Добірка наукової літератури з теми "CO₂ separation"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "CO₂ separation".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Статті в журналах з теми "CO₂ separation":

1

Yuan, Lixia, Ji Yang, Fujun Du, Xunchuan Liu, Yang Su, Qing-Zeng Yan, Xuepeng Chen, et al. "On the Spatial Distribution of 13CO Structures within 12CO Molecular Clouds." Astrophysical Journal 944, no. 1 (February 1, 2023): 91. http://dx.doi.org/10.3847/1538-4357/acac26.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Abstract We look into the 2851 12CO molecular clouds harboring 13CO structures to reveal the distribution of the projected angular separations and radial velocity separations between their internal 13CO structures. The projected angular separations are determined using the minimal spanning tree algorithm. We find that ∼50% of the angular separations fall in a narrow range of ∼3′–7′ with a median of ∼5′, and the corresponding radial velocity separations mainly range from ∼0.3 to 2.5 km s−1. The mean and standard deviation of the angular separations of the internal 13CO structures within 12CO clouds appear to be universal, independent of the 12CO cloud angular areas and the counts of their internal 13CO structures. We also reveal a scaling relation between the 12CO cloud angular area and its harbored 13CO structure count. These results suggest there is a preferred angular separation between 13CO structures in these 12CO clouds, considering the distance effects. According to that, we propose an alternative picture for the assembly and destruction of molecular clouds: there is a fundamental separation for the internal structures of molecular clouds, the build-up and destruction of molecular clouds proceeds under this fundamental unit.
2

Dutta, N. N., and G. S. Patil. "Developments in CO separation." Gas Separation & Purification 9, no. 4 (December 1995): 277–83. http://dx.doi.org/10.1016/0950-4214(95)00011-y.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Dutta, N. N., and G. S. Patil. "Developments in CO separation." Fuel and Energy Abstracts 37, no. 3 (May 1996): 182. http://dx.doi.org/10.1016/0140-6701(96)88524-9.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Zhang, Yingying, Xuzhao Yang, Jingli Han, Junfeng Tian, Ting Zhang, Yakun Li, Jiangqiang Zhang, Yuxin Shi, and Jingjing Zhang. "Screening of Pure ILs and DESs for CO2 Separation, N2O Separation, and H2S Separation Processes." International Journal of Chemical Engineering 2023 (February 18, 2023): 1–20. http://dx.doi.org/10.1155/2023/8691957.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Ionic liquids (ILs) are proposed as potential “green” solvents with remarkable properties. Deep eutectic solvents (DESs) are a new type of ILs with additional properties, such as higher biodegradability and a lower price. ILs and DESs are “green” absorbents for various gas separations, such as CO2/N2, CO2/H2/CO, H2S/CH4, and N2O/N2. Due to their large number, the screening of ILs is crucial. Although ILs with high absorption capacities were screened using gas solubility and selectivity, it is important to consider the energy and solvents used in the process. In this paper, the absorbent amount and the energy consumption were used for screening absorbents for various gas separation processes. The results reveal that physical IL [Bmim][DCA] and chemical IL [Eeim][Ac] are screened for CO2/N2 and CO2/H2/CO separation, physical IL [Omim][PF6] for H2S/CH4 separation, and physical IL [P66614][eFAP] for NO/N2 separation. The screened ILs offer some advantages over commercial absorbents in terms of lower energy consumption or amount.
5

Al Ghour, Samer, and Enas Moghrabi. "Co-Compact Separation Axioms and Slight Co-Continuity." Symmetry 12, no. 10 (September 29, 2020): 1614. http://dx.doi.org/10.3390/sym12101614.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Via co-compact open sets we introduce co-T2 as a new topological property. We show that this class of topological spaces strictly contains the class of Hausdorff topological spaces. Using compact sets, we characterize co-T2 which forms a symmetry. We show that co-T2 propoerty is preserved by continuous closed injective functions. We show that a closed subspace of a co-T2 topological space is co-T2. We introduce co-regularity as a weaker form of regularity, s-regularity as a stronger form of regularity and co-normality as a weaker form of normality. We obtain several characterizations, implications, and examples regarding co-regularity, s-regularity and co-normality. Moreover, we give several preservation theorems under slightly coc-continuous functions.
6

Abou-El-Wafa, Moustafa H. M., Hesham Mansour, and G. A. Noubi. "High-performance liquid chromatography of some bis(ethylenediamine)cobalt(III) complexes." Canadian Journal of Chemistry 64, no. 10 (October 1, 1986): 1953–56. http://dx.doi.org/10.1139/v86-322.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Chromatographic separation of the complexes cis- and trans-Co(en)2(S2O3)2−, cis- and trans-Co(en)2(SO3)2−, cis- and trans-Co(en)2Cl2+,cis-Co(en)2(N3)2+, cis-Co(en)2(SO3)(N3)0, Co(en)2(S2O3)(N3)0, and Co(en)2(S2O3)(OH2)+ (en = ethylenediamine) was carried out by high-performance liquid chromatography. Good separations were achieved on a μ-Bondapak C18 reversed-phase octadecyldimethylsilane (ODS) column using tributylmethylammonium cations and octylsulphonate anions. The efficiency and speed of the separations were superior to those obtained on a Partisil SCX ion exchange column.
7

Kazama, Shingo. "CO2 Separation Membrane." MEMBRANE 31, no. 1 (2006): 6–7. http://dx.doi.org/10.5360/membrane.31.6.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Liu, Bo-yu, You-jin Gong, Xiao-nan Wu, Qiang Liu, Wei Li, Shun-shun Xiong, Sheng Hu, and Xiao-lin Wang. "Enhanced xenon adsorption and separation with an anionic indium–organic framework by ion exchange with Co2+." RSC Advances 7, no. 87 (2017): 55012–19. http://dx.doi.org/10.1039/c7ra10538j.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Massoud Samba, Mohammed. "A Novel Demulsifier Used to Separate Water from the Emulsion." Journal of Engineering Research [TJER] 20, no. 1 (January 24, 2024): 85–91. http://dx.doi.org/10.53540/tjer.vol20iss1pp85-91.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Recently, there has been interest in using chemical demulsifiers to separate the water phase from crude oil emulsion. Separating the water from the emulsion is crucial before transportation and refining to avoid complications from the water phase. This research introduces a novel chemical demulsifier, Poly (AAc-co-AAm) hydrogel, synthesised at Sebha University. Its characteristics were examined using the Fourier Transform Infrared Spectroscopy test (FTIR). Its efficiency was tested against commercial demulsifiers (Emulsotron and Dmo-66813) used in some Libyan oil fields. The chosen concentrations for Poly (AAc-co-AAm) were 0.5%, 1%, and 2%, while commercial demulsifiers were tested based on the standard method in the oil field. The results revealed that Poly (AAc-co-AAm) outperformed the commercial demulsifiers in terms of separation time, volume, and quality. Notably, the 0.5% concentration of Poly (AAc-co-AAm) provided the best separation results.
10

Massoud Samba, Mohammed. "A Novel Demulsifier Used to Separate Water from the Emulsion." Journal of Engineering Research [TJER] 20, no. 1 (October 19, 2023): 85–91. http://dx.doi.org/10.53540/tjer.vol20iss2pp85-91.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Recently, there has been interest in using chemical demulsifiers to separate the water phase from crude oil emulsion. Separating the water from the emulsion is crucial before transportation and refining to avoid complications from the water phase. This research introduces a novel chemical demulsifier, Poly (AAc-co-AAm) hydrogel, synthesised at Sebha University. Its characteristics were examined using the Fourier Transform Infrared Spectroscopy test (FTIR). Its efficiency was tested against commercial demulsifiers (Emulsotron and Dmo-66813) used in some Libyan oil fields. The chosen concentrations for Poly (AAc-co-AAm) were 0.5%, 1%, and 2%, while commercial demulsifiers were tested based on the standard method in the oil field. The results revealed that Poly (AAc-co-AAm) outperformed the commercial demulsifiers in terms of separation time, volume, and quality. Notably, the 0.5% concentration of Poly (AAc-co-AAm) provided the best separation results.

Дисертації з теми "CO₂ separation":

1

Xie, Xiaofeng. "CO₂-expanded liquids for separation and reaction." Diss., Georgia Institute of Technology, 2003. http://hdl.handle.net/1853/10077.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Shen, Dawei. "Co-channel digital signal separation : application and practice." Thesis, Massachusetts Institute of Technology, 2008. http://hdl.handle.net/1721.1/42408.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Thesis (S.M.)--Massachusetts Institute of Technology, School of Architecture and Planning, Program in Media Arts and Sciences, 2008.
Includes bibliographical references (leaves 84-86).
This thesis studies the theory and application of co-channel digital signal separation techniques. We set up a test-bed with the GNU Software Defined Radio (SDR) platform where we implement and experiment with single-antenna signal separation algorithms. We mainly investigate linearly-modulated digital signals. To do this, we design a multiple RFID card reader capable of decoding multiple commodity ID cards simultaneously. These passive RFID cards transmit DBPSK waveforms once activated. A signal separation function at the receiver delivers great convenience to the users without increasing the complexity and cost of the cards. Second, we derive the optimal criteria for deciding the start of an RFID frame. We show that the commonly utilized correlation rule is suboptimal and that a correction term needs to be considered to achieve the best detection performance. Several rules for frame synchronization are proposed and analyzed numerically using Monte Carlo simulation. These signal separation techniques present an opportunity to improve the capacity of wireless systems and combat interference. This thesis documents design issues in the physical and application layers, thereby demonstrating the great flexibility and strength of the GNU SDR system.
by Dawei Shen.
S.M.
3

Jegede, Oluwatoyin Enitan. "Metastable liquid phase separation in Co-Cu alloys." Thesis, University of Leeds, 2017. http://etheses.whiterose.ac.uk/19808/.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Two Co – Cu alloys were studied by drop tube processing technique in a view of investigating the effects of rapid solidification on the phase transformations and microstructural evolution in the metastable alloys. The as – solidified samples had diameters ranging from 53 – 850+ μm and these were analysed using various characterization techniques such as optical (OM) and scanning electron (SEM) microscopy, x- ray diffraction (XRD) and differential thermal analysis (DTA). The Cu – 50 at. % Co alloy was observed to experience liquid phase separation at lower undercooling than the Cu – 68.5 at. % Co alloy. This is found to be in accordance to the asymmetrical metastable miscibility gap determined for the alloy system. Significant number of liquid phase separated structures were observed at cooling rates in excess of 15000 Ks-1, evidenced by a range of microstructural morphologies including stable core shell structures, evolving core shell structures and structures in which the demixed liquid phases were randomly distributed. A large number of these structures experienced multiple liquid phase separation processes. The configuration of the core shell structures were found to be independent of the composition of phases and their relative abundance, with the core always formed by the higher melting point phase. The optimum production of the core shell structures were found to be a function of cooling rate.
4

Woo, Grace R. "Demonstration and evaluation of co-channel DBPSK source separation." Thesis, Massachusetts Institute of Technology, 2007. http://hdl.handle.net/1721.1/42170.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Thesis (S.M.)--Massachusetts Institute of Technology, School of Architecture and Planning, Program in Media Arts and Sciences, 2007.
Includes bibliographical references (leaves 51-53).
This thesis presents a Differential Binary Phase Shift Key (DBPSK) source separation system implemented with the GNU Software Defined Radio (SDR) platform and interfaced with the existing MIT community Radio Frequency Identification (RFID) system. Source separation, well studied in the theoretical signal processing setting, presents an opportunity to achieve higher throughput in a practical SDR deployment. While much research has centered around the design of complex multi-input-multi-output (MIMO) and code division multiple access (CDMA) systems, single antenna source separation presents a simple alternative that is suitable in settings such as RFID where sources are naturally synchronized. Motivated by the analysis of physical channel properties with GNU SDR, this thesis documents the complete design process from the physical layer to the application layer and presents a realization of a co-channel DBPSK source separating technique. The result is an intelligent RFID source-separating reader that is capable of decoding multiple "dumb" cards.
by Grace R. Woo.
S.M.
5

Kim, Sangil. "Modified ordered mesoporous silica membranes for CO₂ -N₂ separation." Cincinnati, Ohio : University of Cincinnati, 2003. http://rave.ohiolink.edu/etdc/view?acc%5Fnum=ucin1070484926.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Corcoran, Edward W., Ronald R. Chance, Harry W. Deckman, Gregory J. DeMartin, Sebastián C. Reyes, C. J. Yoon, and Trevor E. Clark. "Molecular transport in inorganic membranes: CO 2 /CH 4 separation." Universitätsbibliothek Leipzig, 2016. http://nbn-resolving.de/urn:nbn:de:bsz:15-qucosa-194810.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Corcoran, Edward W., Ronald R. Chance, Harry W. Deckman, Gregory J. DeMartin, Sebastián C. Reyes, C. J. Yoon, and Trevor E. Clark. "Molecular transport in inorganic membranes: CO 2 /CH 4 separation." Diffusion fundamentals 3 (2005) 18, S. 1, 2005. https://ul.qucosa.de/id/qucosa%3A14307.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Abbassi, Maria. "Selective CO Adsorption Separation from CO2 via Cu-modified Adsorbents." Thesis, Université d'Ottawa / University of Ottawa, 2021. http://hdl.handle.net/10393/42151.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
CO2 capture and conversion appears to be a prominent solution to mitigate greenhouse gas emissions (GHG) and global warming issue. Among different CO2 conversion approaches, CO2 hydrogenation via reverse water gas shift (RWGS) reaction is one of the most promising technology to convert CO2 to CO. Subsequently, CO is transformed to value added chemicals or liquid fuels. To improve the overall CO2 conversion for RWGS reaction, product separation and recycling is being proposed. In this research, adsorption separation technology has been explored to selectively separate CO from CO2 in RWGS using pressure swing adsorption (PSA) process. To investigate the adsorption capacity and selectivity of CO, different porous materials have been identified for CO separation. In this research, activated carbons, ordered mesoporous silica, and metal organic framework materials were studied. Equilibrium isotherms of CO and CO2 were measured in a gravimetric system at a temperature of 25 °C for pressures up to 20 bar. Preliminary adsorption isotherm results had shown an insufficient CO uptake and low selectivity level compared to CO2, thus not justifying their application for CO separation. Herein, to improve the CO adsorption capacity and selectivity, Cu-based adsorbents were developed using copper (II) chloride (CuCl2) as a precursor to synthesize six different adsorbents. The adsorbents were prepared using two different synthesis methods; the modified polyol method for reduction and nanoparticle deposition of Cu (I) ions, and thermal monolayer auto-dispersion method. Furthermore, different copper (II) loadings were investigated to determine the monolayer dispersion capacity of CuCl2 on the support. The modified adsorbents by copper salt exhibited significantly high CO uptake with large CO/CO2 selectivity, reversing the results obtained before adsorbent modification. Thus, Cubased adsorbents are promising materials for CO separation and recovery from a gaseous mixture containing CO2.
9

Cowan, Oliver. "Co-occurrence and phenological niche separation in rodent pollinated Proteaceae." Bachelor's thesis, University of Cape Town, 2010. http://hdl.handle.net/11427/24855.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Despite the numerous studies regarding rodent pollination in the Cape Floristic Region in the last few decades, little or no work has been done on patterns of co-occurrence and flowering phenology. The presence of three potentially rodent-pollinated Protea species at Fernkloof Nature Reserve, two of which were observed to co-occur, facilitated the following questions: i) are P. cordata, P. scabra and P. angustata therophilous? ii) do therophilous species co-exist at a fine scale? iii) do they have the same pollinator? iv) do they exhibit staggered flowering phenology? The floral characteristics of the study species suggest they were rodent pollinated and that the co-occurring species, P. cordata and P. scabra, would have staggered flowering phenologies. All three of the species' pollen was found in the faeces of Acomys subspinosus, the shared pollinator, while the phenological data provided the first empirical evidence of staggered flowering phenologies between fine scale, sympatric therophilous Protea species.
10

Vaughn, Justin. "Development and evaluation of aromatic polyamide-imide membranes for H₂S and CO₂ separations from natural gas." Diss., Georgia Institute of Technology, 2013. http://hdl.handle.net/1853/47576.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Over the past decade, membrane based gas separations have gained traction in industry as an attractive alternative to traditional thermally based separations due to their potential to offer lower operational and capital expenditures, greater ease of operation and lower environmental impact. As membrane research evolves, new state-of-the-art membrane materials as well as processes utilizing membranes will likely be developed. Therefore, their incorporation into existing thermally based units as a debottlenecking step or as a stand-alone separation unit is expected to become increasingly more common. Specifically for natural gas, utilization of smaller, more remote natural gas wells will require the use of less equipment intensive and more flexible separation technologies, which precludes the use of traditional, more capital and equipment intensive thermally based units. The use of membranes is, however, not without challenges. Perhaps the most important hurdle to overcome in membrane development for natural gas purification is the ability to maintain high efficiency in the presence of harsh feed components such as CO₂ and H₂S, both of which can swell and plasticize polymer membranes. Additionally, as this project demonstrates, achievement of similarly high selectivity for both CO₂ and H₂S is challenged by the different governing factors that control their transport through polymeric membranes. However, as others have suggested and shown, as well as what is demonstrated in this project, when CO₂ is the primary contaminant of interest, maintaining high CO₂/CH₄ efficiency appears to be more important in relation to product loss in the downstream. This work focuses on a class of fluorinated, glassy polyamide-imides which show high plasticization resistance without the need for covalent crosslinking. Membranes formed from various polyamide-imide materials show high mixed gas selectivities with adequate productivities when subjected to feed conditions that more closely resemble those that may be encountered in a real natural gas well. The results of this project highlight the polyamide-imide family as a promising platform for future membrane material development for materials aimed at aggressive natural gas purifications due to their ability to maintain high selectivities under aggressive feed conditions without the need for extensive stabilization methods.

Книги з теми "CO₂ separation":

1

Hu, Yun Hang. Advances in CO₂ conversion and utilization. Edited by American Chemical Society. Division of Fuel Chemistry. Washington, DC: American Chemical Society, 2010.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Silva, Germa n. Burgos. Independencia judicial en Ame rica Latina: De quie n, para que , co mo? Bogota: Publicaciones ILSA, 2003.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Bonnell, Karen. The co-parenting handbook: Raising well-adjusted and resilient kids from little ones to young adults through divorce or separation. Seattle, WA: Sasquatch Books, 2017.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Westin, Alan F. The anatomy of a constitutional law case: Youngstown Sheet and Tube Co. v. Sawyer, the steel seizure decision. New York: Columbia University Press, 1990.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Thayer, Elizabeth S. The co-parenting survival guide: Letting go of conflict after a difficult divorce. Oakland, CA: New Harbinger Publications, 2001.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

McClure, F. Daniel. Wednesday evenings and every other weekend: From divorded dad to competent co-parent : a guide for the noncustodial father. Charlottesville, Va: Van Doren Company, 2001.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

McClure, F. Daniel. Wednesday evenings and every other weekend: From divorced dad to competent co-parent : a guide for the noncustodial father. Charlottesville, Va: Van Doren Co., 2009.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Works, Hamilton Agricultural, and L. D. Sawyer & Co., eds. Hamilton Agricultural Works: Established 1836 : L.D. Sawyer & Co., Hamilton, Ont., manufacturers of the celebrated grain saver, the only complete thresher and separator for steam power in the Dominion. [Hamilton, Ont.?: s.n., 1986.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Simultaneous Adaptive Co-Channel Speaker Separation. Storming Media, 1999.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Blackstone, Jann, and David L. Hill. Co-parenting Through Separation and Divorce: Putting Your Children First. American Academy of Pediatrics, 2020. http://dx.doi.org/10.1542/9781610023818.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Co-Parenting Through Separation and Divorce offers a roadmap through one of life's most difficult challenges, with the goal of healthy, happy kids informing every decision along the way. https://shop.aap.org/co-parenting-through-separation-and-divorce-paperback/

Частини книг з теми "CO₂ separation":

1

Huang, Hua-Jiang, and Shri Ramaswamy. "Separation and Purification of Phytochemicals as Co-Products in Biorefineries." In Biorefinery Co-Products, 37–53. Chichester, UK: John Wiley & Sons, Ltd, 2012. http://dx.doi.org/10.1002/9780470976692.ch3.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Claessens, Elke, and Dimitri Mortelmans. "Who Cares? An Event History Analysis of Co-parenthood Dynamics in Belgium." In European Studies of Population, 131–52. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-68479-2_7.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
AbstractUntil the end of the twentieth century, child custody arrangements after separation typically continued the gendered pre-separation parenting division, with mothers taking up childcare and fathers paying child support. Recently, there has been a significant rise in co-parenting after separation, reflecting the trend towards more socio-economic, work- and childcare-related gender equality during the relationship. However, it remains unclear to what extent the organization of the pre-separation household dominates over important changes in the lives and labor force participation of parents after separation in choosing to co-parent.This study uses longitudinal Belgian register data to consider the effect of post-separation dynamics in parents’ life course and labor force participation in deciding to co-parent. While certain pre-separation characteristics remain predictive of co-parenting, our results suggest a societal trend towards co-parenting as the parenting norm. Increased time in paid work positively affects co-parenting probabilities, but we find no effect of a post-separation income increase, even though this would imply greater bargaining power to obtain sole custody. As such, the investigated post-separation changes seem to be an indication of parents moving towards supporting and attempting to gain gender equal parenting after separation.
3

Fa-tao, Chen, Zhang Bo, Li Wen-cai, Wang Qiang, and Hong Xin. "Experimental Study on Reduction-Magnetic Separation Process of Low-grade Nickel Laterite Ore." In Ni-Co 2013, 221–29. Cham: Springer International Publishing, 2013. http://dx.doi.org/10.1007/978-3-319-48147-0_15.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Fa-tao, Chen, Zhang Bo, Li Wen-cai, Wang Qiang, and Hong Xin. "Experimental Study on Reduction-Magnetic Separation Process of Low-Grade Nickel Laterite Ore." In Ni-Co 2013, 221–29. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2013. http://dx.doi.org/10.1002/9781118658826.ch15.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Tao, Duan-Jian, and Zhang-Min Li. "Ionic Liquids in CO Capture and Separation." In Encyclopedia of Ionic Liquids, 1–7. Singapore: Springer Singapore, 2022. http://dx.doi.org/10.1007/978-981-10-6739-6_140-1.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Tao, Duan-Jian, and Zhang-Min Li. "Ionic Liquids in CO Capture and Separation." In Encyclopedia of Ionic Liquids, 740–46. Singapore: Springer Nature Singapore, 2022. http://dx.doi.org/10.1007/978-981-33-4221-7_140.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Smaragdis, Paris, Madhusudana Shashanka, Bhiksha Raj, and Gautham J. Mysore. "Probabilistic Factorization of Non-negative Data with Entropic Co-occurrence Constraints." In Independent Component Analysis and Signal Separation, 330–37. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-642-00599-2_42.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Cottet, Hervé, and Pierre Gareil. "Separation of Synthetic (Co)Polymers by Capillary Electrophoresis Techniques." In Capillary Electrophoresis, 541–67. Totowa, NJ: Humana Press, 2008. http://dx.doi.org/10.1007/978-1-59745-376-9_21.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Dugnol, B., C. Fernández, G. Galiano, and J. Velasco. "On a Chirplet Transform Based Method for Co-channel Voice Separation." In Biomedical Engineering Systems and Technologies, 163–75. Berlin, Heidelberg: Springer Berlin Heidelberg, 2008. http://dx.doi.org/10.1007/978-3-540-92219-3_12.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Walper, Sabine, Christine Entleitner-Phleps, and Alexandra N. Langmeyer. "Shared Physical Custody After Parental Separation: Evidence from Germany." In European Studies of Population, 285–308. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-68479-2_13.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
AbstractMultilocal, dual residence or shared parenting arrangements after parental separation are increasingly discussed in many countries because they seem best suited to allow for more equally shared parental roles and children’s equal access to both (biological) parents. So far, there is little information about shared physical custody in Germany. The present research uses the second wave from a large German survey “Growing up in Germany” (2013–2015) to investigate the prevalence, preconditions, as well as possible outcomes of shared physical custody after separation. The sample comprises 1042 children (below age 18) with separated parents (maternal report). Measured by children’s overnight stays with each parent, less than 5% of these children lived in a dual residence arrangement (50:50 up to 60:40% of time with either parent). Shared physical custody was more likely if maternal and paternal residence were in close proximity, and if the mother had higher levels of education. As expected, shared physical custody was more likely if the parents had a positive cooperative (co-parenting) relationship while co-parenting problems did not seem to have independent effects. The findings are discussed with respect to other research addressing issues of self-selection into different parenting arrangements and the still limited role of shared physical custody in Germany in facilitating more equal gender roles.

Тези доповідей конференцій з теми "CO₂ separation":

1

Smolenski, Yantorno, Benincasa, and Wenndt. "Co-channel speaker segment separation." In IEEE International Conference on Acoustics Speech and Signal Processing ICASSP-02. IEEE, 2002. http://dx.doi.org/10.1109/icassp.2002.1005692.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Smolenski, Brett Y., Robert E. Yantorno, Daniel S. Benincasa, and Stanley J. Wenndt. "Co-channel speaker segment separation." In Proceedings of ICASSP '02. IEEE, 2002. http://dx.doi.org/10.1109/icassp.2002.5743670.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Yunxin Zhao, Kuah-Chieh Yen, Soli, Gao, and Vermiglio. "Co-channel speech separation for assistive listening." In IEEE International Conference on Acoustics Speech and Signal Processing ICASSP-02. IEEE, 2002. http://dx.doi.org/10.1109/icassp.2002.1006150.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Zhao, Yunxin, Kuan-Chieh Yen, Sig Soli, Shawn Gao, and Andy Vermiglio. "Co-channel speech separation for assistive listening." In Proceedings of ICASSP '02. IEEE, 2002. http://dx.doi.org/10.1109/icassp.2002.5745010.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Xu, Kewei, Yan Ren, and Gecheng Zha. "Separation Control by Co-Flow Wall Jet." In AIAA AVIATION 2021 FORUM. Reston, Virginia: American Institute of Aeronautics and Astronautics, 2021. http://dx.doi.org/10.2514/6.2021-2946.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Rosier and Grenier. "Two-pitch estimation for co-channel speakers separation." In IEEE International Conference on Acoustics Speech and Signal Processing ICASSP-02. IEEE, 2002. http://dx.doi.org/10.1109/icassp.2002.1004841.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Rosier, Julie, and Yves Grenier. "Two-pitch estimation for co-channel speakers separation." In Proceedings of ICASSP '02. IEEE, 2002. http://dx.doi.org/10.1109/icassp.2002.5745580.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Baranov, Igor Y., and Andrey V. Koptev. "Pulsed CO laser for isotope separation of uranium." In INTERNATIONAL SYMPOSIUM ON HIGH POWER LASER ABLATION 2012. American Institute of Physics, 2012. http://dx.doi.org/10.1063/1.4739921.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Xiaolin, Zhang, Xu Hongrui, and Lian Siyao. "Blind Separation of Co-frequency Communications Recon Signals." In 2013 Third International Conference on Instrumentation, Measurement, Computer, Communication and Control (IMCCC). IEEE, 2013. http://dx.doi.org/10.1109/imccc.2013.311.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Schwarz, Robert T., and Andreas Knopp. "MIMO Capacity of Co-Located Satellites in Longitude Separation." In ICC 2019 - 2019 IEEE International Conference on Communications (ICC). IEEE, 2019. http://dx.doi.org/10.1109/icc.2019.8761332.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Звіти організацій з теми "CO₂ separation":

1

Benincasa, Daniel S. Simultaneous Adaptive Co-Channel Speaker Separation. Fort Belvoir, VA: Defense Technical Information Center, November 1999. http://dx.doi.org/10.21236/ada372110.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Copeland, Robert J. A NOVEL CO{sub 2} SEPARATION SYSTEM. Office of Scientific and Technical Information (OSTI), March 2000. http://dx.doi.org/10.2172/789049.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Copeland, Robert J. A NOVEL CO{sub 2} SEPARATION SYSTEM. Office of Scientific and Technical Information (OSTI), May 2000. http://dx.doi.org/10.2172/789050.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Copeland, Robert J. A NOVEL CO{sub 2} SEPARATION SYSTEM. Office of Scientific and Technical Information (OSTI), August 2000. http://dx.doi.org/10.2172/789052.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Copeland, R. J. A novel CO{sub 2} separation system. Office of Scientific and Technical Information (OSTI), January 2001. http://dx.doi.org/10.2172/775509.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Kinoshita, Noboru. MCFC power plant with CO{sub 2} separation. Office of Scientific and Technical Information (OSTI), December 1996. http://dx.doi.org/10.2172/460238.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

G. Deppe, R. Currier, and D. Spencer. CO{sub 2} HYDRATE PROCESS FOR GAS SEPARATION. Office of Scientific and Technical Information (OSTI), January 2004. http://dx.doi.org/10.2172/823297.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Pellegrino, J. J., and P. Giarratano. Ion-exchange membranes for bulk separation of H{sub 2}S and CO{sub 2}. Office of Scientific and Technical Information (OSTI), September 1992. http://dx.doi.org/10.2172/10175096.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Armstrong, Mazana. PR675-203601-R01 Minimum Separation Between Underground Pipelines and Electric Supply Line Structures. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), March 2022. http://dx.doi.org/10.55274/r0012217.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Tian, Yongming, Yongqian Gao, and Sivakumar Challa. Layer-by-layer deposition of ultra-thin hybrid/microporous membrane for CO2 separation. Office of Scientific and Technical Information (OSTI), December 2017. http://dx.doi.org/10.2172/1411444.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

До бібліографії