Добірка наукової літератури з теми "CoA ligases"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "CoA ligases".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Статті в журналах з теми "CoA ligases"
Villemur, Richard. "Coenzyme A ligases involved in anaerobic biodegradation of aromatic compounds." Canadian Journal of Microbiology 41, no. 10 (October 1, 1995): 855–61. http://dx.doi.org/10.1139/m95-118.
Повний текст джерелаNolte, Johannes Christoph, Marc Schürmann, Catherine-Louise Schepers, Elvira Vogel, Jan Hendrik Wübbeler, and Alexander Steinbüchel. "Novel Characteristics of Succinate Coenzyme A (Succinate-CoA) Ligases: Conversion of Malate to Malyl-CoA and CoA-Thioester Formation of Succinate AnaloguesIn Vitro." Applied and Environmental Microbiology 80, no. 1 (October 18, 2013): 166–76. http://dx.doi.org/10.1128/aem.03075-13.
Повний текст джерелаLazo, O., M. Contreras, and I. Singh. "Topographical localization of peroxisomal acyl-CoA ligases: differential localization of palmitoyl-CoA and lignoceroyl-CoA ligases." Biochemistry 29, no. 16 (April 24, 1990): 3981–86. http://dx.doi.org/10.1021/bi00468a027.
Повний текст джерелаSingh, Inderjit, Oscar Lazo, and Miguel Contreras. "72 Topographical localization of Peroxisomal Acyl-CoA Ligases: Differential localization of Palmitoyl-CoA and Lignoceroyl-CoA Ligases." Pediatric Research 28, no. 3 (September 1990): 289. http://dx.doi.org/10.1203/00006450-199009000-00096.
Повний текст джерелаEl-Said Mohamed, Magdy. "Biochemical and Molecular Characterization of Phenylacetate-Coenzyme A Ligase, an Enzyme Catalyzing the First Step in Aerobic Metabolism of Phenylacetic Acid inAzoarcus evansii." Journal of Bacteriology 182, no. 2 (January 15, 2000): 286–94. http://dx.doi.org/10.1128/jb.182.2.286-294.2000.
Повний текст джерелаLamas-Maceiras, Mónica, Inmaculada Vaca, Esther Rodríguez, Javier Casqueiro, and Juan F. Martín. "Amplification and disruption of the phenylacetyl-CoA ligase gene of Penicillium chrysogenum encoding an aryl-capping enzyme that supplies phenylacetic acid to the isopenicillin N-acyltransferase." Biochemical Journal 395, no. 1 (March 15, 2006): 147–55. http://dx.doi.org/10.1042/bj20051599.
Повний текст джерелаChen, Janice S., Brendan Colón, Brendon Dusel, Marika Ziesack, Jeffrey C. Way та Joseph P. Torella. "Production of fatty acids inRalstonia eutrophaH16 by engineeringβ-oxidation and carbon storage". PeerJ 3 (7 грудня 2015): e1468. http://dx.doi.org/10.7717/peerj.1468.
Повний текст джерелаKnights, K., and C. Drogemuller. "Xenobiotic-CoA Ligases: Kinetic and Molecular Characterization." Current Drug Metabolism 1, no. 1 (July 1, 2000): 49–66. http://dx.doi.org/10.2174/1389200003339261.
Повний текст джерелаBarragán, María J. López, Manuel Carmona, María T. Zamarro, Bärbel Thiele, Matthias Boll, Georg Fuchs, José L. García, and Eduardo Díaz. "The bzd Gene Cluster, Coding for Anaerobic Benzoate Catabolism, in Azoarcus sp. Strain CIB." Journal of Bacteriology 186, no. 17 (September 1, 2004): 5762–74. http://dx.doi.org/10.1128/jb.186.17.5762-5774.2004.
Повний текст джерелаPhilpott, Helena K., Pamela J. Thomas, David Tew, Doug E. Fuerst, and Sarah L. Lovelock. "A versatile biosynthetic approach to amide bond formation." Green Chemistry 20, no. 15 (2018): 3426–31. http://dx.doi.org/10.1039/c8gc01697f.
Повний текст джерелаДисертації з теми "CoA ligases"
Lelievre, Chloé. "Formation de liaisons amides par réactions enzymatiques détournées ATP Regeneration System in Chemoenzymatic Amide Bond Formation with Thermophilic CoA Ligase." Thesis, université Paris-Saclay, 2020. http://www.theses.fr/2020UPASF026.
Повний текст джерелаThe amide function is widespread in nature and also in many synthetic products such as pharmaceuticals and polymers. Numerous approaches have been developed to provide reliable synthesis methods. The most common approach in conventional chemistry is the acylation of an amine by activated carboxylic acid. Activation requires the use of either coupling reagents resulting in low atom economy, or expensive catalysts sometimes used under drastic conditions. Biocatalytic approaches are therefore interesting alternatives for economic and environmental reasons. Different enzymes can be used such as hydrolases, nitrile hydratases and transglutaminases that activate the acid in acyl-enzyme form to promote the nucleophilic addition of the amine. In recent years, interest in ATP-dependent enzymes has increased.In this project, we focused on CoA ligases that catalyze the formation of activated acid as acyl-adenylate and then acyl-thioester. We have thus demonstrated that by diverting the reaction by scavenging activated intermediate with an amine, we obtain the amide. The use of thermophilic CoA ligases allows us to work at a high temperature and thus facilitate the uncatalyzed addition of the amine. This system therefore dispenses with the use of expensive HSCoA. For a better system, we have also successfully integrated an ATP regeneration system with a Polyphosphate Kinase 2 (Class III) and an inorganic pyrophosphatase. The efficiency of this cascade was illustrated by the lab-scale chemo-enzymatic synthesis of N-methylbutyrylamide in 77 % yield using low enzyme loading.Biodiversity exploration using a genomic approach based on sequence comparison allowed us to identify several thermophilic CoA ligases active towards ω-amino acid substrates. K6Q029 from Thermaerobacter subterraneus was further studied. In particular, this enzyme is active towards ω-amino acid substrates, functionalized or not, with more or less long carbon chains, as well as on various carboxylic acids such as aromatics.Thanks to the structural resolution of A4YDT1, a promiscuous CoA ligase from the literature, we have identified, in collaboration with a team of crystallographers from theUniversity of Groningen (Netherlands), the residues involved in its substrate specificity to modify them by a rational approach. Variants of this enzyme have thus allowed to obtain δ-valerolactam and Ɛ-caprolactam
Touré, Océane. "Approche biocatalytique pour la synthèse de lactames." Electronic Thesis or Diss., université Paris-Saclay, 2024. http://www.theses.fr/2024UPASF027.
Повний текст джерелаBiotechnology is now a well-established part of the chemical industry landscape. In the field of biocatalysis, there are numerous examples of the successful implementation of enzymatic steps in synthesis processes or the development of complete enzymatic pathways, particularly in the pharmaceutical industry.Lactams are compounds found in many natural and synthetic products, such as active pharmaceutical ingredients (APIs), and are precursors in polymer chemistry. To access lactams from simple omega-amino acid backbones, synthesis requires a two-step process: first, activation of the acid function, followed by intramolecular nucleophilic amine addition. For small lactams (5-7 members), intramolecular cyclization occurs spontaneously once the acid has been activated.As part of our work on enzymatic access routes to amides, we recently developed a synthesis involving activation by CoA ligases, in the absence of CoASH, and using only their ability to activate the acid by adenylation with ATP, introduced at only 5 mol% thanks to the implementation of a regeneration system.Until now, the type of lactams obtained by biocatalysis has been limited to bare, functionless rings. The aim of the project is to provide enzymes for the biocatalytic synthesis of 5- to 7-membered functionalized lactams. To achieve this, two approaches will be pursued:1) Exploration of biodiversity. A collection of CoA ligase enzymes, built up using a genomic approach based on sequence identity, is available in the laboratory. This collection, comprising around 250 enzymes, will be screened on lactam precursor substrates of interest. Adenylation enzymes other than CoA ligases have been identified and will also be tested.2) Rational design. In collaboration with the team of Prof. Dick Janssen and Dr. Andy-Mark Thunnissen (University of Groningen, Netherlands), structural data will be used to generate targeted libraries. Substrate docking experiments will be carried out to target mutations
Menzies, Sam. "Ubiquitin E3 ligase mediated regulation of HMG-CoA Reductase." Thesis, University of Cambridge, 2018. https://www.repository.cam.ac.uk/handle/1810/273763.
Повний текст джерелаSouza, Clarice de Azevedo. "The Acyl-CoA ligase-like (ACLL) gene family in Arabidopsis and poplar." Thesis, University of British Columbia, 2007. http://hdl.handle.net/2429/31283.
Повний текст джерелаScience, Faculty of
Botany, Department of
Graduate
Proctor, Lavinia M. "Pharmacological activity of C3a and C3a receptor ligands /." [St. Lucia, Qld.], 2004. http://www.library.uq.edu.au/pdfserve.php?image=thesisabs/absthe18423.pdf.
Повний текст джерелаRampersad, Marilyn Vena. "The development of N2S2 metal complexes as bidentate ligands for organometallic chemistry." Diss., Texas A&M University, 2005. http://hdl.handle.net/1969.1/4913.
Повний текст джерелаPrado, Rogilene Aparecida. "Clonagem gênica e caracterização de uma enzima tipoluciferase de coleópteros não bioluminescentes e sua relação com a origem da atividade luminescente." Universidade Federal de São Carlos, 2012. https://repositorio.ufscar.br/handle/ufscar/5399.
Повний текст джерелаUniversidade Federal de Minas Gerais
Bioluminescence in beetles is dependent on luciferase which evolved from AMP/CoA ligases. The cDNA of a luciferase-like enzime was cloned from the Malpighian tubules of Zophobas morio mealworm (Coleoptera: Tenebrionidae). The gene product of this cDNA displays weak luminescence and it is composed of 528 aminoacids residues with N-terminal and C-terminal sequences signal addressed to smooth endoplasmic reticulum membrane. Although having a low identity (26-32%) with beetle luciferases, this enzyme is a reasonable protoluciferase model to investigate the origin and evolution of beetle luciferases. The luciferin binding site is higly conserved among the beetle luciferases. However, in this protoluciferase of Z. morio, most of these residues of this motif are substituted by others. Using a site-directed mutagenesis survey some of aminoacids residues of this protoluciferase, which are located at correspondent luciferin binding site of luciferases, were replaced by the conserved residues of beetle luciferases. Most of the substitutions had negative effect on the luminescent activity, however, the substitution I327T, which is located in a β-hairpin motif close to the luciferin binding site, improved the luminescence activity. Such substitution indicates the importance of this motif for luciferase activity and indicates a possible route for the evolution of bioluminescence function of beetle luciferase. Since this enzyme is located in the Malpighian tubules, which are involved in excretion and metabolization of carboxylic substrates, this enzyme could be involved to excretion the some type of chemical compound. Regardless of the function the results show that the potential for bioluminescent activity is older and probably arose before the divergences of the Coleoptera bioluminescent families.
A bioluminescência em coleópteros é dependente das luciferases, enzimas que evoluíram das AMP-CoA ligases. O cDNA de uma enzima tipo-luciferase foi clonado dos túbulos de Malphighi de larvas de Zophobas morio (Coleoptera: Tenebrionidae). O produto gênico deste cDNA mostra naturalmente uma fraca luminescência na presença de MgATP e luciferina e possui 528 aminoácidos com sequências sinal na região N-terminal e C-terminal endereçadas a membrana do retículo endoplasmático liso. Apesar de ter uma baixa identidade (26-32%) com as luciferases de vaga-lumes, esta enzima é um modelo apropriado de protoluciferase para investigar a origem e evolução das luciferases de besouros. O sítio de ligação da luciferina é altamente conservado entre todas as luciferases de besouros; na protoluciferase de Z. morio porém, a maioria dos resíduos desta região é substituído por outros. Utilizando-se a técnica de mutagênese sitio-dirigida, alguns resíduos de aminoácidos desta protoluciferase, que são localizados na correspondente região do sítio ativo das luciferases, foram substituídos pelos resíduos conservados das luciferases. A maioria das substituições teve um efeito negativo sobre a atividade luminescente. Porém, a substituição I327T, cujo resíduo é localizado em um motivo grampo β, perto do sítio de ligação da luciferina, aumentou sua atividade luminescente. Tal substituição mostra a importância deste motivo para a atividade luciferásica e indica uma possível rota de evolução das luciferases de coleópteros. Uma vez que esta enzima foi extraída dos túbulos de Malpighi, é possível que esteja envolvida com a excreção de algum composto químico. Independente de sua função, os resultados do presente trabalho sugerem que o potencial para atividade bioluminescente é bem antigo nas ligases e provavelmente evoluíram antes da divergência das famílias de coleópteros bioluminescentes.
Wendt, Kerstin Sybille. "Zwei Untereinheiten aus Proteinkomplexen die Kristallstruktur der APC10-Untereinheit des humanen Anaphase-promoting-Complex und die Kristallstruktur der Carboxytransferase-Untereinheit der Glutaconyl-CoA-Decarboxylase aus Acidaminococcus fermentans /." [S.l.] : [s.n.], 2002. http://deposit.ddb.de/cgi-bin/dokserv?idn=965479730.
Повний текст джерелаStudart-Guimarães, Claudia Rodriguez. "Functional analysis of the role of succinyl CoA ligase in the photosynthetic metabolism of tomato." [S.l.] : [s.n.], 2006. http://www.diss.fu-berlin.de/2006/409/index.html.
Повний текст джерелаTron, Cecile M. V. "Structural and functional studies of biotin protein ligase and its bacterial substrate acetyl-CoA carboxylase." Thesis, University of Edinburgh, 2008. http://hdl.handle.net/1842/14582.
Повний текст джерелаКниги з теми "CoA ligases"
S, Braterman Paul, ed. Reactions of coordinated ligands. New York: Plenum Press, 1986.
Знайти повний текст джерелаSymposium on Host-Guest Molecular Interactions: from Chemistry to Biology (1990 : Ciba Foundation), ed. Host-guest molecular interactions: From chemistry to biology. Chichester: Wiley, 1991.
Знайти повний текст джерелаBraterman, P. S. Reactions of Coordinated Ligands: Volume 2. Springer, 2011.
Знайти повний текст джерелаSilva, Pedro Panhoca da, Luiz Fernando Martins de Lima, and Maira Zuculotto. Narrativas interativas contemporâneas. Diálogo, 2022. http://dx.doi.org/10.52788/9786589932482.
Повний текст джерелаCavalleri, María Silvina, Silvina Pantanali, and Silvia Perez Torrecilla, eds. Procesos de intervención en Trabajo Social. Editorial de la Universidad Nacional de La Plata (EDULP), 2018. http://dx.doi.org/10.35537/10915/70519.
Повний текст джерелаAragão, Gislei Frota. Tópicos interdisciplinares da saúde humana: perspectivas translacionais. Editora Amplla, 2022. http://dx.doi.org/10.51859/amplla.tis167.1122-0.
Повний текст джерелаAcosta Quintero, Alexander, Faizully Andrea Barbosa Moreno, Jenny Marcela Cardona Bedoya, Carlos Alberto Espinosa Herrera, Jenny Jiménez Cruz, Diana Milena Riaño Cuevas, Bibiana Paola Ríos Cortés, et al. Comunicación y comunidades de destino en el marco de la Educación Superior. Edited by Luisa Fernanda Sánchez Sánchez and Diana Elizabeth Ruíz Herrera. FUNDACIÓN UNIVERSITARIA COMPENSAR, 2021. http://dx.doi.org/10.56262/9789587923216.
Повний текст джерелаCedeño Ávila, Leyla María, Viviana Paola Patiño Zambrano, Patricia Cecibel Rivera Ponce, Claudia Vanessa Hidalgo Zambrano, Karina Lisseth Mendoza Hidalgo, Nora Elizabeth Chele Chumo, María José Hidrovo Arteaga, Karen Ximena Villacrés Segovia, Ginna Paola Hidalgo Montenegro, and Katherine Gisella Bravo Bravo. Epidemiologia e investigación en salud pública. Mawil Publicaciones de Ecuador, 2019, 2020. http://dx.doi.org/10.26820/978-9942-826-04-6.
Повний текст джерелаANDREATTI, G. S. N., and L. V. S. SILVA, eds. Perspectivas para o Ensino de Línguas. Mares Editores, 2020. http://dx.doi.org/10.35417/978-65-87712-07-9.
Повний текст джерелаMelo, André Cristiano Silva, Denilson Ricardo de Lucena Nunes, and Vitor William Batista Martins. Logística na Amazônia, pesquisa e práticas no Estado do Pará: supply chain management. Editora da Universidade do Estado do Pará-Eduepa, 2022. http://dx.doi.org/10.31792/978-65-88106-33-4.
Повний текст джерелаЧастини книг з теми "CoA ligases"
Schomburg, Dietmar, and Ida Schomburg. "benzoyl-CoA-dihydrodiol lyase 4.1.2.44." In Class 3.4–6 Hydrolases, Lyases, Isomerases, Ligases, 450–52. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-36260-6_34.
Повний текст джерелаSchomburg, Dietmar, and Ida Schomburg. "3-hydroxypropionyl-CoA dehydratase 4.2.1.116." In Class 3.4–6 Hydrolases, Lyases, Isomerases, Ligases, 499–500. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-36260-6_43.
Повний текст джерелаSchomburg, Dietmar, and Ida Schomburg. "enoyl-CoA hydratase 2 4.2.1.119." In Class 3.4–6 Hydrolases, Lyases, Isomerases, Ligases, 507–21. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-36260-6_46.
Повний текст джерелаSchomburg, Dietmar, and Ida Schomburg. "4-hydroxybutanoyl-CoA dehydratase 4.2.1.120." In Class 3.4–6 Hydrolases, Lyases, Isomerases, Ligases, 522–26. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-36260-6_47.
Повний текст джерелаSchomburg, Dietmar, and Ida Schomburg. "3-hydroxypropionyl-CoA synthase 6.2.1.36." In Class 3.4–6 Hydrolases, Lyases, Isomerases, Ligases, 663–65. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-36260-6_86.
Повний текст джерелаSchomburg, Dietmar, and Dörte Stephan. "Phenylacetate-CoA ligase." In Enzyme Handbook 17, 309–12. Berlin, Heidelberg: Springer Berlin Heidelberg, 1998. http://dx.doi.org/10.1007/978-3-642-58969-0_72.
Повний текст джерелаSchomburg, Dietmar, and Dörte Stephan. "Anthranilate-CoA ligase." In Enzyme Handbook 17, 317–20. Berlin, Heidelberg: Springer Berlin Heidelberg, 1998. http://dx.doi.org/10.1007/978-3-642-58969-0_74.
Повний текст джерелаSchomburg, Dietmar, and Dörte Stephan. "O-Succinylbenzoate-CoA ligase." In Enzyme Handbook 17, 293–96. Berlin, Heidelberg: Springer Berlin Heidelberg, 1998. http://dx.doi.org/10.1007/978-3-642-58969-0_68.
Повний текст джерелаSchomburg, Dietmar, and Dörte Stephan. "4-Hydroxybenzoate-CoA ligase." In Enzyme Handbook 17, 297–300. Berlin, Heidelberg: Springer Berlin Heidelberg, 1998. http://dx.doi.org/10.1007/978-3-642-58969-0_69.
Повний текст джерелаSchomburg, Dietmar, and Dörte Stephan. "2-Furoate-CoA ligase." In Enzyme Handbook 17, 313–15. Berlin, Heidelberg: Springer Berlin Heidelberg, 1998. http://dx.doi.org/10.1007/978-3-642-58969-0_73.
Повний текст джерелаТези доповідей конференцій з теми "CoA ligases"
liu, jingjing, and Carla V. Finkielstein. "Abstract LB-309: Interplay between E3 ligases modulate Per2 stability." In Proceedings: AACR Annual Meeting 2014; April 5-9, 2014; San Diego, CA. American Association for Cancer Research, 2014. http://dx.doi.org/10.1158/1538-7445.am2014-lb-309.
Повний текст джерелаJiang, Zeyu (David), Rui Hong, and Mike Farrell. "Abstract 3493: Anin-situproximity assay using biotin ligase." In Proceedings: AACR Annual Meeting 2014; April 5-9, 2014; San Diego, CA. American Association for Cancer Research, 2014. http://dx.doi.org/10.1158/1538-7445.am2014-3493.
Повний текст джерелаDayneko, Sergey, Dmitriy Lypenko, Pavel Linkov, Alexey Tameev, Igor Martynov, Pavel Samokhvalov, and Alexander Chistyakov. "Effect of surface ligands on the performance of organic light-emitting diodes containing quantum dots." In SPIE/COS Photonics Asia, edited by Xuping Zhang, Hai Ming, and Changyuan Yu. SPIE, 2014. http://dx.doi.org/10.1117/12.2071062.
Повний текст джерелаLondino, J. D., L. Chafin, J. Adair, D. Farkas, A. Elhance, and B. Johnson. "MicroID: A Novel Biotin Ligase Enables Rapid Proximity Ligation Proteomics." In American Thoracic Society 2022 International Conference, May 13-18, 2022 - San Francisco, CA. American Thoracic Society, 2022. http://dx.doi.org/10.1164/ajrccm-conference.2022.205.1_meetingabstracts.a3222.
Повний текст джерелаLv, Huafei, Xuemei Zhang, Xinxin Yu, Sujuan Pan, Shusen Xie, Hongqin Yang, and Yiru Peng. "The effect of axial ligands on the quantum yield of singlet oxygen of new silicon phthalocyanine." In SPIE/COS Photonics Asia, edited by Qingming Luo, Xingde Li, Ying Gu, and Yuguo Tang. SPIE, 2016. http://dx.doi.org/10.1117/12.2246271.
Повний текст джерелаChen, Jian, Jiun-Sheng Chen, YoungJin Gi, Lior H. Katz, Ji-Hyun Shin, Liem Phan, Wilma Jogunoori та ін. "Abstract 2784: Targeting TGF-β regulated E3 ligases: a novel therapeutic approach for primary liver cancer". У Proceedings: AACR Annual Meeting 2014; April 5-9, 2014; San Diego, CA. American Association for Cancer Research, 2014. http://dx.doi.org/10.1158/1538-7445.am2014-2784.
Повний текст джерелаZondy, Jean-Jacques, Franck Bielsa, Albane Douillet, Laurent Hilico, Ouali Acef, Valentin Petrov, Alexander Yelisseyev, Ludmila Isaenko та Pavel Krinitsin. "SHG of CO2 laser radiation at 10.6 μm in the highly nonlinear chalcopyrite LiGaTe2". У CLEO '07. 2007 Conference on Lasers and Electro-Optics. IEEE, 2007. http://dx.doi.org/10.1109/cleo.2007.4452810.
Повний текст джерелаCarlos Triveño Rios, Maiara Dias Silveira, and Miluska Triveño Huamanñahui. "Síntese e Caracterização de Ligas do Sistema Al-Cu." In IX Congresso Nacional de Engenharia Mecânica. Rio de Janeiro, Brazil: ABCM Associação Brasileira de Engenharia e Ciências Mecânicas, 2016. http://dx.doi.org/10.20906/cps/con-2016-0935.
Повний текст джерелаOliveira, V. C. H. C., B. L. Damineli, V. Agopyan, and V. M. John. "Teor de Ligantes, Tipos de Cimento e a Mitigação da Pegada de CO2 de Concretos." In Encontro Latinoamericano de Edificações e Comunidades Sustentáveis. Curitiba, Paraná, Brasil: UFPR/ANTAC/UEPG, 2013. http://dx.doi.org/10.12702/978-85-89478-40-3-a105.
Повний текст джерелаBruna Almeida Barbosa and Maria Eliziane Pires de Souza Souza. "Oxidação por plasma eletrolítico em ligas de alumínio - caracterização eletroquímica." In IX Congresso Nacional de Engenharia Mecânica. Rio de Janeiro, Brazil: ABCM Associação Brasileira de Engenharia e Ciências Mecânicas, 2016. http://dx.doi.org/10.20906/cps/con-2016-1067.
Повний текст джерелаЗвіти організацій з теми "CoA ligases"
Stanley, Leonardo. Financiamiento verde en América Latina y el Caribe: debates, debilidades, desafíos y amenazas. Fundación Carolina, October 2021. http://dx.doi.org/10.33960/issn-e.1885-9119.dt57.
Повний текст джерелаQuijada, José Alejandro, and José David Sierra. Entendiendo las causas de la emigración indocumentada en hogares de bajos ingresos en Honduras. Inter-American Development Bank, June 2015. http://dx.doi.org/10.18235/0009613.
Повний текст джерелаGonzález, Andrea, Mercedes Sidders, Juan Carlos Hallak, and Mariana Chudnovsky. Construyendo capacidades institucionales para implementar PDP: El caso de las políticas de promoción del diseño en la Argentina. Inter-American Development Bank, November 2017. http://dx.doi.org/10.18235/0012038.
Повний текст джерелаFeal-Zubimendi, Soledad, and Juan Pablo Ventura. El desafío de la formalización empresarial en Paraguay: causas, motivaciones y propuestas de política pública. Inter-American Development Bank, March 2023. http://dx.doi.org/10.18235/0004814.
Повний текст джерелаNiza Ribeiro, João, and Katia Pinello, eds. Relatório Oncológico Animal de Todos os Tumores registados na Vet-OncoNet, em 2021. Vet-OncoNet – Veterinary Oncology Network, 2023. http://dx.doi.org/10.24840/2021/1-1-04-2023.
Повний текст джерелаAndrade Nieves, Mónica María, and Martha Cecilia Velásquez Ceballos. El cálculo de la dosis a partir de un caso ejemplificado: enfermería y medicina roles ligados a la seguridad durante la prescripción y la administración de fármacos. Ediciones Universidad Cooperativa de Colombia, April 2023. http://dx.doi.org/10.16925/gcnc.60.
Повний текст джерелаRepetto, Fabián, Juan Sanguinetti, and Mariano Tommasi. La Influencia de los Aspectos Institucionales en el Desempeño de las Políticas de Protección Social y Combate a la Pobreza en América Latina y el Caribe. Inter-American Development Bank, May 2002. http://dx.doi.org/10.18235/0011895.
Повний текст джерелаLopez Delgado, Omar, Carlos Eduardo Prieto Cerón, and José Yeferson Yaya Garcia. Propuesta de implementación de soluciones técnicas para la optimización del uso de la energía en PYMES. Escuela Tecnológica Instituto Técnico Central, 2018. http://dx.doi.org/10.55411/2023.30.
Повний текст джерелаNúñez, Anamaría, Dolores Subiza, and Andrea Monje Silva. ¿Tiene género el agua? Inter-American Development Bank, March 2016. http://dx.doi.org/10.18235/0006392.
Повний текст джерелаBorensztein, Eduardo, Bernardita Piedrabuena, Rolando Ossowski, Valerie Mercer-Blackman, and Sebastián J. Miller. El manejo de los ingresos fiscales del cobre en Chile. Inter-American Development Bank, July 2013. http://dx.doi.org/10.18235/0008484.
Повний текст джерела