Добірка наукової літератури з теми "Classical gravity"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Classical gravity".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Статті в журналах з теми "Classical gravity"

1

Novozhilov, Yu V., and D. V. Vassilevich. "Induced classical gravity." Letters in Mathematical Physics 21, no. 3 (March 1991): 253–71. http://dx.doi.org/10.1007/bf00420376.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Drechsler, Wolfgang. "Classical versus quantum gravity." Foundations of Physics 23, no. 2 (February 1993): 261–76. http://dx.doi.org/10.1007/bf01883629.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Struyve, Ward. "Semi-classical approximations based on Bohmian mechanics." International Journal of Modern Physics A 35, no. 14 (May 20, 2020): 2050070. http://dx.doi.org/10.1142/s0217751x20500700.

Повний текст джерела
Анотація:
Semi-classical theories are approximations to quantum theory that treat some degrees of freedom classically and others quantum mechanically. In the usual approach, the quantum degrees of freedom are described by a wave function which evolves according to some Schrödinger equation with a Hamiltonian that depends on the classical degrees of freedom. The classical degrees of freedom satisfy classical equations that depend on the expectation values of quantum operators. In this paper, we study an alternative approach based on Bohmian mechanics. In Bohmian mechanics the quantum system is not only described by the wave function, but also with additional variables such as particle positions or fields. By letting the classical equations of motion depend on these variables, rather than the quantum expectation values, a semi-classical approximation is obtained that is closer to the exact quantum results than the usual approach. We discuss the Bohmian semi-classical approximation in various contexts, such as nonrelativistic quantum mechanics, quantum electrodynamics and quantum gravity. The main motivation comes from quantum gravity. The quest for a quantum theory for gravity is still going on. Therefore a semi-classical approach where gravity is treated classically may be an approximation that already captures some quantum gravitational aspects. The Bohmian semi-classical theories will be derived from the full Bohmian theories. In the case there are gauge symmetries, like in quantum electrodynamics or quantum gravity, special care is required. In order to derive a consistent semi-classical theory it will be necessary to isolate gauge-independent dependent degrees of freedom from gauge degrees of freedom and consider the approximation where some of the former are considered classical.
Стилі APA, Harvard, Vancouver, ISO та ін.
4

KAZAKOV, KIRILL A. "CLASSICAL SCALE OF QUANTUM GRAVITY." International Journal of Modern Physics D 12, no. 09 (October 2003): 1715–19. http://dx.doi.org/10.1142/s0218271803004110.

Повний текст джерела
Анотація:
Characteristic length scale of the post-Newtonian corrections to the gravitational field of a body is given by its gravitational radius r g . The role of this scale in quantum domain is discussed in the context of the low-energy effective theory. The question of whether quantum gravity effects appear already at r g leads to the question of correspondence between classical and quantum theories, which in turn can be unambiguously resolved by considering the issue of general covariance. The O(ℏ0) loop contributions turn out to violate the principle of general covariance, thus revealing their essentially quantum nature. The violation is O(1/N), where N is the number of particles in the body. This leads naturally to a macroscopic formulation of the correspondence principle.
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Jalalzadeh, S., M. Mehrnia, and H. R. Sepangi. "Classical tests in brane gravity." Classical and Quantum Gravity 26, no. 15 (July 10, 2009): 155007. http://dx.doi.org/10.1088/0264-9381/26/15/155007.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Marugan, G. A. M. "Lovelock gravity and classical wormholes." Classical and Quantum Gravity 8, no. 5 (May 5, 1991): 935–46. http://dx.doi.org/10.1088/0264-9381/8/5/017.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Suranyi, P., and L. C. R. Wijewardhana. "Classical instability in Lovelock gravity." Journal of Physics: Conference Series 343 (February 8, 2012): 012118. http://dx.doi.org/10.1088/1742-6596/343/1/012118.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Mannheim, Philip D. "Open questions in classical gravity." Foundations of Physics 24, no. 4 (April 1994): 487–511. http://dx.doi.org/10.1007/bf02058060.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Tameike, S. "Classical Gravity and Fiber Bundles." Progress of Theoretical Physics 100, no. 6 (December 1, 1998): 1159–79. http://dx.doi.org/10.1143/ptp.100.1159.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Kim, Sang Pyo. "Classical spacetime from quantum gravity." Classical and Quantum Gravity 13, no. 6 (June 1, 1996): 1377–82. http://dx.doi.org/10.1088/0264-9381/13/6/011.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Дисертації з теми "Classical gravity"

1

Kimpton, Ian. "Classical and quantum modifications of gravity." Thesis, University of Nottingham, 2013. http://eprints.nottingham.ac.uk/13430/.

Повний текст джерела
Анотація:
Einstein’s General Relativity has been our best theory of gravity for nearly a century, yet we know it cannot be the final word. In this thesis, we consider modifications to General Relativity, motivated by both high and low energy physics. In the quantum realm, we focus on Horava gravity, a theory which breaks Lorentz invariance in order to obtain good ultraviolet physics by adding higher spatial derivatives to the action (improving propagator behaviour in loops) but not temporal (avoiding Ostrogradski ghosts). By using the Stückelberg trick, we demonstrate the necessity of introducing a Lorentz violating scale into the theory, far below the Planck scale, to evade strong coupling concerns. Using this formalism we then show explicitly that Horava gravity breaks the Weak Equivalence Principle, for which there are very strict experimental bounds. Moving on to considering matter in such theories, we construct DiffF(M) invariant actions for both scalar and gauge fields at a classical level, before demonstrating that they are only consistent with the Equivalence Principle in the case that they reduce to their covariant form. This motivates us to consider the size of Lorentz violating effects induced by loop corrections of Horava gravity coupled to a Lorentz invariant matter sector. Our analysis reveals potential light cone fine tuning problems, in addition to evidence that troublesome higher order time derivatives may be generated. At low energies, we demonstrate a class of theories which modify gravity to solve the cosmological constant problem. The mechanism involves a composite metric with the square root of its determinant a total derivative or topological invariant, thus ensuring pieces of the action proportional to the volume element do not contribute to the dynamics. After demonstrating general properties of the proposal, we work through a specific example, demonstrating freedom from Ostrogradski ghosts at quadratic order (in the action) on maximally symmetric backgrounds. We go on to demonstrate sufficient conditions for a theory in this class to share a solution space equal to that of Einstein’s equations plus a cosmological constant, before determining the cosmology these extra solutions may have when present.
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Soo, Chopin. "Classical and quantum gravity with Ashtekar variables." Diss., Virginia Tech, 1992. http://hdl.handle.net/10919/38626.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Steinhaus, Sebastian. "Constructing quantum spacetime : relation to classical gravity." Phd thesis, Universität Potsdam, 2014. http://opus.kobv.de/ubp/volltexte/2015/7255/.

Повний текст джерела
Анотація:
Despite remarkable progress made in the past century, which has revolutionized our understanding of the universe, there are numerous open questions left in theoretical physics. Particularly important is the fact that the theories describing the fundamental interactions of nature are incompatible. Einstein's theory of general relative describes gravity as a dynamical spacetime, which is curved by matter and whose curvature determines the motion of matter. On the other hand we have quantum field theory, in form of the standard model of particle physics, where particles interact via the remaining interactions - electromagnetic, weak and strong interaction - on a flat, static spacetime without gravity. A theory of quantum gravity is hoped to cure this incompatibility by heuristically replacing classical spacetime by quantum spacetime'. Several approaches exist attempting to define such a theory with differing underlying premises and ideas, where it is not clear which is to be preferred. Yet a minimal requirement is the compatibility with the classical theory, they attempt to generalize. Interestingly many of these models rely on discrete structures in their definition or postulate discreteness of spacetime to be fundamental. Besides the direct advantages discretisations provide, e.g. permitting numerical simulations, they come with serious caveats requiring thorough investigation: In general discretisations break fundamental diffeomorphism symmetry of gravity and are generically not unique. Both complicates establishing the connection to the classical continuum theory. The main focus of this thesis lies in the investigation of this relation for spin foam models. This is done on different levels of the discretisation / triangulation, ranging from few simplices up to the continuum limit. In the regime of very few simplices we confirm and deepen the connection of spin foam models to discrete gravity. Moreover, we discuss dynamical, e.g. diffeomorphism invariance in the discrete, to fix the ambiguities of the models. In order to satisfy these conditions, the discrete models have to be improved in a renormalisation procedure, which also allows us to study their continuum dynamics. Applied to simplified spin foam models, we uncover a rich, non--trivial fixed point structure, which we summarize in a phase diagram. Inspired by these methods, we propose a method to consistently construct the continuum theory, which comes with a unique vacuum state.
Trotz bemerkenswerter Fortschritte im vergangenen Jahrhundert, die unser Verständnis des Universums revolutioniert haben, gibt es noch zahlreiche ungeklärte Fragen in der theoretischen Physik. Besondere Bedeutung kommt der Tatsache zu, dass die Theorien, welche die fundamentalen Wechselwirkungen der Natur beschreiben, inkompatibel sind. Nach Einsteins allgemeiner Relativitätstheorie wird die Gravitation durch eine dynamische Raumzeit dargestellt, die von Materie gekrümmt wird und ihrerseits durch die Krümmung die Bewegung der Materie bestimmt. Dem gegenüber steht die Quantenfeldtheorie, die die verbliebenen Wechselwirkungen - elektromagnetische, schwache und starke Wechselwirkung - im Standardmodell der Teilchenphysik beschreibt, in dem Teilchen auf einer statischen Raumzeit -- ohne Gravitation -- miteinander interagieren. Die Hoffnung ist, dass eine Theorie der Quantengravitation diese Inkompatibilität beheben kann, indem, heuristisch, die klassische Raumzeit durch eine 'Quantenraumzeit' ersetzt wird. Es gibt zahlreiche Ansätze eine solche Theorie zu definieren, die auf unterschiedlichen Prämissen und Ideen beruhen, wobei a priori nicht klar ist, welche zu bevorzugen sind. Eine Minimalanforderung an diese Theorien ist Kompatibilität mit der klassischen Theorie, die sie verallgemeinern sollen. Interessanterweise basieren zahlreiche Modelle in ihrer Definition auf Diskretisierungen oder postulieren eine fundamentale Diskretheit der Raumzeit. Neben den unmittelbaren Vorteilen, die Diskretisierungen bieten, z.B. das Ermöglichen numerischer Simulationen, gibt es auch gravierende Nachteile, die einer ausführlichen Untersuchung bedürfen: Im Allgemeinen brechen Diskretisierungen die fundamentale Diffeomorphismensymmetrie der Gravitation und sind in der Regel nicht eindeutig definiert. Beides erschwert die Wiederherstellung der Verbindung zur klassischen, kontinuierlichen Theorie. Das Hauptaugenmerk dieser Doktorarbeit liegt darin diese Verbindung insbesondere für Spin-Schaum-Modelle (spin foam models) zu untersuchen. Dies geschieht auf sehr verschiedenen Ebenen der Diskretisierung / Triangulierung, angefangen bei wenigen Simplizes bis hin zum Kontinuumslimes. Im Regime weniger Simplizes wird die bekannte Verbindung von Spin--Schaum--Modellen zu diskreter Gravitation bestätigt und vertieft. Außerdem diskutieren wir dynamische Prinzipien, z.B. Diffeomorphismeninvarianz im Diskreten, um die Ambiguitäten der Modelle zu fixieren. Um diese Bedingungen zu erfüllen, müssen die diskreten Modelle durch Renormierungsverfahren verbessert werden, wodurch wir auch ihre Kontinuumsdynamik untersuchen können. Angewandt auf vereinfachte Spin-Schaum-Modelle finden wir eine reichhaltige, nicht-triviale Fixpunkt-Struktur, die wir in einem Phasendiagramm zusammenfassen. Inspiriert von diesen Methoden schlagen wir zu guter Letzt eine konsistente Konstruktionsmethode für die Kontinuumstheorie vor, die einen eindeutigen Vakuumszustand definiert.
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Warnick, Claude Miles. "Dynamical problems in classical and quantum gravity." Thesis, University of Cambridge, 2009. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.611744.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Alty, Lloyd John. "Topology and signature in classical and quantum gravity." Thesis, University of Cambridge, 1994. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.338085.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Chamblin, Howard Andrew. "Aspects of topology in classical and quantum gravity." Thesis, University of Cambridge, 1997. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.627092.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Akbar, M. M. "Boundary-value problems in quantum gravity and classical solutions." Thesis, University of Cambridge, 2003. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.595407.

Повний текст джерела
Анотація:
It is proved that Taub-Bolt infillings are double-valued whereas Taub-Nut and Eguchi-Hanson infillings are unique in arbitrary dimensions. In the case of trivial bundles, there are two or no Schwarzschild infillings. The condition of whether a particular type of infilling exists can be expressed as a limitation on squashing through a functional dependence on dimension in each case. The case of the Eguchi-Hanson metric is solved in arbitrary dimension. The Taub-Nut and the Taub-Bolt are solved in four dimensions and methods for higher dimensions are discussed. For the case of Schwarzschild in arbitrary dimension, thermodynamic properties of the two infilling black-hole solutions are discussed and analytic formulae for their masses are obtained using higher order hypergeometric functions. Convexity of the infilling solutions and isoperimetric inequalities involving the volume of the boundary and the volume of the infilling solutions are investigated. In particular, analogues of Minkowski’s celebrated inequality in flat space are found and discussed. In Chapters 3, the Dirichlet problem is studied for an SU (2) x U(1)-invariant S3 boundary within the class of self-dual Taub-Nut-(anti) de Sitter metrics. Including complex ones there can be a total of three solutions for the infilling although there will be a unique real solution or no real solution depending on the boundary data - the two radii of the S3. Exact solutions of the infilling geometries are obtained making its possible to find their Euclidean actions as analytic functions of the two radii of the S3-boundary. The case of L < 0 is investigated further. For reasonable squashing of the S3, all three infilling solutions have real-valued actions which possess a “cusp catastrophe” structure with a “catastrophe manifold” that shows that the unique real positive-definite solution dominates. The necessary and sufficient condition for the existence of the positive-definite solution is found as a condition on the two radii of the S3. In Chapter 4, the same boundary-value problem is studied for the Taub-Bolt-anti-de Sitter metrics. Such metrics are obtained from the two-parameter Taub-NUT-anti de Sitter family. The condition of regularity results in two bifurcated one-parameter family. It is found that any axially symmetric S3-boundary can be filled in with at least one solution coming from each of these two branches. The infillings appear or disappear catastrophically in pairs as the values of the two radii of S3 are varied; this happens simultaneously for both branches. It is found that the total number in independent infillings is two, six or ten. When the two radii are of the same order and large this number is two. In the isotropic limit, i.e., for round S3 this holds for small radii as well. In Chapter 5, the Dirichlet problem is studied within Euclideanised Schwarzschild-anti de Sitter and anti de Sitter metrics, i.e., for an S1 x Sn boundary. For such boundary data there exist two or no black-holes and always a unique anti de Sitter solution. The black holes have strictly positive and negative specific heats (and hence locally thermodynamically stable and unstable respectively). It is shown that for any radius of the cavity, the larger hole can be globally thermodynamically stable above a critical temperature by demonstrating that a phase transition occurs from hot AdS to Schwarzschild-AdS within the cavity. This gives the Hawking-Page phase transition in the infinite cavity limit. It is found that the case of five dimensions is special in that the masses of the two black holes, and hence other quantities of classical and semi-classical interest, can be obtained exactly as functions of cavity radius and temperature. It is also possible in this case to obtain the minimum temperature (below which no black holes exist) and the critical temperature for phase transition as analytic functions of cavity-radius. In Chapter 6, cosmological and instanton solutions are found for CP1 and CP2 sigma models coupled to gravity with a possible cosmological constant.
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Sonego, Sebastiano. "On the Compatibility of Quantum Matter and Classical Gravity." Doctoral thesis, SISSA, 1990. http://hdl.handle.net/20.500.11767/4529.

Повний текст джерела
Анотація:
The formulation of a consistent scheme for treating semiclassical systems is considered, giving particular emphasis to the case of gravity. A critical review of the semiclassical problem is first given, stressing the conceptual aspects of the topic; the theory usually adopted is found to be unsatisfactory, and the need to have an unambiguous interpretation of quantum mechanics before trying to give an alternative description is realized. Our way to arrive at such an interpretation is rather unusual, but it presents the advantage of being almost compelling in the choice to make: First, we reformulate the Schrodinger equation as a set of hydrodynamical equations involving quantities which formally play the role of mass density, velocity and pressure for a fluid; the problem of interpreting the wave function is thus reduced to that of interpreting these quantities. We then show how they can be derived from the Wigner distribution function exactly as in the usual formalism of kinetic theory, and discuss how this fact provides strong support in favour of the statistical interpretation of quantum theory, according to which the state vector describes only ensembles, and not individual systems. We also consider some implications of these results on the possible existence of a more fundamental theory underlying quantum mechanics. It is shown that reconsidering the semiclassical problem in the light of the statistical interpretation, one is led to distinguish between a strongly and a weakly semiclassical regime, which are essentially characterized by the size of the statistical dispersion induced in the observables of the classical subsystem by the coupling to the quantum one. It turns out that in the weakly semiclassical regime, in which this dispersion is not negligible, the concept of coupling equations cannot be successfully applied, and one has rather to define a probability distribution even for the values of the classical observables; an hypothesis which allows to specify such a distribution is enunciated. Several examples of the application of these general principles are considered, and it is shown how the treatment of semiclassical relativistic fields requires a much more sophisticated treatment of the quantum source. This is provided reformulating quantum theory in terms of a quasiprobability functional P[1] in the space of the histories of the system. It is shown how such a functional allows to reconstruct the usual phase space distributions when integrated over suitable sets of paths, in a way which clarify the relations between operator ordering, path integration and phase space treatment of quantum theory. The relativistic extension of p[f] is also constructed, and an explicitly covariant version of relativistic quantum theory is discussed in some details. It is shown how the latter allows, formally, to consider superpositions of different mass eigenstates, although such superpositions are not directly observable. Finally, the application of these new techniques to the treatment of semiclassical electromagnetism and gravity, as well as of a scalar field, are considered. It is shown how the usual semiclassical field equations, suitably reinterpreted in terms of averages of the field, are recovered either in linear cases or in the strongly semiclassical regime, but that they do not hold in general. Finally, some possible extensions and implications of the formalism are discussed.
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Monteiro, Ricardo. "Classical and thermodynamic stability of black holes." Thesis, University of Cambridge, 2010. https://www.repository.cam.ac.uk/handle/1810/227571.

Повний текст джерела
Анотація:
We consider the stability of black holes within both classical general relativity and the semiclassical thermodynamic description. In particular, we study linearised perturbations and their contribution to the gravitational partition function, addressing technical issues for charged (Reissner-Nordstrom) and rotating (Kerr-AdS) black holes. Exploring the connection between classical and thermodynamic stability, we find classical instabilities of Myers-Perry black holes and bifurcations to new black hole families.
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Johansson, Niklas. "Making Maps and Keeping Logs : Quantum Gravity from Classical Viewpoints." Doctoral thesis, Uppsala universitet, Teoretisk fysik, 2009. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-100504.

Повний текст джерела
Анотація:
This thesis explores three different aspects of quantum gravity. First we study D3-brane black holes in Calabi-Yau compactifications of type IIB string theory. Using the OSV conjecture and a relation between topological strings and matrix models we show that some black holes have a matrix model description. This is the case if the attractor mechanism fixes the internal geometry to a conifold at the black hole horizon. We also consider black holes in a flux compactification and compare the effects of the black holes and fluxes on the internal geometry. We find that the fluxes dominate. Second, we study the scalar potential of type IIB flux compactifications. We demonstrate that monodromies of the internal geometry imply as a general feature the existence of long series of continuously connected minima. This allows for the embedding of scenarios such as chain inflation and resonance tunneling into string theory. The concept of monodromies is also extended to include geometric transitions: passing to a different Calabi-Yau topology, performing its monodromies and then returning to the original space allows for novel transformations. All constructions are performed explicitly, using both analytical and numerical techniques, in the mirror quintic Calabi-Yau. Third, we study cosmological topologically massive gravity at the chiral point, a prime candidate for quantization of gravity in three dimensions. The prospects of this scenario depend crucially of the stability of the theory. We demonstrate the presence of a negative energy bulk mode that grows logarithmically toward the AdS boundary. The AdS isometry generators have non-unitary matrix representations like in logarithmic CFT, and we propose that the CFT dual for this theory is logarithmic. In a complementing canonical analysis we also demonstrate the existence of this bulk degree of freedom, and we present consistent boundary conditions encompassing the new mode.
Стилі APA, Harvard, Vancouver, ISO та ін.

Книги з теми "Classical gravity"

1

Capuzzo Dolcetta, Roberto A. Classical Newtonian Gravity. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-25846-7.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

N, Christiansen Mikkel, and Rasmussen Tobias K, eds. Classical and quantum gravity research. Hauppauge, N.Y: Nova Science Publishers, 2008.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Ehlers, J., and H. Friedrich, eds. Canonical Gravity: From Classical to Quantum. Berlin, Heidelberg: Springer Berlin Heidelberg, 1994. http://dx.doi.org/10.1007/3540583394.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Classical and quantum gravity: Theory, analysis, and applications. Hauppauge, N.Y: Nova Science Publishers, 2011.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Bojowald, Martin. The Universe: A View from Classical and Quantum Gravity. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2012. http://dx.doi.org/10.1002/9783527667666.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Crane, Gregory, and Melissa M. Terras. Changing the center of gravity: Transforming classical studies through cyberinfrastructure. Piscataway, NJ: Gorgias Press, 2010.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Aldrovandi, Ruben. Teleparallel Gravity: An Introduction. Dordrecht: Springer Netherlands, 2013.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Agop, Maricel, and Nicolae Mazilu. Skyrmions: A great finishing touch to classical Newtonian philosophy. Hauppauge, N.Y: Nova Science Publisher, 2012.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Iberian Meeting on Gravity (1st 1992 Évora, Portugal). Proceedings of the First Iberian Meeting on Gravity: Classical and quantum gravity : Évora, Portugal, 21-26 September 1992. Edited by Bento M. C. Singapore: World Scientific, 1993.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Iberian Meeting on Gravity. (1st 1992 Évora, Portugal). Classical and quantum gravity: Proceedings of the first Iberian Meeting on Gravity, Évora, Portugal, 21-26 September 1992. Edited by Bento M. C. Singapore: World Scientific, 1993.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Частини книг з теми "Classical gravity"

1

Ricci, Fulvio, and Massimo Bassan. "Classical Gravity." In Experimental Gravitation, 1–32. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-95596-0_1.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Greiner, Walter. "Center of Gravity." In Classical Mechanics, 43–64. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-642-03434-3_5.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Greiner, Walter. "Center of Gravity." In Classical Mechanics, 43–65. New York, NY: Springer New York, 2002. http://dx.doi.org/10.1007/978-0-387-21543-3_5.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Sjöberg, Lars E., and Mohammad Bagherbandi. "Classical Physical Geodesy." In Gravity Inversion and Integration, 83–119. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-50298-4_3.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Adler, Ronald J. "Classical Gravity and Geometry." In General Relativity and Cosmology, 95–107. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-61574-1_7.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Calcagni, Gianluca. "Canonical Quantum Gravity." In Classical and Quantum Cosmology, 407–65. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-41127-9_9.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Esposito, Giampiero. "Quantum Gravity, Quantum Cosmology and Classical Gravity." In Quantum Gravity, Quantum Cosmology and Lorentzian Geometries, 1–24. Berlin, Heidelberg: Springer Berlin Heidelberg, 1992. http://dx.doi.org/10.1007/978-3-662-14495-4_1.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Crane, Gregory, Brent Seales, and Melissa Terras. "CYBERINFRASTRUCTURE FOR CLASSICAL PHILOLOGY." In Changing the Center of Gravity, edited by Melissa Terras and Gregory Crane, 1–56. Piscataway, NJ, USA: Gorgias Press, 2010. http://dx.doi.org/10.31826/9781463219222-005.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Smith, Neel. "CITATION IN CLASSICAL STUDIES." In Changing the Center of Gravity, edited by Melissa Terras and Gregory Crane, 151–72. Piscataway, NJ, USA: Gorgias Press, 2010. http://dx.doi.org/10.31826/9781463219222-010.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Wells, James D. "Effective Theories of Classical Gravity." In SpringerBriefs in Physics, 15–42. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-34892-1_3.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Тези доповідей конференцій з теми "Classical gravity"

1

Bento, M. C., O. Bertolami, J. M. Mourão, and R. F. Picken. "Classical and Quantum Gravity." In First Iberian Meeting on Gravity. WORLD SCIENTIFIC, 1994. http://dx.doi.org/10.1142/9789814535861.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Calder, A. C. "Mixing by Non-linear Gravity Wave Breaking on a White Dwarf Surface." In CLASSICAL NOVA EXPLOSIONS: International Conference on Classical Nova Explosions. AIP, 2002. http://dx.doi.org/10.1063/1.1518190.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Oporto Almaraz, Zui. "Generalized Chern-Simons Gravity: Classical Formalism." In 4th International Conference on Fundamental Interactions. Trieste, Italy: Sissa Medialab, 2011. http://dx.doi.org/10.22323/1.124.0030.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

IVANOV, MICHAEL A. "A FINE QUANTUM MECHANISM OF CLASSICAL GRAVITY." In Proceedings of the MG10 Meeting held at Brazilian Center for Research in Physics (CBPF). World Scientific Publishing Company, 2006. http://dx.doi.org/10.1142/9789812704030_0126.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Finster, Felix. "Causal fermion systems: Classical gravity and beyond." In Proceedings of the MG16 Meeting on General Relativity. WORLD SCIENTIFIC, 2023. http://dx.doi.org/10.1142/9789811269776_0050.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Thiemann, Thomas, Norbert Bodendorfer, and Andreas Thurn. "New Variables for Classical and Quantum (Super)-Gravity in all Dimensions." In 3rd Quantum Gravity and Quantum Geometry School. Trieste, Italy: Sissa Medialab, 2013. http://dx.doi.org/10.22323/1.140.0022.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Sun, Sichun. "Inflationary Electroweak/Particle Phase Transitions and New Classical Gravitational Waves on CMB." In Second LeCosPA International Symposium: Everything about Gravity. WORLD SCIENTIFIC, 2017. http://dx.doi.org/10.1142/9789813203952_0019.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Calcagni, Gianluca, Maria Grazia Di Luca, and Tomáš Fodran. "Lectures on classical and quantum cosmology." In Corfu Summer Institute 2021 "School and Workshops on Elementary Particle Physics and Gravity". Trieste, Italy: Sissa Medialab, 2022. http://dx.doi.org/10.22323/1.406.0317.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Sekiguchi, Yuta. "Killing spinors from classical r-matrices." In Corfu Summer Institute 2018 "School and Workshops on Elementary Particle Physics and Gravity". Trieste, Italy: Sissa Medialab, 2019. http://dx.doi.org/10.22323/1.347.0118.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Sekiguchi, Yuta. "$O(d,d)$ transformations preserve classical integrability." In Corfu Summer Institute 2019 "School and Workshops on Elementary Particle Physics and Gravity". Trieste, Italy: Sissa Medialab, 2020. http://dx.doi.org/10.22323/1.376.0107.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Звіти організацій з теми "Classical gravity"

1

Kheyfets, A. E. Cartan moment of rotation in classical and quantum gravity. Final report. Office of Scientific and Technical Information (OSTI), May 1994. http://dx.doi.org/10.2172/101153.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії