with both free and bound long waves proved that at least for some period intervals the long wave energy was indeed bound to short waves. The excessive vessel motions are attributed to berths positioned in line with nodes created by the resonating long waves; nodes are characterized by strong horizontal currents which can induce surge motions in vessels. Various long waves between the period intervals of 45 s to 125 s resonate in the port to generate nodes at the berths of interest. In conclusion, the port of Ngqura is susceptible to a range of long wave periods resulting in significant basin oscillations which present nodes at mooring places. As a result of the analyses in this study the mechanisms of interaction between the port, port basins and the long waves penetrating into the port directly, or via the surf zone as surf beats, have been modelled, documented and better understood. This provides the potential for better prediction of severe long wave events and for the investigation of feasible mitigation measures to prevent damage to moored ships in the port.
AFRIKAANSE OPSOMMING: Die Ngqura hawe is aan die ooskus van Suid-Afrika geleë. Sedert die hawe se eerste operasionele winterseisoen, het oormatige skeepsbewegings operasies van behoueringskepe onderbreek en gelei tot faling van vasmeertoue. Die teenwoordigheid van langgolf resonansie is ‘n groot bydraende faktor tot die oormatige skeepsbewegings. Hierdie studie ondersoek die opwekking, penetrasie en gevolglike resonansie van langgolwe in die areas aangrensend tot die problematiese kaaie. ‘n Uitgebreide literatuurstudie het twee tipes langgolwe aan die Suid-Afrikaanse kus geïdentifiseer, naamlik langgolwe met periodes langer as 12 minute wat deur resonante lug-water koppeling opgewek word en korter langgolwe met periodes tussen 30 s en 6 min wat aan gebonde langgolfenergie of, meer algemeen, surf beat toegeskryf word. Verder is ‘n studie rakende die jongste langgolfmodelleringstegnieke ook uitgevoer waaruit die metodiek van hierdie studie bepaal is. ‘n Analise van gelyktydige opmetings binne en buite die hawe het bevestig dat kortgolwe wat deur stormsisteme gegenereer word, die opwekkingsmeganisme van lang golwe is. Daar is bevind dat langgolwe buite die hawe gemiddeld 8% so hoog soos kort golwe is. ‘n Gemiddeld van 90% van die langgolfhoogte het die hawe penetreer. Die opmetings het ook verder duidelike resonansieperiodes van langgolfenergie binne die hawe aangedui. Gekalibreerde Boussinsq-golfmodelle is gebruik om te indentifiseer hoe langgolwe die hawe binnedring en gevolglik resoneer. Beide oppervlakmetings en wit geraas spektra is as invoerwaardes vir die model gebruik. Die penetrasiemeganismes is toegeskryf aan diffraksie rondom die hoof hawemuur asook refleksie vanaf die strand, suid van die hawe, wat lei tot refraksie en refleksie teen die lykant van die hoof hawemuur. Toetse met vry langgolwe het bewys dat die langgolfenergie, vir ten minste sommige periode intervalle, aan die kort golwe vebonde is. Die oormatige skeepsbewegings is toegeskryf aan die kaaie wat in lyn met nodes van die langgolfresonansie geposisioneer is. Nodes word gekarakteriseer deur sterk horisontale strome wat surge bewegings in skepe kan veroorsaak. Verskeie langgolwe met periode intervalle tussen 45 s tot 125 s resoneer in die hawe en vorm nodes by die kaaie van belang. Ten slotte, die Ngqura hawe is vatbaar vir ‘n reeks langgolfperiodes wat ossilasies in die bekkens van die hawe veroorsaak en nodes naby kaaie vorm. As gevolg van die analises in hierdie studie is die meganismes van interaksie tussen die hawe, sy bekkens en langgolwe wat die hawe direk of via die brandersone binnedring gemodelleer, gedokumenteer en beter verstaan. Hierdeur is die potensiaal vir beter voorspelling van ernstige langgolftoestande verhoog en is dit moontlik gemaak om lewensvatbare oplossings vir skade aan vasgemeerde skepe te ondersoek.
Kühn, Yannik. "Machine Learning Methods for the Analysis of Coastal Sea States." Electronic Thesis or Diss., Pau, 2024. http://www.theses.fr/2024PAUU3029.
Повний текст джерелаPrecise wave forecasts are essential for many coastal communities as they help ensuring safe maritime operations, mitigation of coastal hazards, and the enjoyment of marine recreation. While a reliable global forecast coverage does exist, local, high-resolution forecasts are often not available in many areas due to a significant computational demand. However, recent advances in machine learning have produced several promising approaches to drastically reduce forecast computation time.This thesis investigates one such machine learning approach called super-resolution, that was already successfully employed to speed up computations in fluid mechanics.The concept involves using a numerical model over a mesh with coarse resolution and then converting the results to a higher resolution using a trained machine learning model, thereby avoiding heavy computations in high resolution. This thesis examines the feasibility of the super-resolution approach for coastal wave forecasts. The first part of the thesis presents a proof-of-concept study on data-driven super-resolution using results from a spectral wave model over a structured grid. It demonstrates that this approach can accelerate forecasts by up to 50 times compared to a direct high-resolution computation, with a negligible loss in accuracy. The second part extends this method to unstructured meshes, analyzing the influence of bathymetry and wave energy conditions through a hindcast along the Basque coast. It is found that graph neural networks and polynomial regressions are promising approaches, where the former is suited for highly variable wave fields and the latter for scenarios where speed is paramount. A third part extends the application of super-resolution to wave spectra directly. Despite challenges in evaluating the best model among four tested options, the results suggest that data-driven super-resolution can provide accurate and fast predictions of spatially distributed wave spectra with an accuracy comparable to high-resolution wave model computations
Wust, Isak. "A feasible design concept for the deep water breakwater of the proposed new Durban Dig-Out Port." Thesis, Stellenbosch : Stellenbosch University, 2014. http://hdl.handle.net/10019.1/95969.
Повний текст джерелаENGLISH ABSTRACT: The Port of Durban is forecasted to reach its capacity in terms of container handling soon, which necessitates the investigation of an alternative port in the vicinity. The old Durban Airport site has been identified as a potential location to develop a new deep water container harbour. This is driven by a demand for deep water berth capacity as a result of shipping liners preferring the benefits of scale in their operations, leading to the use of larger ships with deeper drafts. To protect the new port from wave energy penetrating inside the basin as well as from sedimentation from the adjacent beaches, the design and construction of breakwaters are required. The proposed main breakwater for this dig-out port is expected to extend 1 200m into the sea, up to depths of 30m at the seaward roundhead. The deeper parts of the breakwater face wave onslaught in a different manner than a conventional breakwater in shallower waters. At these larger depths, the breakwater has to dissipate the energy of non-breaking waves. In this thesis, the wave climate nearshore, adjacent to the proposed breakwater is studied and extreme wave events are simulated with a SWAN numerical model. The results for a range of wave conditions, corresponding to selected events up to a return period of one in 100 years, are presented. A study of deep water breakwaters was undertaken to investigate other examples of similar structures. This indicated a clear distinction between vertical wall type breakwaters and the more traditional rubble-mound type breakwaters. For this thesis, a rubble-mound breakwater was chosen as the breakwater type for testing under conditions of the Durban Dig-Out Port (DDOP). Focussing on a deep water trunk section of the proposed main breakwater, a concept cross-section was designed using deterministic design methods. The formulae incorporated in this method did however not take into account the packing density of the armour layer and only assumed the recommended values. The hypothesis is thus put forward that the breakwater will still be hydraulically stable for packing densities below the recommended values. This would decrease material consumption and save on cost over the entire breakwater. A physical model was designed to experiment with different armour layer configurations of single- and double layer Cubipod arrangements. The unit was chosen for its massive shape and structural integrity even during impact. A physical model study was performed at the facilities of the CSIR in Stellenbosch. It entailed setting up a fixed-bed two-dimensional physical model in a glass wave flume. Measuring wave heights, wave reflection, overtopping, wave transmission and armour damage, the hydraulic stability and operational performance were analysed for several tests. Based on the results of the first few test series, alterations were made to the breakwater geometry and armouring. The results confirmed the hypothesis that lower packing densities were still hydraulically stable under 1 in 100 year return period wave conditions without inhibiting operational performance. A final cross-section is presented as concept design for the deep section of the proposed DDOP main breakwater.
AFRIKAANSE OPSOMMING: Volgens vooruitsigte gaan Durban hawe binnekort sy kapasiteit bereik wat die hantering van skeepshouers betref. Hierdie verwikkeling noodsaak die ondersoek na ‘n alternatiewe hawe in die nabye omgewing. Die voormalige Durban lughawe is intussen geïdentifiseer as ‘n potensiële perseel waar ‘n diep water houervrag hawe ontwikkel kan word. Dit word gedryf deur die aanvraag na diep water kaai kapasiteit as gevolg van skip operateurs wat skaalvoordele verkies, sodat groter skepe met diep rompe meer populêr word. Die ontwerp en konstruksie van breekwaters word dus benodig, om te verhoed dat beide golwe, sowel as sediment van aangrensende strande, die hawe binnedring. Die voorgestelde hoof breekwater vir hierdie hawe sal na verwagting tot 1200m in die see in strek, waar dit tot 30m diep is naby die seewaartse hoof van dié breekwater. Die dieper gedeeltes van só ‘n breekwater sal blootgestel word aan ‘n ander soort golf aanslag as ‘n soortgelyke konvensionele breekwater in vlakker water. In hierdie waterdiepte is die breekwater verantwoordelik vir die energie verbreking van ongebreekte golwe. In hierdie tesis word die golfklimaat langs die kus, naby aan die voorgestelde breekwater bestudeer. Die uiterste golf gebeurtenisse word gesimuleer met ‘n SWAN numeriese model. Die resultate van ‘n reeks golf kondisies, ooreenstemmend met bepaalde gebeurtenissemet herhaal periodes van tot 100 jaar, word aangebied. ‘n Studie van diep water breekwaters is onderneem om voorbeelde van soortgelyke strukture te ondersoek. Die studie toon ‘n definitiewe onderskeid tussen vertikale muur breekwaters en die meer tradisionele “rubble-mound” breekwater tipes. Vir hierdie tesis is die “rubble-mound” breekwater tipe gekies vir toetsing, onderhewig aan die kondisies van die “Durban Dig-Out Port” (DDOP). ‘n Konsep deursnit is ontwerp vir ‘n diep water romp gedeelte van die voorgestelde hoof breekwater, deur van deterministiese metodes gebruik te maak. Die formules soos vervat in hierdie proses maak egter nie voorsiening vir die pakdigtheid van die bewapeningslaag nie, maar aanvaar slegs die voorgestelde waardes. Die hipotese word dus aangevoer dat die breekwater steeds hidrolies stabiel sal wees vir pakdigthede wat laer as die voorgestelde waardes is. Dit sal die verbruik van materiale verlaag en lei tot koste besparings vir die breekwater. ‘n Fisiese model is ontwerp om te eksperimenteer met verskillende opstellings van die bewapeningslaag. Dit sluit enkel- en dubbel laag bewapening met Cubipod eenhede in. Hierdie eenheid is gekies vir sy massiewe vorm en strukturele integriteit, selfs tydens impak. ‘n Fisiese model studie is uitgevoer by die fasiliteite van die WNNR in Stellenbosch. Dit het die opstel van ‘n vaste-bodem, twee-dimensionele fisiese model in ‘n glas golftenk (“wave flume”) behels. Hidroliese stabiliteit en operasionele werksverrigting is geanaliseer deur golf hoogtes, -weerkaatsing, -oorslag, -deurlating, en skade aan die bewapening te meet vir verskeie toetse. Gebasseer op die resultate van die eerste paar toetsreekse, is veranderinge gemaak aan die breekwater se geometrie en bewapening. Die resultate het die hipotese bevestig dat laer pakdigthede steeds hidrolies stabiel is tydens golf kondisies met ‘n 1 in 100 jaar herhaal periode, sonder om die werksverrigting van die breekwater te belemmer. ‘n Finale deursnit word voorgestel as ‘n konsepontwerp vir die diep water deursnit van die DDOP se hoof breekwater.
Книги з теми "Coastal Ocean Waves"
Sorensen, Robert M. Basic wave mechanics: For coastal and ocean engineers. New York: Wiley, 1993.
Знайти повний текст джерела(Firm), Knovel, ed. Waves and wave forces on coastal and ocean structures. Hackensack, N.J: World Scientific, 2006.
Знайти повний текст джерелаEarle, Marshall Delph. Coastal wave statistical data base. [Los Angeles, Calif.]: The Region, 1988.
Знайти повний текст джерелаWiegel, Robert L. Selected coastal engineering papers of Robert L. Wiegel. Reston, Va: American Society of Civil Engineers, 2011.
Знайти повний текст джерелаHathaway, Kent K. Infragravity waves in the nearshore zone. Vicksburg, Miss: U.S. Army Engineer Waterways Experiment Station, 1998.
Знайти повний текст джерелаInternational, Short Course and Workshop on Coastal Processes and Port Engineering (2nd 2006 Università degli studi della Calabria Italy). Proceedings: 2nd International Short Course and Workshop on Coastal Processes and Port Engineering, May 29th-June 1st, 2006, Department for Soil Conservation, University of Calabria, Italy. Castrolibero [Italy]: Nuova Bios, 2007.
Знайти повний текст джерелаInternational Conference on Coastal Engineering (25th 1996 Orlando, Fla.). 25th International Conference on Coastal Engineering: Book of abstracts : Peabody Hotel, Orlando, Florida, September 2-6, 1996. New York: The Society, 1996.
Знайти повний текст джерелаInternational Coastal Engineering Conference (23rd 1992 Venice). Coastal engineering 1992: Proceedings of the twenty-third international conference, October 4-9, 1992, Venice, Italy. New York, N.Y: American Society of Civil Engineers, 1993.
Знайти повний текст джерелаL, Edge Billy, Coastal Engineering Research Council (U.S.), and International Conference on Coastal Engineering (25th : 1996 : Orlando, Fla.), eds. Coastal engineering 1996: Proceedings of the twenty-fifth international conference, September 2-6, 1996, The Peabody Hotel, Orlando, Florida. New York, N.Y: American Society of Civil Engineers, 1997.
Знайти повний текст джерелаInternational Coastal Engineering Conference (23rd 1992 Venice). Coastal engineering 1992: Proceedings of the twenty-third international conference, October 4-9, 1992, Venice, Italy. New York, N.Y: American Society of Civil Engineers, 1993.
Знайти повний текст джерелаЧастини книг з теми "Coastal Ocean Waves"
Chaney, Ronald C. "Ocean Waves." In Pacific Northwest Coastal Environments, 63–97. Boca Raton: CRC Press, 2024. http://dx.doi.org/10.1201/9781003454212-7.
Повний текст джерелаYou, Zai-Jin, and Peter Nielsen. "Extreme Coastal Waves, Ocean Surges and Wave Runup." In Coastal Hazards, 677–733. Dordrecht: Springer Netherlands, 2012. http://dx.doi.org/10.1007/978-94-007-5234-4_22.
Повний текст джерелаLynett, Patrick J., and James M. Kaihatu. "Modeling of Coastal Waves and Hydrodynamics." In Springer Handbook of Ocean Engineering, 597–610. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-16649-0_27.
Повний текст джерелаBerger, Marsha. "Asteroid-Generated Tsunamis: A Review." In SEMA SIMAI Springer Series, 3–17. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-86236-7_1.
Повний текст джерелаBaer, L., D. Esteva, L. Huff, W. Iseley, R. Ribe, and M. Earle. "Some Problems in the Development of the National Coastal Waves Program." In Wave Dynamics and Radio Probing of the Ocean Surface, 671–76. Boston, MA: Springer US, 1986. http://dx.doi.org/10.1007/978-1-4684-8980-4_45.
Повний текст джерелаZhang, Longgang. "Three-Dimensional Characteristics Observation of Ocean Waves in Coastal Areas by Microwave Doppler Radar." In Advances in 3D Image and Graphics Representation, Analysis, Computing and Information Technology, 51–57. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-3867-4_6.
Повний текст джерелаHuthnance, J. M. "Coastal Trapped Waves." In Encyclopedia of Ocean Sciences, 489–96. Elsevier, 2001. http://dx.doi.org/10.1006/rwos.2001.0121.
Повний текст джерелаHuthnance, John M. "Coastal-Trapped Waves." In Encyclopedia of Ocean Sciences, 598–605. Elsevier, 2019. http://dx.doi.org/10.1016/b978-0-12-409548-9.11326-0.
Повний текст джерелаHuthnance, J. M. "Coastal Trapped Waves." In Encyclopedia of Ocean Sciences, 591–98. Elsevier, 2001. http://dx.doi.org/10.1016/b978-012374473-9.00121-1.
Повний текст джерела"Wind Waves." In Advances in Coastal and Ocean Engineering, 3–21. WORLD SCIENTIFIC, 2011. http://dx.doi.org/10.1142/9789814304269_0002.
Повний текст джерелаТези доповідей конференцій з теми "Coastal Ocean Waves"
Zheng, Quanan, Xiao-Hai Yan, V. Klemas, Zongming Wang, Chung-Ru Ho, and Nan-Jung Kuo. "Solitary coastal lee waves observed from space." In Ocean Optics XIII, edited by Steven G. Ackleson and Robert J. Frouin. SPIE, 1997. http://dx.doi.org/10.1117/12.266423.
Повний текст джерелаLin, Ray-Qing, and Weijia Kuang. "Ship Motion Instabilities in Coastal Regions." In ASME 2009 28th International Conference on Ocean, Offshore and Arctic Engineering. ASMEDC, 2009. http://dx.doi.org/10.1115/omae2009-79753.
Повний текст джерелаHwang, Paul A., Ian R. Young, David W. Wang, Erick Rogers, James Kaihatu, Edward J. Walsh, William B. Krabill, and Robert N. Swift. "Directional Wavenumber Spectra of Ocean Surface Waves." In 27th International Conference on Coastal Engineering (ICCE). Reston, VA: American Society of Civil Engineers, 2001. http://dx.doi.org/10.1061/40549(276)105.
Повний текст джерелаSu, Ming-Yang, Cheng-Han Tsai, Yin-Chern Lin, and Hsiang-Mao Tseng. "Nonlinear Dynamical Mechanisms Connecting Ocean Giant Waves and Wave Groups." In ASME 2002 21st International Conference on Offshore Mechanics and Arctic Engineering. ASMEDC, 2002. http://dx.doi.org/10.1115/omae2002-28139.
Повний текст джерелаVerhagen, L. A., L. H. Holthuijsen, and Y. S. Won. "Modelling Ocean Waves in the Columbia River Entrance." In 23rd International Conference on Coastal Engineering. New York, NY: American Society of Civil Engineers, 1993. http://dx.doi.org/10.1061/9780872629332.220.
Повний текст джерелаTang, Jun, Yongming Shen, and Yigang Lv. "Numerical Study on Coastal Wave and Near-Shore Current Interaction." In ASME 2014 33rd International Conference on Ocean, Offshore and Arctic Engineering. American Society of Mechanical Engineers, 2014. http://dx.doi.org/10.1115/omae2014-23651.
Повний текст джерелаKALRA, TARANDEEP S., CHRISTOPHER R. SHERWOOD, JOHN C. WARNER, YASHAR RAFATI, and TIAN-JIAN HSU. "INVESTIGATING BEDLOAD TRANSPORT UNDER ASYMMETRICAL WAVES USING A COUPLED OCEAN-WAVE MODEL." In International Conference on Coastal Sediments 2019. WORLD SCIENTIFIC, 2019. http://dx.doi.org/10.1142/9789811204487_0052.
Повний текст джерелаLiu, Paul C., and Nobuhito Mori. "Wavelet Spectrum of Freak Waves in the Ocean." In 27th International Conference on Coastal Engineering (ICCE). Reston, VA: American Society of Civil Engineers, 2001. http://dx.doi.org/10.1061/40549(276)84.
Повний текст джерелаChagas, F. M., B. R. F. Rachid, B. G. Ambrosio, A. A. Luz, C. B. Gramcianinov, P. F. Serrao, R. Camargo, and E. Siegle. "Assessment of Wind and Wave High-Resolution Forecasts During High-Energy Weather Events in the Brazilian Coast." In ASME 2021 40th International Conference on Ocean, Offshore and Arctic Engineering. American Society of Mechanical Engineers, 2021. http://dx.doi.org/10.1115/omae2021-62030.
Повний текст джерелаAdytia, Didit, and Lawrence. "Fully Nonlinear Dispersive HAWASSI-VBM for Coastal Zone Simulations." In ASME 2016 35th International Conference on Ocean, Offshore and Arctic Engineering. American Society of Mechanical Engineers, 2016. http://dx.doi.org/10.1115/omae2016-54704.
Повний текст джерелаЗвіти організацій з теми "Coastal Ocean Waves"
Plant, William J. Microwave Measurements of Winds, Waves, and Currents in the Global and Coastal Ocean. Fort Belvoir, VA: Defense Technical Information Center, September 1997. http://dx.doi.org/10.21236/ada635378.
Повний текст джерелаPtsuty, Norbert, Andrea Habeck, and Christopher Menke. Shoreline position and coastal topographical change monitoring at Gateway National Recreation Area: 2017–2022 and 2007–2022 trend report. National Park Service, August 2023. http://dx.doi.org/10.36967/2299536.
Повний текст джерелаVenayagamoorthy, Subhas K. Internal Wave Driven Mixing and Transport in the Coastal Ocean. Fort Belvoir, VA: Defense Technical Information Center, September 2013. http://dx.doi.org/10.21236/ada598311.
Повний текст джерелаVenayagamoorthy, Subhas K. Internal Wave Driven Mixing and Transport in the Coastal Ocean. Fort Belvoir, VA: Defense Technical Information Center, September 2014. http://dx.doi.org/10.21236/ada623415.
Повний текст джерелаXie, Lian, and Leonard J. Pietrafesa. Incorporation of Surface Wave Effects into a Coastal Ocean Circulation Model. Fort Belvoir, VA: Defense Technical Information Center, September 1999. http://dx.doi.org/10.21236/ada629884.
Повний текст джерелаLi, Honghai, Carter Rucker, Lihwa Lin, and Kevin Conner. Use of sediment tracers to evaluate sediment plume at Beaufort Inlet and Adjacent Beaches, North Carolina. Engineer Research and Development Center (U.S.), April 2024. http://dx.doi.org/10.21079/11681/48379.
Повний текст джерелаLi, Honghai, Carter Rucker, Lihwa Lin, and Kevin Conner. Use of sediment tracers to evaluate sediment plume at Cape Fear River Inlet and Adjacent Beaches, North Carolina. Engineer Research and Development Center (U.S.), April 2024. http://dx.doi.org/10.21079/11681/48380.
Повний текст джерелаOcampo-Torres, F. J. Spatial Variations of Ocean Wave Spectra in Coastal Regions from RADARSAT and ERS Synthetic Aperture Radar Images. Natural Resources Canada/ESS/Scientific and Technical Publishing Services, 2000. http://dx.doi.org/10.4095/219636.
Повний текст джерелаWiggert, Jerry, Brandy Armstrong, Mustafa Kemal Cambazoglu, and K. K. Sandeep. Mid-Breton Sediment Diversion (MBrSD) Assessment – Final Report. The University of Southern Mississippi, 2022. http://dx.doi.org/10.18785/sose.001.
Повний текст джерелаHaxel, Joe H., and Sarah K. Henkel. Measuring changes in ambient noise levels from the installation and operation of a surge wave energy converter in the coastal ocean. Office of Scientific and Technical Information (OSTI), October 2017. http://dx.doi.org/10.2172/1400245.
Повний текст джерела