Добірка наукової літератури з теми "Classifications des images"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Classifications des images".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Статті в журналах з теми "Classifications des images"
FURTADO, Luiz Felipe de Almeida, Thiago Sanna Freire SILVA, Pedro José Farias FERNANDES, and Evelyn Márcia Leão de Moraes NOVO. "Land cover classification of Lago Grande de Curuai floodplain (Amazon, Brazil) using multi-sensor and image fusion techniques." Acta Amazonica 45, no. 2 (June 2015): 195–202. http://dx.doi.org/10.1590/1809-4392201401439.
Повний текст джерелаShi, Li Jun, Xian Cheng Mao, and Zheng Lin Peng. "Method for Classification of Remote Sensing Images Based on Multiple Classifiers Combination." Applied Mechanics and Materials 263-266 (December 2012): 2561–65. http://dx.doi.org/10.4028/www.scientific.net/amm.263-266.2561.
Повний текст джерелаGhimire, Santosh. "On the Image Pixels Classification Methods." Journal of the Institute of Engineering 15, no. 2 (July 31, 2019): 202–9. http://dx.doi.org/10.3126/jie.v15i2.27667.
Повний текст джерелаKlose, Christian D., Alexander D. Klose, Uwe Netz, Juergen Beuthan, and Andreas H. Hielscher. "Multiparameter classifications of optical tomographic images." Journal of Biomedical Optics 13, no. 5 (2008): 050503. http://dx.doi.org/10.1117/1.2981806.
Повний текст джерелаA.khalil and Almas a.Khalil, Turkan. "Fuzzy rule Base-Multispectral Images Classifications." Iraqi National Journal of Earth Sciences 5, no. 2 (December 28, 2005): 32–40. http://dx.doi.org/10.33899/earth.2005.41243.
Повний текст джерелаLi, Mengmeng, and Alfred Stein. "Mapping Land Use from High Resolution Satellite Images by Exploiting the Spatial Arrangement of Land Cover Objects." Remote Sensing 12, no. 24 (December 18, 2020): 4158. http://dx.doi.org/10.3390/rs12244158.
Повний текст джерелаMolina, P. C., M. P. Castro, and C. S. Anjos. "ASSESSMENT OF PCA AND MNF INFLUENCE IN THE VHR SATELLITE IMAGE CLASSIFICATIONS." ISPRS - International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences XLII-3/W12-2020 (November 4, 2020): 55–60. http://dx.doi.org/10.5194/isprs-archives-xlii-3-w12-2020-55-2020.
Повний текст джерелаKijima, Hiroaki, Shin Yamada, Natsuo Konishi, Hitoshi Kubota, Hiroshi Tazawa, Takayuki Tani, Norio Suzuki, et al. "The Reliability of Classifications of Proximal Femoral Fractures with 3-Dimensional Computed Tomography: The New Concept of Comprehensive Classification." Advances in Orthopedics 2014 (2014): 1–5. http://dx.doi.org/10.1155/2014/359689.
Повний текст джерелаCracknell, Matthew, Anita Parbhakar-Fox, Laura Jackson, and Ekaterina Savinova. "Automated Acid Rock Drainage Indexing from Drill Core Imagery." Minerals 8, no. 12 (December 4, 2018): 571. http://dx.doi.org/10.3390/min8120571.
Повний текст джерелаCherici, Céline. "Dossier thématique : images et classifications du vivant." Bulletin d’histoire et d’épistémologie des sciences de la vie Volume 23, no. 2 (2016): 119. http://dx.doi.org/10.3917/bhesv.232.0119.
Повний текст джерелаДисертації з теми "Classifications des images"
Sonoda, Luke Ienari. "Classifications of lesions in magnetic resonance images of the breast." Thesis, King's College London (University of London), 2003. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.406934.
Повний текст джерелаThompson, J. Paul. "Classifications of gross morphologic and magnetic resonance images of human intervertebral discs." Thesis, University of British Columbia, 1987. http://hdl.handle.net/2429/26647.
Повний текст джерелаMedicine, Faculty of
Graduate
Arshad, Irshad Ahmad. "Using statistical methods for automatic classifications of clouds in ground-based photographs of the sky." Thesis, University of Essex, 2003. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.250129.
Повний текст джерелаNgo, Ho Anh Khoi. "Méthodes de classifications dynamiques et incrémentales : application à la numérisation cognitive d'images de documents." Thesis, Tours, 2015. http://www.theses.fr/2015TOUR4006/document.
Повний текст джерелаThis research contributes to the field of dynamic learning and classification in case of stationary and non-stationary environments. The goal of this PhD is to define a new classification framework able to deal with very small learning dataset at the beginning of the process and with abilities to adjust itself according to the variability of the incoming data inside a stream. For that purpose, we propose a solution based on a combination of independent one-class SVM classifiers having each one their own incremental learning procedure. Consequently, each classifier is not sensitive to crossed influences which can emanate from the configuration of the models of the other classifiers. The originality of our proposal comes from the use of the former knowledge kept in the SVM models (represented by all the found support vectors) and its combination with the new data coming incrementally from the stream. The proposed classification model (mOC-iSVM) is exploited through three variations in the way of using the existing models at each step of time. Our contribution states in a state of the art where no solution is proposed today to handle at the same time, the concept drift, the addition or the deletion of concepts, the fusion or division of concepts while offering a privileged solution for interaction with the user. Inside the DIGIDOC project, our approach was applied to several scenarios of classification of images streams which can correspond to real cases in digitalization projects. These different scenarios allow validating an interactive exploitation of our solution of incremental classification to classify images coming in a stream in order to improve the quality of the digitized images
Alchicha, Élie. "Confidentialité Différentielle et Blowfish appliquées sur des bases de données graphiques, transactionnelles et images." Thesis, Pau, 2021. http://www.theses.fr/2021PAUU3067.
Повний текст джерелаDigital data is playing crucial role in our daily life in communicating, saving information, expressing our thoughts and opinions and capturing our precious moments as digital pictures and videos. Digital data has enormous benefits in all the aspects of modern life but forms also a threat to our privacy. In this thesis, we consider three types of online digital data generated by users of social media and e-commerce customers: graphs, transactional, and images. The graphs are records of the interactions between users that help the companies understand who are the influential users in their surroundings. The photos posted on social networks are an important source of data that need efforts to extract. The transactional datasets represent the operations that occurred on e-commerce services.We rely on a privacy-preserving technique called Differential Privacy (DP) and its generalization Blowfish Privacy (BP) to propose several solutions for the data owners to benefit from their datasets without the risk of privacy breach that could lead to legal issues. These techniques are based on the idea of recovering the existence or non-existence of any element in the dataset (tuple, row, edge, node, image, vector, ...) by adding respectively small noise on the output to provide a good balance between privacy and utility.In the first use case, we focus on the graphs by proposing three different mechanisms to protect the users' personal data before analyzing the datasets. For the first mechanism, we present a scenario to protect the connections between users (the edges in the graph) with a new approach where the users have different privileges: the VIP users need a higher level of privacy than standard users. The scenario for the second mechanism is centered on protecting a group of people (subgraphs) instead of nodes or edges in a more advanced type of graphs called dynamic graphs where the nodes and the edges might change in each time interval. In the third scenario, we keep focusing on dynamic graphs, but this time the adversaries are more aggressive than the past two scenarios as they are planting fake accounts in the dynamic graphs to connect to honest users and try to reveal their representative nodes in the graph. In the second use case, we contribute in the domain of transactional data by presenting an existed mechanism called Safe Grouping. It relies on grouping the tuples in such a way that hides the correlations between them that the adversary could use to breach the privacy of the users. On the other side, these correlations are important for the data owners in analyzing the data to understand who might be interested in similar products, goods or services. For this reason, we propose a new mechanism that exposes these correlations in such datasets, and we prove that the level of privacy is similar to the level provided by Safe Grouping.The third use-case concerns the images posted by users on social networks. We propose a privacy-preserving mechanism that allows the data owners to classify the elements in the photos without revealing sensitive information. We present a scenario of extracting the sentiments on the faces with forbidding the adversaries from recognizing the identity of the persons. For each use-case, we present the results of the experiments that prove that our algorithms can provide a good balance between privacy and utility and that they outperform existing solutions at least in one of these two concepts
Thornström, Johan. "Domain Adaptation of Unreal Images for Image Classification." Thesis, Linköpings universitet, Datorseende, 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-165758.
Повний текст джерелаPavez, Ojeda Jorge. "Africanismes à Cuba (1812-1917) : textes, images et classes." Paris, EHESS, 2007. http://www.theses.fr/2007EHES0097.
Повний текст джерелаThis dissertation analyzes the constitution of the field of Afro-Cuban Studies at the beginnings of the XXth century in the work of Fernando Ortiz, criminal lawyer, ethnologist, historian and folklorist. We will find in it the tension between the European logics of disciplines and the forms of Afro Cuban agency in the co-production of ethnographical knowledge. In that way, we propose a deconstruction of the principals subjects and concepts on which is instituted a vision of Africa in Cuba: witchcraft, degeneration, "mob", ethnic classifications, Afro-Cubans' writings (tattoos, symbolisms, music, cults and rites). The accent on the classes and the classifications systems of social and medical disciplines will lead to a genealogy of the conceptions of black class and race adopted by the Afro-Cubans. For this, we will propose the analysis of a corpus of archives about the Afro Cuban artist and intellectual Jose Antonio Aponte, accused and executed in 1812 as conspirator and rebel
BATISTA, LEONARDO VIDAL. "COMPARING AUTOMATIC IMAGE CLASSIFICATION TECHNIQUES OF REMOTE SENSING IMAGES." PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO, 1993. http://www.maxwell.vrac.puc-rio.br/Busca_etds.php?strSecao=resultado&nrSeq=8870@1.
Повний текст джерелаNeste trabalho, diversas técnicas de classificação automática de imagens de sensoriamento remoto são investigadas. Na análise, incluem-se um método não- paramétrico, denominado K-Médias. Adaptativos Hierárquico (KMAH), e seis paramétricos: o Classificador de Máxima Verossimilhança (MV), o de Máxima Probabilidade a Posteriori (MAP), o MAP Adaptativo (MAPA), por Subimagens (MAPSI), o Contextual Tilton-Swain (CXTS) e o Contextual por Subimagens (CXSI). O treinamento necessário à implementação das técnicas paramétricas foi realizado de forma não-supervisionada, usando-se para tanto a classificação efetuada pelo KMAH. Considerações a respeito das vantagens e desvantagens dos classificadores, de acordo com a observação das taxas de erros e dos tempos de processamento, apontaram as técnicas MAPA e MAPSI com as mais convenientes
In this thesis, several techniques of automatic classfication of remote sensing impeages are investigated. Included in the analysis are ane non-parametric method, known as Adaptative hierarchical K-means (KMAH), and six parametric ones: the Maximum Likelihood (MV), the Maximum a Posteriori Probability (MAP), the Adaptative MAP (MAPA), the Subimages MAP (MAPSI), the tilton-Swain Contextual, (CXTS) and the Subimages Contextual (CXSI) classifiers. The necessary training for the parametric case was done in a non-supervised form, by using the KMAH classification. Considerations about the advantages and disadvantages of the classifiers were made and, based on the observation of the error rates and processing time, the MAPA and MAPSI have shown the best performances.
Råhlén, Oskar, and Sacharias Sjöqvist. "Image Classification of Real Estate Images with Transfer Learning." Thesis, KTH, Skolan för elektroteknik och datavetenskap (EECS), 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-259759.
Повний текст джерелаVarje minut görs 2000 sökningar på Sveriges största webbplats för bostadsannonser som har 20 000 bostadsrätter till salu bara i Stockholm. Detta ställer höga krav på sökfunktionen för att ge användarna en chans att hitta sin drömbostad. Idag finns det möjlighet att filtrera på attribut såsom antal rum, boarea, pris och område men inte på attribut som balkong och eldstad. För att inte behöva kategorisera objekt manuellt för attribut såsom balkong och eldstad finns det möjlighet att använda sig av mäklarbilder samt djupa neurala nätverk för att klassificera objekten automatiskt. Denna uppsats syftar till att utreda om det med hög sannolikhet går att klassificera mäklarbilder efter attributen balkong, eldstad samt typ av rum, med hjälp av djupa neurala nätverk. För att undersöka detta på ett utförligt sätt jämfördes olika arkitekturer med varandra samt feature extraction mot fine-tuning. Testerna visade att balkongmodellen med 98,1% sannolikhet kan avgöra om det finns en balkong på någon av bilderna eller inte. För eldstäder nåddes ett maximum på 85,5% vilket är väsentligt sämre än för balkonger. Under sista klassificeringen, den för rum, nåddes ett resultat på 97,9%.Sammanfattningsvis påvisar detta att det är fullt möjligt att använda djupa neurala nätverk för att klassificera mäklarbilder.
Vargas, Muñoz John Edgar 1991. "Contextual superpixel-based active learning for remote sensing image classification = Aprendizado ativo baseado em atributos contextuais de superpixel para classificação de imagem de sensoriamento remoto." [s.n.], 2015. http://repositorio.unicamp.br/jspui/handle/REPOSIP/275555.
Повний текст джерелаDissertação (mestrado) - Universidade Estadual de Campinas, Instituto de Computação
Made available in DSpace on 2018-08-27T14:43:51Z (GMT). No. of bitstreams: 1 VargasMunoz_JohnEdgar_M.pdf: 9138091 bytes, checksum: bdb40e3a5655df0e10a137f2d08f0d8d (MD5) Previous issue date: 2015
Resumo: Recentemente, técnicas de aprendizado de máquina têm sido propostas para criar mapas temáticos a partir de imagens de sensoriamento remoto. Estas técnicas podem ser divididas em métodos de classificação baseados em pixels ou regiões. Este trabalho concentra-se na segunda abordagem, uma vez que estamos interessados em imagens com milhões de pixels e a segmentação da imagem em regiões (superpixels) pode reduzir consideravelmente o número de amostras a serem classificadas. Porém, mesmo utilizando superpixels, o número de amostras ainda é grande para anotá-las manualmente e treinar o classificador. As técnicas de aprendizado ativo propostas resolvem este problema começando pela seleção de um conjunto pequeno de amostras selecionadas aleatoriamente. Tais amostras são anotadas manualmente e utilizadas para treinar a primeira instância do classificador. Em cada iteração do ciclo de aprendizagem, o classificador atribui rótulos e seleciona as amostras mais informativas para a correção/confirmação pelo usuário, aumentando o tamanho do conjunto de treinamento. A instância do classificador é melhorada no final de cada iteração pelo seu treinamento e utilizada na iteração seguinte até que o usuário esteja satisfeito com o classificador. Observamos que a maior parte dos métodos reclassificam o conjunto inteiro de dados em cada iteração do ciclo de aprendizagem, tornando este processo inviável para interação com o usuário. Portanto, enderaçamos dois problemas importantes em classificação baseada em regiões de imagens de sensoriamento remoto: (a) a descrição efetiva de superpixels e (b) a redução do tempo requerido para seleção de amostras em aprendizado ativo. Primeiro, propusemos um descritor contextual de superpixels baseado na técnica de sacola de palavras, que melhora o resultado de descritores de cor e textura amplamente utilizados. Posteriormente, propusemos um método supervisionado de redução do conjunto de dados que é baseado em um método do estado da arte em aprendizado ativo chamado Multi-Class Level Uncertainty (MCLU). Nosso método mostrou-se tão eficaz quanto o MCLU e ao mesmo tempo consideravelmente mais eficiente. Adicionalmente, melhoramos seu desempenho por meio da aplicação de um processo de relaxação no mapa de classificação, utilizando Campos Aleatórios de Markov
Abstract: In recent years, machine learning techniques have been proposed to create classification maps from remote sensing images. These techniques can be divided into pixel- and region-based image classification methods. This work concentrates on the second approach, since we are interested in images with millions of pixels and the segmentation of the image into regions (superpixels) can considerably reduce the number of samples for classification. However, even using superpixels the number of samples is still large for manual annotation of samples to train the classifier. Active learning techniques have been proposed to address the problem by starting from a small set of randomly selected samples, which are manually labeled and used to train a first instance of the classifier. At each learning iteration, the classifier assigns labels and selects the most informative samples for user correction/confirmation, increasing the size of the training set. An improved instance of the classifier is created by training, after each iteration, and used in the next iteration until the user is satisfied with the classifier. We observed that most methods reclassify the entire pool of unlabeled samples at every learning iteration, making the process unfeasible for user interaction. Therefore, we address two important problems in region-based classification of remote sensing images: (a) the effective superpixel description and (b) the reduction of the time required for sample selection in active learning. First, we propose a contextual superpixel descriptor, based on bag of visual words, that outperforms widely used color and texture descriptors. Second, we propose a supervised method for dataset reduction that is based on a state-of-art active learning technique, called Multi-Class Level Uncertainty (MCLU). Our method has shown to be as effective as MCLU, while being considerably more efficient. Additionally, we further improve its performance by applying a relaxation process on the classification map by using Markov Random Fields
Mestrado
Ciência da Computação
Mestre em Ciência da Computação
Книги з теми "Classifications des images"
Xu, Xiang, Xingkun Wu, and Feng Lin. Cellular Image Classification. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-47629-2.
Повний текст джерелаM, Benning Vivien, and Ching Neville P, eds. Classification of remotely sensed images. Bristol: A. Hilger, 1987.
Знайти повний текст джерелаAhmed, Nazeer. Image shape classification techniques. Manchester: University of Manchester, 1997.
Знайти повний текст джерелаGeimer, Robert L. Flake classification by image analysis. Madison, WI: U.S. Dept. of Agriculture, Forest Service, Forest Products Laboratory, 1988.
Знайти повний текст джерелаBi, Ying, Bing Xue, and Mengjie Zhang. Genetic Programming for Image Classification. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-65927-1.
Повний текст джерелаJenicka, S. Land Cover Classification of Remotely Sensed Images. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-66595-1.
Повний текст джерелаYin, Xiao-Xia, Sillas Hadjiloucas, and Yanchun Zhang. Pattern Classification of Medical Images: Computer Aided Diagnosis. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-57027-3.
Повний текст джерелаKamusoko, Courage. Remote Sensing Image Classification in R. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-13-8012-9.
Повний текст джерелаBorra, Surekha, Rohit Thanki, and Nilanjan Dey. Satellite Image Analysis: Clustering and Classification. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-13-6424-2.
Повний текст джерелаCosta, Luciano da Fontoura. Shape classification and analysis: Theory and practice. 2nd ed. Boca Raton: Taylor & Francis, 2009.
Знайти повний текст джерелаЧастини книг з теми "Classifications des images"
Leamons, Rebekah, Hong Cheng, and Ahmad Al Shami. "Vision Transformers for Medical Images Classifications." In Lecture Notes in Networks and Systems, 319–25. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-16075-2_22.
Повний текст джерелаWang, Kegang, Liying Qi, and Guohua Geng. "Images Classifications Based on Color-Texture Feature." In Artificial Intelligence and Computational Intelligence, 105–12. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-33478-8_14.
Повний текст джерелаBalnarsaiah, Battula, G. Rajitha, and Balakrishna Penta. "Classifications of SAR Images Using Sparse Coding." In Springer Series in Geomechanics and Geoengineering, 761–69. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-77276-9_69.
Повний текст джерелаParveen, Runa, Cliff Ruff, and Andrew Todd-Pokropek. "Three Dimensional Tissue Classifications in MR Brain Images." In Computer Vision Approaches to Medical Image Analysis, 236–47. Berlin, Heidelberg: Springer Berlin Heidelberg, 2006. http://dx.doi.org/10.1007/11889762_21.
Повний текст джерелаHatt, Charles, Craig Galban, Wassim Labaki, Ella Kazerooni, David Lynch, and Meilan Han. "Convolutional Neural Network Based COPD and Emphysema Classifications Are Predictive of Lung Cancer Diagnosis." In Image Analysis for Moving Organ, Breast, and Thoracic Images, 302–9. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-030-00946-5_30.
Повний текст джерелаChan, Jonathan C. W., Ruth S. DeFries, and John R. G. Townshend. "Improved Recognition of Spectrally Mixed Land Cover Classes Using Spatial Textures and Voting Classifications." In Computer Analysis of Images and Patterns, 217–27. Berlin, Heidelberg: Springer Berlin Heidelberg, 2001. http://dx.doi.org/10.1007/3-540-44692-3_27.
Повний текст джерелаBalnarsaiah, Battula, T. S. Prasad, Laxminarayana Parayitam, Balakrishna Penta, and Chandrasekhar Patibandla. "Classifications of High-Resolution SAR and Optical Images Using Supervised Algorithms." In Computational Intelligence in Pattern Recognition, 981–90. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-13-9042-5_84.
Повний текст джерелаKhanh, Ho Thi Kieu, Tran Cong Hung, Viet-Hung Dang, and Nguyen Duc Thang. "Human Organ Classifications from Computed Tomography Images Using Deep-Convolutional Neural Network." In 6th International Conference on the Development of Biomedical Engineering in Vietnam (BME6), 917–23. Singapore: Springer Singapore, 2017. http://dx.doi.org/10.1007/978-981-10-4361-1_155.
Повний текст джерелаZhong, Ziyuan, Yuchi Tian, and Baishakhi Ray. "Understanding Local Robustness of Deep Neural Networks under Natural Variations." In Fundamental Approaches to Software Engineering, 313–37. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-71500-7_16.
Повний текст джерелаYanai, Keiji. "Image Classification by Web Images." In Lecture Notes in Computer Science, 613–14. Berlin, Heidelberg: Springer Berlin Heidelberg, 2002. http://dx.doi.org/10.1007/3-540-45683-x_83.
Повний текст джерелаТези доповідей конференцій з теми "Classifications des images"
Borges, Felipe Silveira Brito, Juliana Velasques Balta, Milad Roghanian, Ariadne Barbosa Gonçalves, Marco Alvarez, and Hemerson Pistori. "The interference of optical zoom in human and machine classification of pollen grain images." In Workshop de Visão Computacional. Sociedade Brasileira de Computação - SBC, 2021. http://dx.doi.org/10.5753/wvc.2021.18897.
Повний текст джерелаPereira, Rafael S., and Fabio Porto. "Deep Learning Application for Plant Classification on Unbalanced Training Set." In XIII Brazilian e-Science Workshop. Sociedade Brasileira de Computação - SBC, 2019. http://dx.doi.org/10.5753/bresci.2019.10023.
Повний текст джерелаPereira, Rafael S., and Fabio Porto. "Deep Learning Application for Plant Classification on Unbalanced Training Set." In XIII Brazilian e-Science Workshop. Sociedade Brasileira de Computação - SBC, 2019. http://dx.doi.org/10.5753/bresci.2019.6304.
Повний текст джерелаCallanan, James, Carles Garcia-Cabrera, Niamh Belton, Gennady Roshchupkin, and Kathleen Curran. "Integrating feature attribution methods into the loss function of deep learning classifiers." In 24th Irish Machine Vision and Image Processing Conference. Irish Pattern Recognition and Classification Society, 2022. http://dx.doi.org/10.56541/omxa8857.
Повний текст джерелаLeavers, V. F., and M. D. Hanlon. "Establishment of the Accuracy and Consistency of Using Automatic Image Analysis to Classify Wear Debris Particles." In World Tribology Congress III. ASMEDC, 2005. http://dx.doi.org/10.1115/wtc2005-64385.
Повний текст джерелаMohammadyari, Fatemeh, Mir Mehrdad Mirsanjari, Jūratė Sužiedelytė Visockienė, and Ardavan Zarandian. "Evaluation of Change in Land Usage and Land Cover in Karaj, Iran." In 11th International Conference “Environmental Engineering”. VGTU Technika, 2020. http://dx.doi.org/10.3846/enviro.2020.649.
Повний текст джерелаJohnson, Kristyn B., Donald H. Ferguson, Robert S. Tempke, and Andrew C. Nix. "Application of a Convolutional Neural Network for Wave Mode Identification in a Rotating Detonation Combustor Using High-Speed Imaging." In ASME Turbo Expo 2020: Turbomachinery Technical Conference and Exposition. American Society of Mechanical Engineers, 2020. http://dx.doi.org/10.1115/gt2020-15676.
Повний текст джерелаCheng, Qianwei, AKM Mahbubur Rahman, Anis Sarker, Abu Bakar Siddik Nayem, Ovi Paul, Amin Ahsan Ali, M. Ashraful Amin, Ryosuke Shibasaki, and Moinul Zaber. "Deep-learning Coupled with Novel Classification Method to Classify the Urban Environment of the Developing World." In 8th International Conference on Artificial Intelligence and Applications (AIAP 2021). AIRCC Publishing Corporation, 2021. http://dx.doi.org/10.5121/csit.2021.110103.
Повний текст джерелаTeruel, Gilberto F., Tatiany M. Heiderich, Ruth Guinsburg, and Carlos E. Thomaz. "Analysis And Recognition Of Pain In 2d Face Images Of Full Term And Healthy Newborns." In XV Encontro Nacional de Inteligência Artificial e Computacional. Sociedade Brasileira de Computação - SBC, 2018. http://dx.doi.org/10.5753/eniac.2018.4419.
Повний текст джерелаBattula, Balnarsaiah, Laxminarayana Parayitam, T. S. Prasad, Penta Balakrishna, and Chandrasekhar Patibandla. "Classifications of High Resolution Optical Images using Supervised Algorithms." In 2018 IEEE 8th International Advance Computing Conference (IACC). IEEE, 2018. http://dx.doi.org/10.1109/iadcc.2018.8692132.
Повний текст джерелаЗвіти організацій з теми "Classifications des images"
Olivier, Jason, and Sally Shoop. Imagery classification for autonomous ground vehicle mobility in cold weather environments. Engineer Research and Development Center (U.S.), November 2021. http://dx.doi.org/10.21079/11681/42425.
Повний текст джерелаTabinskyy, Yaroslav. VISUAL CONCEPTS OF PHOTO IN THE MEDIA (ON THE EXAMPLE OF «UKRAINER» AND «REPORTERS»). Ivan Franko National University of Lviv, March 2021. http://dx.doi.org/10.30970/vjo.2021.50.11099.
Повний текст джерелаFiebiger, Frank. Map Classification In Image Data. Fort Belvoir, VA: Defense Technical Information Center, September 2015. http://dx.doi.org/10.21236/ad1008925.
Повний текст джерелаWu, Alex, and Myriam Abramson. Image Classification for Web Genre Identification. Fort Belvoir, VA: Defense Technical Information Center, January 2012. http://dx.doi.org/10.21236/ada599790.
Повний текст джерелаTarasenko, Andrii O., Yuriy V. Yakimov, and Vladimir N. Soloviev. Convolutional neural networks for image classification. [б. в.], February 2020. http://dx.doi.org/10.31812/123456789/3682.
Повний текст джерелаTang, Xiaoou. Dominant Run-Length Method for Image Classification. Fort Belvoir, VA: Defense Technical Information Center, June 1997. http://dx.doi.org/10.21236/ada329351.
Повний текст джерелаLasko, Kristofer, and Sean Griffin. Monitoring Ecological Restoration with Imagery Tools (MERIT) : Python-based decision support tools integrated into ArcGIS for satellite and UAS image processing, analysis, and classification. Engineer Research and Development Center (U.S.), April 2021. http://dx.doi.org/10.21079/11681/40262.
Повний текст джерелаLee, W. S., Victor Alchanatis, and Asher Levi. Innovative yield mapping system using hyperspectral and thermal imaging for precision tree crop management. United States Department of Agriculture, January 2014. http://dx.doi.org/10.32747/2014.7598158.bard.
Повний текст джерелаSopher, Ariana M., Sally A. Shoop, Jesse Jr M. Stanley, and Brian T. Tracy. Image Analysis and Classification Based on Soil Strength. Fort Belvoir, VA: Defense Technical Information Center, August 2016. http://dx.doi.org/10.21236/ad1014532.
Повний текст джерелаFox, Neil D., and Pi-Fuay Chen. Improving Classification Accuracy of Radar Images Using a Multiple-Stage Classifier. Fort Belvoir, VA: Defense Technical Information Center, September 1988. http://dx.doi.org/10.21236/ada200291.
Повний текст джерела