Добірка наукової літератури з теми "Citrus Genetics"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Citrus Genetics".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Статті в журналах з теми "Citrus Genetics"
Lyrene, Paul M. "Citrus: Genetics, Breeding and Biotechnology." HortScience 43, no. 6 (October 2008): 1932a—1932. http://dx.doi.org/10.21273/hortsci.43.6.1932a.
Повний текст джерелаGmitter, Frederick G. "Contemporary Approaches to Improving Citrus Cultivars." HortTechnology 4, no. 3 (July 1994): 206–10. http://dx.doi.org/10.21273/horttech.4.3.206.
Повний текст джерелаTalon, Manuel, and Fred G. Gmitter. "Citrus Genomics." International Journal of Plant Genomics 2008 (May 19, 2008): 1–17. http://dx.doi.org/10.1155/2008/528361.
Повний текст джерелаGmitter, Frederick G. "CONTEMPORARY APPROACHES TO CITRUS CULTIVAR IMPROVEMENT." HortScience 27, no. 6 (June 1992): 699b—699. http://dx.doi.org/10.21273/hortsci.27.6.699b.
Повний текст джерелаOmura, Mitsuo, and Takehiko Shimada. "Citrus breeding, genetics and genomics in Japan." Breeding Science 66, no. 1 (2016): 3–17. http://dx.doi.org/10.1270/jsbbs.66.3.
Повний текст джерелаDonmez, Dicle, Ozhan Simsek, Tolga Izgu, Yildiz Aka Kacar, and Yesim Yalcin Mendi. "Genetic Transformation inCitrus." Scientific World Journal 2013 (2013): 1–8. http://dx.doi.org/10.1155/2013/491207.
Повний текст джерелаElleuch, Amine, Fattouma Djilani Khouaja, Imen Hamdi, Nabiha Bsais, Jean-Pierre Perreault, Mohamed Marrakchi, and Hatem Fakhfakh. "Sequence analysis of three citrus viroids infecting a single Tunisian citrus tree (Citrus, reticulata, Clementine)." Genetics and Molecular Biology 29, no. 4 (2006): 705–10. http://dx.doi.org/10.1590/s1415-47572006000400020.
Повний текст джерелаGmitter, Fred G., Chunxian Chen, Marcos A. Machado, Alessandra Alves de Souza, Patrick Ollitrault, Yann Froehlicher, and Tokurou Shimizu. "Citrus genomics." Tree Genetics & Genomes 8, no. 3 (April 26, 2012): 611–26. http://dx.doi.org/10.1007/s11295-012-0499-2.
Повний текст джерелаBrune, Andreas, Mathias Müller, Lincoln Taiz, Pedro Gonzalez, and Ed Etxeberria. "Vacuolar Acidification in Citrus Fruit: Comparison between Acid Lime (Citrus aurantifolia) and Sweet Lime (Citrus limmetioides) Juice Cells." Journal of the American Society for Horticultural Science 127, no. 2 (March 2002): 171–77. http://dx.doi.org/10.21273/jashs.127.2.171.
Повний текст джерелаYu, Yuan, Chunxian Chen, Ming Huang, Qibin Yu, Dongliang Du, Matthew R. Mattia, and Frederick G. Gmitter. "Genetic Diversity and Population Structure Analysis of Citrus Germplasm with Single Nucleotide Polymorphism Markers." Journal of the American Society for Horticultural Science 143, no. 6 (November 2018): 399–408. http://dx.doi.org/10.21273/jashs04394-18.
Повний текст джерелаДисертації з теми "Citrus Genetics"
Ashari, Ir Sumeru. "Discrimination between citrus genotypes." Title page, contents and summary only, 1989. http://web4.library.adelaide.edu.au/theses/09A/09aa819.pdf.
Повний текст джерелаSilva, Cristina Lacerda Soares Petrarolha [UNESP]. "Apomixia em citros: expressão diferencial de mRNA e proteínas em plântulas e embriões zigóticos e apomíticos." Universidade Estadual Paulista (UNESP), 2006. http://hdl.handle.net/11449/102846.
Повний текст джерелаFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
A apomixia, ou seja a produção de sementes clonais, possuindo embriões idênticos à planta mãe, é um processo controlado geneticamente. Na apomixia facultativa, ocorrente no gênero Citrus, verifica-se a coexistência da reprodução sexual e apomítica em um mesmo óvulo. Entretanto os eventos genéticos que desencadeiam a produção de embriões apomíticos são atualmente pouco conhecidos. Não se sabe ainda, se os mesmos genes responsáveis pela formação dos embriões zigóticos, também seriam os responsáveis pela formação dos embriões apomíticos, expressando-se entretanto, de forma diferente. Outra possibilidade é a existência de genes particulares responsáveis pelo evento apomítico, mas é improvável que este locus envolva novas e distintas vias metabólicas que incluam novos genes para a formação do saco embrionário e para a embriogênese. Uma possibilidade é que a reprodução apomítica seja uma consequência da expressão de um gene que funciona iniciando uma cascata de ações gênicas em diferentes momentos durante o curso dos eventos sexuais no óvulo. Conhecidamente as proteínas de reserva são codificadas por genes, que se expressam de forma tecido específico, constituindo-se em excelente material para estudos de eventos genéticos. Com o objetivo de detectar particularidades genéticas do processo apomítico em Citrus, estudou-se, a nível de mRNA e proteínas, a expressão diferencial de embriões zigóticos, embriões apomíticos e plântulas zigóticas de espécies de Citrus. A condição apomítica ou zigótica dos embriões e plântulas estudados, foi avaliada empregando-se marcadores moleculares do tipo RAPD e fAFLP. Verificou-se que ambos os tipos de embriões, e de plântulas, expressam um grupo de proteínas diferencialmente. A nível de mRNA detectou-se expressão diferencial tanto para a condição zigótica, quanto para a apomítica...
Apomixis or clonal seed production with mother identical embryos is a process genetically controlled. On the facultative apomixy, that takes place in the genus Citrus it is possible to observe the co-existence of sexual and apomitical reproduction on the same ovulum. However the genetic events that trigger the apomitical embryo production are presently poorly known. It is still not known if the same genes related to the zygotic embryo formation would be the same related to the formation of the apomitic embryos, exhibiting different expression patterns. Another possibility is the existence of a particular set of genes that would be responsible for the apomitic event but, it is rather improbable that such locus would control new and distinct metabolic pathways that include the action of new genes related to the formation of the embryonic sac and other set of genes for the embryogenesis itself. One should also consider that the apomitic reproduction might be a consequence of erratic gene expression of a gene that acts triggering a successive set of genetic activities on different occasions during the course of the ovulum sexual processes. The reserve proteins are coded by genes that express on specific tissues, making up a set of excellent material for genetic studies. Aiming to study such genetic particularities on the Citrus apomitic process, it was carried out a study on the differential expression of mRNA and their corresponding reserve protein using zygotic, apomitic and zygotic plants. The apomitical and zygotic embryonic conditions together with those related to early developed seedlings were evaluated using molecular markers such as RAPD, fAFLP. It was observed that both types of embryos and seedlings express a set of differential proteins... (complete abstract, access undermentioned eletronic adress)
Ellis, Danielle René. "Characterization of a citrus vascular-specific zinc-binding cysteine proteinase inhibitor." Diss., The University of Arizona, 1998. http://hdl.handle.net/10150/298754.
Повний текст джерелаLee, Suk-wah, and 李淑華. "Fungicide resistance and genetic diversity of Penicillium digitatum inHong Kong." Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2002. http://hub.hku.hk/bib/B31226255.
Повний текст джерелаMuniz, Fabiana Rezende. "Caracterização molecular e avaliação da resistência ao vírus da tristeza dos citros (CTV) em plantas transgênicas de laranja \'Valência\' (Citrus sinensis L. Osbeck)." Universidade de São Paulo, 2009. http://www.teses.usp.br/teses/disponiveis/11/11136/tde-10022009-094528/.
Повний текст джерелаIn Brazil, citrus is one of the most important cultures. The productivity of this culture in the country is still considered low and this fact is due to several pests and diseases that affect the crop. Among the diseases there is the tristeza, caused by Citrus tristeza virus (CTV). This pathogen can also be related with another important disease, the citrus sudden death. Therefore, CTV acquired much more significance. This work aimed to characterize with molecular analysis and to evaluate the resistance to CTV of transgenic Valência plants (Citrus sinensis L. Osbeck), containing genomic fragments of CTV, in three different transgenic constructs. The plants were confirmed as transgenic by Southern blot. The transcription of the transgene was evaluated by RT-PCR. The transgenic plants were challenged with a weak strain of CTV, CTV-IAC, by bud inoculation with two infected bubbles, and by the infected vector Toxoptera citricida. After four weeks of inoculation, the evaluation of viral replication in the transgenic seious was done by ELISA indirect sandwich with monoclonal antibody against the CTV coat protein. The results indicated variation of the resistance to the translocation of the virus between the different transgenic constructs used and between clones of the same plant. All the inoculated plants indicated the presence of the virus in, at least, one of the three evaluated clones, when inoculated by grafting. When inoculated by the vector some plants had all their clones with low values of virus, indicating a possible resistance to the pathogen.
Silva, Cristina Lacerda Soares Petrarolha. "Apomixia em citros : expressão diferencial de mRNA e proteínas em plântulas e embriões zigóticos e apomíticos /." Jaboticabal : [s.n.], 2002. http://hdl.handle.net/11449/102846.
Повний текст джерелаBanca: João Martins Pizauro Júnior
Banca: Jesus Aparecido Ferro
Banca: Marcos Antônio Machado
Banca: Mario Sérgio Palma
Resumo: A apomixia, ou seja a produção de sementes clonais, possuindo embriões idênticos à planta mãe, é um processo controlado geneticamente. Na apomixia facultativa, ocorrente no gênero Citrus, verifica-se a coexistência da reprodução sexual e apomítica em um mesmo óvulo. Entretanto os eventos genéticos que desencadeiam a produção de embriões apomíticos são atualmente pouco conhecidos. Não se sabe ainda, se os mesmos genes responsáveis pela formação dos embriões zigóticos, também seriam os responsáveis pela formação dos embriões apomíticos, expressando-se entretanto, de forma diferente. Outra possibilidade é a existência de genes particulares responsáveis pelo evento apomítico, mas é improvável que este locus envolva novas e distintas vias metabólicas que incluam novos genes para a formação do saco embrionário e para a embriogênese. Uma possibilidade é que a reprodução apomítica seja uma consequência da expressão de um gene que funciona iniciando uma cascata de ações gênicas em diferentes momentos durante o curso dos eventos sexuais no óvulo. Conhecidamente as proteínas de reserva são codificadas por genes, que se expressam de forma tecido específico, constituindo-se em excelente material para estudos de eventos genéticos. Com o objetivo de detectar particularidades genéticas do processo apomítico em Citrus, estudou-se, a nível de mRNA e proteínas, a expressão diferencial de embriões zigóticos, embriões apomíticos e plântulas zigóticas de espécies de Citrus. A condição apomítica ou zigótica dos embriões e plântulas estudados, foi avaliada empregando-se marcadores moleculares do tipo RAPD e fAFLP. Verificou-se que ambos os tipos de embriões, e de plântulas, expressam um grupo de proteínas diferencialmente. A nível de mRNA detectou-se expressão diferencial tanto para a condição zigótica, quanto para a apomítica... (resumo completo, clicar no acesso eletrônico abaixo)
Abstract: Apomixis or clonal seed production with mother identical embryos is a process genetically controlled. On the facultative apomixy, that takes place in the genus Citrus it is possible to observe the co-existence of sexual and apomitical reproduction on the same ovulum. However the genetic events that trigger the apomitical embryo production are presently poorly known. It is still not known if the same genes related to the zygotic embryo formation would be the same related to the formation of the apomitic embryos, exhibiting different expression patterns. Another possibility is the existence of a particular set of genes that would be responsible for the apomitic event but, it is rather improbable that such locus would control new and distinct metabolic pathways that include the action of new genes related to the formation of the embryonic sac and other set of genes for the embryogenesis itself. One should also consider that the apomitic reproduction might be a consequence of erratic gene expression of a gene that acts triggering a successive set of genetic activities on different occasions during the course of the ovulum sexual processes. The reserve proteins are coded by genes that express on specific tissues, making up a set of excellent material for genetic studies. Aiming to study such genetic particularities on the Citrus apomitic process, it was carried out a study on the differential expression of mRNA and their corresponding reserve protein using zygotic, apomitic and zygotic plants. The apomitical and zygotic embryonic conditions together with those related to early developed seedlings were evaluated using molecular markers such as RAPD, fAFLP. It was observed that both types of embryos and seedlings express a set of differential proteins... (complete abstract, access undermentioned eletronic adress)
Doutor
Soriano, Leonardo. "Organogênese in vitro e transformação genética de variedades de tangerina (Citrus reticulata Blanco e Citrus clementina hort. ex Tan.)." Universidade de São Paulo, 2015. http://www.teses.usp.br/teses/disponiveis/64/64133/tde-19052015-142119/.
Повний текст джерелаCurrently, Huanglongbing (HLB), associated to Candidatus Liberibacter spp., is the main threat to the citrus culture. The conventional plant breeding shows limitations to the obtain new varieties of rootstock and scion, due to factors related to the biology of the genus. In attempt to overcome these barriers, genetic engineering is notable for allowing the introduction of foreign genes, which, besides reducing the time to obtain genetically improved material may confer disease resistance in varieties of agronomic interest. Thus, the objective of the research was the study of in vitro organogenesis, and obtain transgenic plants of \'Fremont\', \'Thomas\' and \'Nules\' mandarins via Agrobacterium tumefaciens with the gene encoding the antibacterial peptide attacin A (attA), controlled by the promoters AtSUC2 and AtPP2, aiming to preferential gene expression in phloem. In addition, the genetic transformation of cell suspensions, via A. tumefaciens, of \'W-Murcott\' mandarin, \'Hamlin\' sweet orange and \'Page\' tangelo and the direct genetic transformation, via PEG, of \'W-Murcott\' mandarin protoplasts were evaluated with VvmybA1 and Ruby transcription factors driven by 6105 and DC3 promoters, with preferential expression in embryonic tissues. The in vitro organogenesis of the varieties studied was influenced by the type of explant and BAP concentration. After genetic transformation experiments of epicotyl and internodal segments of \'Fremont\', \'Thomas\' and \'Nules mandarins, regenerated plants were analyzed by PCR, Southern blot and RT-qPCR and confirmed as transgenic by presence and transcription of attA gene. The genetic transformation of cell suspensions was efficient with high anthocyanin production in the somatic embryos regenerated of \'W-Murcott\' mandarin, \'Hamlin\' sweet orange and \'Page\' tangelo. The direct genetic transformation of \'W-Murcott\' mandarin protoplasts revealed to be viable and it was also possible to obtain transgenic somatic embryos. The VvmybA1 and Ruby transcription factors were useful tools for visual detection of transgenic material
Francisco, Carolina Sardinha [UNESP]. "Estrutura de populações e inoculações recíprocas de Xylella fastidiosa subsp. pauca com ocorrência em cultivos vizinhos de Citrus sinensis e Coffea arabica sob condições do estado de São Paulo." Universidade Estadual Paulista (UNESP), 2014. http://hdl.handle.net/11449/115645.
Повний текст джерелаA pouco mais de uma década a bactéria Xylella fastidiosa passou de um organismo pouco conhecido a uns dos mais conhecidos, ao menos em termos de genômica. No Brasil esta bactéria afeta culturas de importância econômica como citros, causando a clorose variegada dos citros (CVC) e café, na qual causa a requeima da folha do cafeeiro (RFC), também conhecida como atrofia do ramo do cafeeiro (ARC). Em laranjeiras a bactéria acarreta os maiores danos econômicos, na ordem de 100 milhões de dólares anuais. Em relação às plantas de café, estudos demonstraram que a cada 1% de aumento na severidade da doença há perdas de rendimento de 1,22 a 1,34 sacos de 60kg por hectare. Ambas as culturas são afetadas pela Xylella fastidiosa subsp. pauca e transmitida pelos mesmo vetores, porém ainda são incertas as informações se o isolado que causa a CVC pode colonizar cafeeiros e causar doença e vice-versa. Além do mais, em contraste com os diversos estudos já realizados sobre populações de X. fastidiosa infectando laranjeiras, não se tinha informações sobre a diversidade genética e estrutura populacional deste patógeno quando infectando cafeeiros. Um total de 618 estirpes de X. fastidiosa foi isolado de laranjeiras e cafeeiros de quatro regiões geográficas distintas do estado de São Paulo. Esses isolados foram genotipados através de 14 marcadores microssatélites. A alta diversidade genotípica e genética, os altos índices de clonalidade, o forte desequilíbrio gamético e o elevado grau de subdivisão populacional encontrados nas populações de X. fastidiosa amostradas de cafeeiros são consistentes com predominância de um modo de reprodução clonal. Os níveis de subdivisão observados poderiam ser explicados pela migração histórica assimétrica encontrada entre as populações, indicando as populações da região Noroeste e Central como as prováveis fundadoras. Também realizamos ensaios de inoculações recíprocas ...
A little over a decade the bacterium Xylella fastidiosa has gone from a little-known body to the most popular ones, at least in terms of genomics. In Brazil this bacterium affects economically important crops such as citrus, which causes citrus variegated chlorosis (CVC) and coffee, causing coffee leaf scorch (CLS), also known as coffee stem atrophy (CSA). In orange this bacteria causes major economic losses in the order of 100 million dollars annually. Regarding the coffee plants, studies have shown that every 1% increase in the severity of disease cause loss of 1.22 to 1.34 bags of 60kg per hectare. Both cultures are affected by subsp. pauca of X. fastidiosa and are transmitted by the same vectors, but informations are still uncertain if isolated causing CVC can colonize and cause disease in coffee plants and vice versa. Moreover, in contrast of many previous work on study about population of X. fastidiosa infecting orange, we had no information about genetic diversity and population structure of this pathogen infecting coffee plants. Thus a total of 618 strains of X. fastidiosa was isolated from orange and coffee in four distinct geographic regions (Central, Northwestern, Center-western and Eastern) of the São Paulo State. These isolates were typed by fourteen microsatellite markers. The high genotypic and genetic diversity, high levels of clonality, strong gametic disequilibrium, and the population subdivision found in X. fastidiosa population are consistent with the predominance of mode of clonal reproduction. The subdivision levels observed could be explained by the asymmetric historical migration between populations, indicating the populations of Central and Northwestern region as the probable founders. We also performed tests of reciprocal inoculations among isolates from orange and coffee plants under controlled conditions. The 99 isolates from orange and 127 isolates from coffee through Bayesian analysis, were grouped on ...
Francisco, Carolina Sardinha. "Estrutura de populações e inoculações recíprocas de Xylella fastidiosa subsp. pauca com ocorrência em cultivos vizinhos de Citrus sinensis e Coffea arabica sob condições do estado de São Paulo /." Jaboticabal, 2014. http://hdl.handle.net/11449/115645.
Повний текст джерелаCoorientador: Helvécio Della Coletta Filho
Banca: Vitor Fernandes Oliveira de Miranda
Banca: Eduardo Seite Gomide Mizubuti
Resumo: A pouco mais de uma década a bactéria Xylella fastidiosa passou de um organismo pouco conhecido a uns dos mais conhecidos, ao menos em termos de genômica. No Brasil esta bactéria afeta culturas de importância econômica como citros, causando a clorose variegada dos citros (CVC) e café, na qual causa a requeima da folha do cafeeiro (RFC), também conhecida como atrofia do ramo do cafeeiro (ARC). Em laranjeiras a bactéria acarreta os maiores danos econômicos, na ordem de 100 milhões de dólares anuais. Em relação às plantas de café, estudos demonstraram que a cada 1% de aumento na severidade da doença há perdas de rendimento de 1,22 a 1,34 sacos de 60kg por hectare. Ambas as culturas são afetadas pela Xylella fastidiosa subsp. pauca e transmitida pelos mesmo vetores, porém ainda são incertas as informações se o isolado que causa a CVC pode colonizar cafeeiros e causar doença e vice-versa. Além do mais, em contraste com os diversos estudos já realizados sobre populações de X. fastidiosa infectando laranjeiras, não se tinha informações sobre a diversidade genética e estrutura populacional deste patógeno quando infectando cafeeiros. Um total de 618 estirpes de X. fastidiosa foi isolado de laranjeiras e cafeeiros de quatro regiões geográficas distintas do estado de São Paulo. Esses isolados foram genotipados através de 14 marcadores microssatélites. A alta diversidade genotípica e genética, os altos índices de clonalidade, o forte desequilíbrio gamético e o elevado grau de subdivisão populacional encontrados nas populações de X. fastidiosa amostradas de cafeeiros são consistentes com predominância de um modo de reprodução clonal. Os níveis de subdivisão observados poderiam ser explicados pela migração histórica assimétrica encontrada entre as populações, indicando as populações da região Noroeste e Central como as prováveis fundadoras. Também realizamos ensaios de inoculações recíprocas ...
Abstract: A little over a decade the bacterium Xylella fastidiosa has gone from a little-known body to the most popular ones, at least in terms of genomics. In Brazil this bacterium affects economically important crops such as citrus, which causes citrus variegated chlorosis (CVC) and coffee, causing coffee leaf scorch (CLS), also known as coffee stem atrophy (CSA). In orange this bacteria causes major economic losses in the order of 100 million dollars annually. Regarding the coffee plants, studies have shown that every 1% increase in the severity of disease cause loss of 1.22 to 1.34 bags of 60kg per hectare. Both cultures are affected by subsp. pauca of X. fastidiosa and are transmitted by the same vectors, but informations are still uncertain if isolated causing CVC can colonize and cause disease in coffee plants and vice versa. Moreover, in contrast of many previous work on study about population of X. fastidiosa infecting orange, we had no information about genetic diversity and population structure of this pathogen infecting coffee plants. Thus a total of 618 strains of X. fastidiosa was isolated from orange and coffee in four distinct geographic regions (Central, Northwestern, Center-western and Eastern) of the São Paulo State. These isolates were typed by fourteen microsatellite markers. The high genotypic and genetic diversity, high levels of clonality, strong gametic disequilibrium, and the population subdivision found in X. fastidiosa population are consistent with the predominance of mode of clonal reproduction. The subdivision levels observed could be explained by the asymmetric historical migration between populations, indicating the populations of Central and Northwestern region as the probable founders. We also performed tests of reciprocal inoculations among isolates from orange and coffee plants under controlled conditions. The 99 isolates from orange and 127 isolates from coffee through Bayesian analysis, were grouped on ...
Mestre
Mallampalli, Venkata K. P. S. "Expression and Biochemical Function of Putative Flavonoid GT Clones from Grapefruit and Identification of New Clones using the harvEST Database." Digital Commons @ East Tennessee State University, 2009. https://dc.etsu.edu/etd/1788.
Повний текст джерелаКниги з теми "Citrus Genetics"
Khan, I. A., ed. Citrus genetics, breeding and biotechnology. Wallingford: CABI, 2007. http://dx.doi.org/10.1079/9780851990194.0000.
Повний текст джерелаPlant Genome Data and Information Center (U.S.). 6 citrus nucleic acid sequences. Beltsville, MD: Plant Genome Data and Information Center, NAL, USDA, 1994.
Знайти повний текст джерелаNobumasa, Nito. Status report on genetic resources of citrus in Asia-Pacific region. New Delhi: IPGRI Office for South Asia, 2000.
Знайти повний текст джерелаB, Kristiansen, Linden Joan, and Mattey Michael, eds. Citric acid biotechnology. London: Taylor & Francis, 1999.
Знайти повний текст джерелаBacigalupi, Paolo. The drowned cities. New York: Little, Brown and Company, 2012.
Знайти повний текст джерелаSimak, Clifford D. City. London: Methuen Paperback, 1988.
Знайти повний текст джерелаSimak, Clifford D. City. New York: Macmillan Pub. Co., 1991.
Знайти повний текст джерелаSimak, Clifford D. City. New York, NY: Macmillan, 1991.
Знайти повний текст джерелаBrand, Stewart. Whole earth discipline: Why dense cities, nuclear power, transgenic crops, restored wildlands and geoengineering are necessary. New York: Penguin, 2010.
Знайти повний текст джерелаInternational Horticultural Congress (26th 2002 Toronto, Ont.). A proceedings of the XXVI International Horticultural Congress, Toronto, Canada, 11-17 August, 2002: Asian plants with unique horticultural potential : genetic resources, cultural practices, and utilization. Edited by Lee Jung-Myung, Zhang Donglin, Canadian Society for Horticultural Science., and International Society for Horticultural Science. Leuven, Belgium: International Society for Horticultural Science, 2003.
Знайти повний текст джерелаЧастини книг з теми "Citrus Genetics"
Cuenca, José, Andrés Garcia-Lor, Luis Navarro, and Pablo Aleza. "Citrus Genetics and Breeding." In Advances in Plant Breeding Strategies: Fruits, 403–36. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-91944-7_11.
Повний текст джерелаWood, R. J. "Genetics applied to the control of insect pests." In Integrated Pest Control in Citrus-Groves, 505–16. London: CRC Press, 2021. http://dx.doi.org/10.1201/9781003079279-77.
Повний текст джерелаOllitrault, Patrick, Maria Antonietta Germanà, Yann Froelicher, Jose Cuenca, Pablo Aleza, Raphaël Morillon, Jude W. Grosser, and Wenwu Guo. "Ploidy Manipulation for Citrus Breeding, Genetics, and Genomics." In Compendium of Plant Genomes, 75–105. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-15308-3_6.
Повний текст джерелаSarkar, Rohan, Aditi Kundu, Anirban Dutta, Abhishek Mandal, and Supradip Saha. "Citrus Peel as a Source for Waste Valorization and Its Greener Processing." In Melon Breeding and Genetics: Developments in Food Quality & Safety, 147–74. Washington, DC: American Chemical Society, 2022. http://dx.doi.org/10.1021/bk-2022-1415.ch011.
Повний текст джерелаAkimitsu, K., A. Isshiki, K. Ohtani, M. Ishikawa, and H. Yamamoto. "Biochemical and Molecular Roles of HST and Enzymes Produced by Pathogen of Citrus Brown Spot Disease." In Molecular Genetics of Host-Specific Toxins in Plant Disease, 281–90. Dordrecht: Springer Netherlands, 1998. http://dx.doi.org/10.1007/978-94-011-5218-1_31.
Повний текст джерелаGraniti, A. "Toxins and other Metabolites of Phoma Tracheiphila Involved in Pathogenesis of “Mal Secco” Disease of Citrus Trees." In Molecular Genetics of Host-Specific Toxins in Plant Disease, 195–97. Dordrecht: Springer Netherlands, 1998. http://dx.doi.org/10.1007/978-94-011-5218-1_23.
Повний текст джерелаBarbhuiya, A. R., Mohammed Latif Khan, and S. Dayanandan. "Molecular Phylogeny of Citrus species in the Eastern Himalayan Region of Northeast India Based on Chloroplast and Nuclear DNA Sequence Data." In Molecular Genetics and Genomics Tools in Biodiversity Conservation, 185–201. Singapore: Springer Singapore, 2022. http://dx.doi.org/10.1007/978-981-16-6005-4_9.
Повний текст джерелаUsman, Muhammad, Iqrar A. Rana, Shahnawaz-ul-Rehman, Bilquees Fatima, and Muhammad Sarwar Khan. "Citrus Genetic Resources." In Citrus Production, 73–93. Boca Raton: CRC Press, 2022. http://dx.doi.org/10.1201/9781003119852-5.
Повний текст джерелаCimen, Berken, Turgut Yesiloglu, Bilge Yilmaz, and Meral Incesu. "Genetic Improvement in Citrus." In Citrus Production, 35–49. Boca Raton: CRC Press, 2022. http://dx.doi.org/10.1201/9781003119852-3.
Повний текст джерелаMoore, G. A., D. Luth, F. Kaplan, and M. A. Gutiérrez-E. "Genetic Transformation in Citrus." In Molecular Biology of Woody Plants, 227–43. Dordrecht: Springer Netherlands, 2000. http://dx.doi.org/10.1007/978-94-017-2313-8_11.
Повний текст джерелаТези доповідей конференцій з теми "Citrus Genetics"
Mariana, Baiq Dina, Anis Andrini, and Sri Andayani. "Identifying potential seedless citrus accessions through floral structure and pollen performance." In THE SECOND INTERNATIONAL CONFERENCE ON GENETIC RESOURCES AND BIOTECHNOLOGY: Harnessing Technology for Conservation and Sustainable Use of Genetic Resources for Food and Agriculture. AIP Publishing, 2022. http://dx.doi.org/10.1063/5.0076922.
Повний текст джерелаAlba, Enrique. "Intelligent Systems for Smart Cities." In GECCO '15: Genetic and Evolutionary Computation Conference. New York, NY, USA: ACM, 2015. http://dx.doi.org/10.1145/2739482.2756563.
Повний текст джерелаAlba, Enrique. "Intelligent systems for smart cities." In GECCO '17: Genetic and Evolutionary Computation Conference. New York, NY, USA: ACM, 2017. http://dx.doi.org/10.1145/3067695.3067727.
Повний текст джерелаAlba, Enrique. "Intelligent Systems for Smart Cities." In GECCO '16: Genetic and Evolutionary Computation Conference. New York, NY, USA: ACM, 2016. http://dx.doi.org/10.1145/2908961.2927000.
Повний текст джерелаChebbi, Olfa, and Nouha Nouri. "Reducing Energy Consumption in Smart Cities." In GECCO '16: Genetic and Evolutionary Computation Conference. New York, NY, USA: ACM, 2016. http://dx.doi.org/10.1145/2908961.2931637.
Повний текст джерелаStolfi, Daniel H., and Enrique Alba. "Eco-friendly reduction of travel times in european smart cities." In GECCO '14: Genetic and Evolutionary Computation Conference. New York, NY, USA: ACM, 2014. http://dx.doi.org/10.1145/2576768.2598317.
Повний текст джерелаStolfi, Daniel H., Rolando Armas, Enrique Alba, Hernan Aguirre, and Kiyoshi Tanaka. "Fine Tuning of Traffic in our Cities with Smart Panels." In GECCO '16: Genetic and Evolutionary Computation Conference. New York, NY, USA: ACM, 2016. http://dx.doi.org/10.1145/2908812.2908868.
Повний текст джерелаAgisimanto, Dita, Farida Yulianti, and Hidayatul Arisah. "Cells density affects cell production of Citrus limonia in flask and air-lift bioreactor cultures and limonin farming." In THE SECOND INTERNATIONAL CONFERENCE ON GENETIC RESOURCES AND BIOTECHNOLOGY: Harnessing Technology for Conservation and Sustainable Use of Genetic Resources for Food and Agriculture. AIP Publishing, 2022. http://dx.doi.org/10.1063/5.0075651.
Повний текст джерелаGalán-Franco, A. L., K. Arévalo-Niño, M. Elías-Santos, A. Morales-Loredo, G. Alvarez-Ojeda, J. I. López-Arroyo, and I. Quintero-Zapata. "Genetic variability analysis of entomopathogenic fungi isolated from citrus-growing areas of Mexico." In Proceedings of the III International Conference on Environmental, Industrial and Applied Microbiology (BioMicroWorld2009). WORLD SCIENTIFIC, 2010. http://dx.doi.org/10.1142/9789814322119_0013.
Повний текст джерелаGuoxiang, Tang, Qu Ming, Wang Xuan, and Lv Jiake. "A parameter selection of support vector machine with genetic algorithm for citrus quality classification." In Education (ICCSE 2011). IEEE, 2011. http://dx.doi.org/10.1109/iccse.2011.6028661.
Повний текст джерелаЗвіти організацій з теми "Citrus Genetics"
Sadka, Avi, Mikeal L. Roose, and Yair Erner. Molecular Genetic Analysis of Citric Acid Accumulation in Citrus Fruit. United States Department of Agriculture, March 2001. http://dx.doi.org/10.32747/2001.7573071.bard.
Повний текст джерелаDawson, William O., and Moshe Bar-Joseph. Creating an Ally from an Adversary: Genetic Manipulation of Citrus Tristeza. United States Department of Agriculture, January 2004. http://dx.doi.org/10.32747/2004.7586540.bard.
Повний текст джерелаDawson, William O., Moshe Bar-Joseph, Charles L. Niblett, Ron Gafny, Richard F. Lee, and Munir Mawassi. Citrus Tristeza Virus: Molecular Approaches to Cross Protection. United States Department of Agriculture, January 1994. http://dx.doi.org/10.32747/1994.7570551.bard.
Повний текст джерелаBar-Joseph, Moshe, William O. Dawson, and Munir Mawassi. Role of Defective RNAs in Citrus Tristeza Virus Diseases. United States Department of Agriculture, September 2000. http://dx.doi.org/10.32747/2000.7575279.bard.
Повний текст джерелаMoore, Gloria A., Gozal Ben-Hayyim, Charles L. Guy, and Doron Holland. Mapping Quantitative Trait Loci in the Woody Perennial Plant Genus Citrus. United States Department of Agriculture, May 1995. http://dx.doi.org/10.32747/1995.7570565.bard.
Повний текст джерелаDroby, Samir, Joseph W. Eckert, Shulamit Manulis, and Rajesh K. Mehra. Ecology, Population Dynamics and Genetic Diversity of Epiphytic Yeast Antagonists of Postharvest Diseases of Fruits. United States Department of Agriculture, October 1994. http://dx.doi.org/10.32747/1994.7568777.bard.
Повний текст джерелаGuy, Charles, Gozal Ben-Hayyim, Gloria Moore, Doron Holland, and Yuval Eshdat. Common Mechanisms of Response to the Stresses of High Salinity and Low Temperature and Genetic Mapping of Stress Tolerance Loci in Citrus. United States Department of Agriculture, May 1995. http://dx.doi.org/10.32747/1995.7613013.bard.
Повний текст джерелаEyal, Yoram, and Sheila McCormick. Molecular Mechanisms of Pollen-Pistil Interactions in Interspecific Crossing Barriers in the Tomato Family. United States Department of Agriculture, May 2000. http://dx.doi.org/10.32747/2000.7573076.bard.
Повний текст джерела