Добірка наукової літератури з теми "Circadian rhythms"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Circadian rhythms".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Статті в журналах з теми "Circadian rhythms":

1

DOYLE, SUSAN E., MICHAEL S. GRACE, WILSON McIVOR, and MICHAEL MENAKER. "Circadian rhythms of dopamine in mouse retina: The role of melatonin." Visual Neuroscience 19, no. 5 (September 2002): 593–601. http://dx.doi.org/10.1017/s0952523802195058.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Both dopamine and melatonin are important for the regulation of retinal rhythmicity, and substantial evidence suggests that these two substances are mutually inhibitory factors that act as chemical analogs of day and night. A circadian oscillator in the mammalian retina regulates melatonin synthesis. Here we show a circadian rhythm of retinal dopamine content in the mouse retina, and examine the role of melatonin in its control. Using high-performance liquid chromatography (HPLC), we measured levels of dopamine and its two major metabolites, 3,4-dihydroxyphenylacetic acid (DOPAC) and homovanillic acid (HVA), in retinas of C3H+/+ mice (which make melatonin) and C57BL/6J mice that are genetically incapable of melatonin synthesis. In a light/dark cycle both strains of mice exhibited daily rhythms of retinal dopamine, DOPAC, and HVA content. However, after 10 days in constant darkness (DD), a circadian rhythm in dopamine levels was present in C3H, but not in C57 mice. C57 mice given ten daily injections of melatonin in DD exhibited a robust circadian rhythm of retinal dopamine content whereas no such rhythm was present in saline-injected controls. Our results demonstrate that (1) a circadian clock generates rhythms of dopamine content in the C3H mouse retina, (2) mice lacking melatonin also lack circadian rhythms of dopamine content, and (3) dopamine rhythms can be generated in these mice by cyclic administration of exogenous melatonin. Our results also indicate that circadian rhythms of retinal dopamine depend upon the rhythmic presence of melatonin, but that cyclic light can drive dopamine rhythms in the absence of melatonin.
2

Brzezinski, Amnon, Seema Rai, Adyasha Purohit, and Seithikurippu R. Pandi-Perumal. "Melatonin, Clock Genes, and Mammalian Reproduction: What Is the Link?" International Journal of Molecular Sciences 22, no. 24 (December 8, 2021): 13240. http://dx.doi.org/10.3390/ijms222413240.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Physiological processes and behaviors in many mammals are rhythmic. Recently there has been increasing interest in the role of circadian rhythmicity in the control of reproductive function. The circadian rhythm of the pineal hormone melatonin plays a role in synchronizing the reproductive responses of animals to environmental light conditions. There is some evidence that melatonin may have a role in the biological regulation of circadian rhythms and reproduction in humans. Moreover, circadian rhythms and clock genes appear to be involved in optimal reproductive performance. These rhythms are controlled by an endogenous molecular clock within the suprachiasmatic nucleus (SCN) in the hypothalamus, which is entrained by the light/dark cycle. The SCN synchronizes multiple subsidiary oscillators (clock genes) existing in various tissues throughout the body. The basis for maintaining the circadian rhythm is a molecular clock consisting of transcriptional/translational feedback loops. Circadian rhythms and clock genes appear to be involved in optimal reproductive performance. This mini review summarizes the current knowledge regarding the interrelationships between melatonin and the endogenous molecular clocks and their involvement in reproductive physiology (e.g., ovulation) and pathophysiology (e.g., polycystic ovarian syndrome).
3

Powell, Weston T., Lucille M. Rich, Elizabeth R. Vanderwall, Maria P. White, and Jason S. Debley. "Temperature synchronisation of circadian rhythms in primary human airway epithelial cells from children." BMJ Open Respiratory Research 9, no. 1 (October 2022): e001319. http://dx.doi.org/10.1136/bmjresp-2022-001319.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
IntroductionCellular circadian rhythms regulate immune pathways and inflammatory responses that mediate human disease such as asthma. Circadian rhythms in the lung may also contribute to exacerbations of chronic diseases such as asthma by regulating observed rhythms in mucus production, bronchial reactivity, airway inflammation and airway resistance. Primary human airway epithelial cells (AECs) are commonly used to model human lung diseases, such as asthma, with circadian symptoms, but a method for synchronising circadian rhythms in AECs has not been developed, and the presence of circadian rhythms in human AECs remains uninvestigated.MethodsWe used temperature cycling to synchronise circadian rhythms in undifferentiated and differentiated primary human AECs. Reverse transcriptase-quantitative PCR was used to measure expression of the core circadian clock genes ARNTL, CLOCK, CRY1, CRY2, NR1D1, NR1D2, PER1 and PER2.ResultsFollowing temperature synchronisation, the core circadian genes ARNTL, CRY1, CRY2, NR1D1, NR1D2, PER1 and PER2 maintained endogenous 24-hour rhythms under constant conditions. Following serum shock, the core circadian genes ARNTL, NR1D1 and NR1D2 demonstrated rhythmic expression. Following temperature synchronisation, CXCL8 demonstrated rhythmic circadian expression.ConclusionsTemperature synchronised circadian rhythms in AECs differentiated at an air–liquid interface can serve as a model to investigate circadian rhythms in pulmonary diseases.
4

Gubareva, Yekaterina, Mikhail Maydin, Margarita Tyndyk, Irina Vinogradova, and Andrey Panchenko. "CIRCADIAN RHYTHM OF PROLIFERATION IN INTESTINAL EPITHELIUM AND MAMMARY TUMORS IN HER-2/NEU TRANSGENIC AND FVB/N WILD TYPE MICE; THEIR CORRECTION WITH MELATONIN." Problems in oncology 65, no. 1 (January 1, 2019): 154–58. http://dx.doi.org/10.37469/0507-3758-2019-65-1-154-158.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Circadian rhythms and tumor development are interconnected as the factors like light pollution which disrupt circadian rhythms increase the risk of cancer, and oncological diseases are associated with changes in organism’s circadian rhythms. Circadian changes in intestinal epithelium and mammary tumors proliferation and apoptosis in HER-2/neu overexpressing FVB/N mice and assessment of melatonin’s influence on these parameters were studied in this work. It was shown by us that intestinal epithelium in mice exhibits circadian rhythm of proliferation with the peak in the morning and in tumor-bearing mice this rhythm is disrupted. Exogenous melatonin contributes to circadian rhythm of intestinal epithelium proliferation. Circadian changes in mammary tumors proliferation rate depend on melatonin secretion or supplementation time. Thus, melatonin may be considered as a perspective drug in anticancer therapy modulating circadian rhythms in cancerous and normal tissues.
5

Zamoshchina, T. A., M. V. Meleshko, S. V. Logvinov, A. V. Matveуenko, L. N. Novitskaya та Ye V. Ivanova. "The suprahiazmatic nucleus of the forward hypothalamus destruction and circadian rhythms of moving activity, body temperature and renal excretion of Nа+, Cа2+, K+, Li+ in rats in summer solstice". Bulletin of Siberian Medicine 10, № 5 (28 жовтня 2011): 50–55. http://dx.doi.org/10.20538/1682-0363-2011-5-50-55.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
In summer solstice it was established that right or left suprachiazmatic nucleus lesion breaks circadian rhythms of rat's moving activity in «open field» and lithium urine excretion. Damage of the left nuclei in a greater degree affects formation circadian rhythm of sodium renal excretion, destruction of the right nuclei - the calcium rhythm organization. The rhythms of body temperature and potassium urine excretion find weak sensitivity to reenergizing right or left suprachiazmatic nucleus. At destruction right or left suprachiazmatic nucleus are formed rhythm's desynchronization, character and expressiveness are defined by an illumination mode.
6

Yamanaka, Yujiro. "Basic concepts and unique features of human circadian rhythms: implications for human health." Nutrition Reviews 78, Supplement_3 (November 26, 2020): 91–96. http://dx.doi.org/10.1093/nutrit/nuaa072.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Abstract Most physiological functions and behaviors exhibit a robust approximately 24-hour rhythmicity (circadian rhythm) in the real world. These rhythms persist under constant conditions, but the period is slightly longer than 24 hours, suggesting that circadian rhythms are endogenously driven by an internal, self-sustained oscillator. In mammals, including humans, the central circadian pacemaker is located in the hypothalamic suprachiasmatic nucleus. The primary zeitgeber for this pacemaker is bright sunlight, but nonphotic time cues also affect circadian rhythms. The human circadian system uniquely exhibits spontaneous internal desynchronization between the sleep-wake cycle and core body temperature rhythm under constant conditions and partial entrainment of the sleep-wake cycle in response to nonphotic time cues. Experimental and clinical studies of human circadian rhythms must take into account these unique features. This review covers the basic concepts and unique features of the human circadian system, the mechanisms underlying phase adjustment of the circadian rhythms by light and nonphotic time cues (eg, physical exercise), and the effects of eating behavior (eg, chewing frequency) on the circadian rhythm of glucose metabolism.
7

Farr, Lynne, Catherine Todero, and Lonna Boen. "Reducing Disruption of Circadian Temperature Rhythm Following Surgery." Biological Research For Nursing 2, no. 4 (April 2001): 257–66. http://dx.doi.org/10.1177/109980040100200405.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Temperature and other circadian rhythms are disrupted following surgery and other traumatic events. During recovery, coordination between temperature rhythms and other rhythmic physiologic processes is reduced. Studies of animals and humans have shown that return of synchrony is not immediate, but that it is important in the recovery process. The purpose of this study was to test a combination of cues that have been shown to adjust the timing of circadian temperature rhythm. The combined cues consisted of timed ingestion of caffeine and protein foods and adjustment of the sleep/wake cycle. The intervention was tested in 26 age-and gender-matched maxillofacial surgery patients. Patients were randomly assigned to control or experimental groups. Circadian temperature rhythm was measured by continuous monitoring with axillary probes and miniature recorders before and after surgery. Following surgery, both experimental and control subjects displayed 24-hour circadian temperature rhythms; however, the peak-to-trough difference was decreased more following surgery in the control subjects than in the subjects who had prepared for surgery by practicing the intervention. Control subjects also had less day-to-day stability in the phase of their rhythms following surgery. These results suggest that the intervention reduced circadian disruption following surgery and provides a way for patients to prepare themselves to resist rhythm changes.
8

Xiao, Yangbo, Ye Yuan, Mariana Jimenez, Neeraj Soni, and Swathi Yadlapalli. "Clock proteins regulate spatiotemporal organization of clock genes to control circadian rhythms." Proceedings of the National Academy of Sciences 118, no. 28 (July 7, 2021): e2019756118. http://dx.doi.org/10.1073/pnas.2019756118.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Circadian clocks regulate ∼24-h oscillations in gene expression, behavior, and physiology. While the genetic and molecular mechanisms of circadian rhythms are well characterized, what remains poorly understood are the intracellular dynamics of circadian clock components and how they affect circadian rhythms. Here, we elucidate how spatiotemporal organization and dynamics of core clock proteins and genes affect circadian rhythms in Drosophila clock neurons. Using high-resolution imaging and DNA-fluorescence in situ hybridization techniques, we demonstrate that Drosophila clock proteins (PERIOD and CLOCK) are organized into a few discrete foci at the nuclear envelope during the circadian repression phase and play an important role in the subnuclear localization of core clock genes to control circadian rhythms. Specifically, we show that core clock genes, period and timeless, are positioned close to the nuclear periphery by the PERIOD protein specifically during the repression phase, suggesting that subnuclear localization of core clock genes might play a key role in their rhythmic gene expression. Finally, we show that loss of Lamin B receptor, a nuclear envelope protein, leads to disruption of PER foci and per gene peripheral localization and results in circadian rhythm defects. These results demonstrate that clock proteins play a hitherto unexpected role in the subnuclear reorganization of core clock genes to control circadian rhythms, revealing how clocks function at the subcellular level. Our results further suggest that clock protein foci might regulate dynamic clustering and spatial reorganization of clock-regulated genes over the repression phase to control circadian rhythms in behavior and physiology.
9

Depres-Brummer, P., F. Levi, G. Metzger, and Y. Touitou. "Light-induced suppression of the rat circadian system." American Journal of Physiology-Regulatory, Integrative and Comparative Physiology 268, no. 5 (May 1, 1995): R1111—R1116. http://dx.doi.org/10.1152/ajpregu.1995.268.5.r1111.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
In a constant environment, circadian rhythms persist with slightly altered period lengths. Results of studies with continuous light exposure are less clear, because of short exposure durations and single-variable monitoring. This study sought to characterize properties of the oscillator(s) controlling the rat's circadian system by monitoring both body temperature and locomotor activity. We observed that prolonged exposure of male Sprague-Dawley rats to continuous light (LL) systematically induced complete suppression of body temperature and locomotor activity circadian rhythms and their replacement by ultradian rhythms. This was preceded by a transient loss of coupling between both functions. Continuous darkness (DD) restored circadian synchronization of temperature and activity circadian rhythms within 1 wk. The absence of circadian rhythms in LL coincided with a mean sixfold decrease in plasma melatonin and a marked dampening but no abolition of its circadian rhythmicity. Restoration of temperature and activity circadian rhythms in DD was associated with normalization of melatonin rhythm. These results demonstrated a transient internal desynchronization of two simultaneously monitored functions in the rat and suggested the existence of two or more circadian oscillators. Such a hypothesis was further strengthened by the observation of a circadian rhythm in melatonin, despite complete suppression of body temperature and locomotor activity rhythms. This rat model should be useful for investigating the physiology of the circadian timing system as well as to identify agents and schedules having specific pharmacological actions on this system.
10

Giannetto, C., F. Fazio, A. Assenza, G. Caola, P. Pennisi, and G. Piccione. "Circadian rhythms of redox states and total locomotor activity in dairy cattle." Czech Journal of Animal Science 55, No. 5 (May 17, 2010): 183–89. http://dx.doi.org/10.17221/306/2009-cjas.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
We want to study the circadian rhythm of dROMs and anti-oxidative power in dairy cattle during dry period and the possible involvement of the circadian organization of rest/activity cycles in the fluctuation of redox state. For this purpose we recorded TLA in five clinically healthy Bruna Italian dairy cattle by means of an actigraphy-based data logger, Actiwatch-Mini<sup>&reg;</sup>. Blood samples were collected every 3 hours over a 48-hour period for the assessment of free radicals (dROMs) and the antioxidant power: antioxidant barrier (Oxy-ads) and thiol-antioxidant barrier (SHp). All animals were in the same productive period (dry) and they were housed in the same stable under natural photoperiod and ambient temperature. One-way repeated measure ANOVA was used to determine a statistical significant effect of time on the studied parameters. A trigonometric statistical model was applied to characterize the main rhythmic parameters according to the single cosinor procedure. A significant effect of time on all studied parameters was observed. They showed a diurnal acrophase and different degrees of robustness of rhythms. In conclusion, we can claim that there is a synergism between the dROM circadian rhythm and the circadian rhythm of anti-oxidative power. These rhythms do not have any implication for the issue of causation with the TLA circadian rhythms.

Дисертації з теми "Circadian rhythms":

1

Reilly, Thomas P. "Circadian rhythms and exercise." Thesis, Liverpool John Moores University, 1997. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.297911.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Otway, Daniella Theresia. "Circadian rhythms in adipose tissue." Thesis, University of Surrey, 2009. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.511108.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Jasper, Isabelle. "Circadian rhythms in sensorimotor control." Tönning Lübeck Marburg Der Andere Verl, 2009. http://d-nb.info/997031034/04.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Pearson, Kristen A. "Circadian rhythms, fatigue, and manpower scheduling." Thesis, Monterey, Calif. : Springfield, Va. : Naval Postgraduate School ; Available from National Technical Information Service, 2004. http://library.nps.navy.mil/uhtbin/hyperion/04Dec%5FPearson.pdf.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

MORBIATO, ELISA. "Modulation of circadian rhythms by glucocorticoids." Doctoral thesis, Università degli studi di Ferrara, 2020. http://hdl.handle.net/11392/2478787.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Il comportamento è concepito come una relazione dipendente stimolo-risposta tra un input sensoriale e una risposta motoria. Nel passaggio da input a output, l’omeostasi interna è continuamente modellata per mantenere un equilibrio ottimale della spesa energetica. Lo scopo ultimo di mantenere l’omeostasi in relazione al mondo circostante viene raggiunto attraverso la produzione di comportamenti adattativi che permettono di incrementare la fitness alla luce della selezione naturale. L’ambiente circostante può essere sia prevedibile sia imprevedibile. La prima condizione ha portato all’evoluzione del ritmo circadiano che promuove la fase di attività durante il momento più favorevole della giornata, mentre la seconda si serve dell’asse dei glucocorticoidi per affrontare le sfide imprevedibili. Quindi, un dialogo tra il sistema circadiano e il sistema dei glucocorticoidi è mantenuto allo scopo di ottenere una regolazione ottimale dell’attività animale. Il mio obiettivo è quello di capire il dialogo tra i due sistemi monitorando il comportamento giornaliero e circadiano, e la sua controparte molecolare, in fase a differenti cicli di luce e cibo. La mia specie modello è lo zebrafish (Danio rerio), in particolare, ho utilizzato un mutante costruito con la tecnica CRISPR/Cas9 che manca della capacità di coordinare la via di trascrizione dei glucocorticoidi a causa della mancata funzionalità del loro recettore cognato tale che l’interazione ligando recettore non è mantenuta. Di conseguenza, i livelli circolanti di glucocorticoidi restano elevati, conferendo al mutante un fenotipo ansioso. Zebrafish gr-/- è stato costruito e gentilmente fornito dal laboratorio della Prof.ssa Luisa Dalla Valle, Università degli studi di Padova. L’analisi sistematica del comportamento in larve e adulti di gr-/- ha mostrato che l’attività locomotoria sincronizzata alla luce mantiene le sue proprietà oscillatorie endogene. Tuttavia, l’attività locomotoria giornaliera insorge con un ritardo di un giorno nei mutanti rispetto ai wild type. Questa insorgenza ritardata è associata a un rallentamento nello sviluppo del tessuto muscolare striato, la normale densità delle fibre muscolari viene ripristinata nei gr-/- al sesto giorno dopo la fertilizzazione. Inoltre, le larve gr-/- hanno mostrato differenze nei livelli di espressione e nelle relative acrofasi di elementi positivi (arntl1a and clock1a) e negativi (per1, per2a and cry1a) dell’orologio molecolare. Al di là degli elementi del cuore dell’orologio circadiano, un’analisi nel fegato di adullti gr-/- rivela un’abolizione dell’espressione di pck2, un gene implicato nella gluconeogenesi. In aggiunta, srebp1 ha un’acrofase anticipata nei mutanti. La sincronizzazione circadiana al cibo fallisce nei gr-/-, sia larve sia adulti producono profili anomali dell’attività locomotoria. L’analisi molecolare non associa la disfunzionalità comportamentale a quella genetica, infatti i geni orologio non mostrano alterate oscillazioni a eccezione di cry1a. Questi dati suggeriscono l’esistenza di un confine sfuocato tra il sistema circadiano e quello dei glucocorticoidi e una complessa organizzazione dei due ha prodotto un alterato output comportamentale negli zebrafish gr-/-. La causa prossima del disallineamento tra lo stimolo alimentare e la locomozione non è stata chiarita sebbene un passo avanti verso una maggiore comprensione del dialogo tra glucocorticoidi e orologio circadiano getta le basi per un’indagine più profonda.
Behavior is conceived as a stimulus-response dependent relationship between a sensory input and a motor output. While moving from an input to an output, internal homeostasis is continuously shaped to maintain an optimal energies expenditure balance. The ultimate purpose of enabling animals to adjust their homeostasis with the surrounding world is by producing adaptive behaviors in order to increase their fitness in light of natural selection. The environment can be either predictable or unpredictable. The former condition led to the evolution of the circadian rhythm to promote an active behavior at the time you mostly benefit from, while the latter take advantage of glucocorticoids axis to face sudden challenges. Thus, a crosstalk between the circadian and the glucocorticoid systems allows a fine tuning of animal’s activity. My goal is to understand the circadian-glucocorticoids dialogue by monitoring the locomotor daily/circadian behavior and its molecular oscillation counterpart under differentially phased light and feeding cycle. My model species is the zebrafish, particularly, I utilized a CRISPR/Cas9 mutant lacking the capability to coordinate glucocorticoids transcription because it lacks functional receptors which permit a correct ligand-receptor interaction. As a result, level of circulating glucocorticoids stays raised conferring an anxiety-related phenotype to the mutant. Zebrafish gr-/- has been built and kindly provided by Dr. Luisa Dalla Valle, University of Padua. Systematic behavioral analysis in gr-/- larvae and adults showed that the light entrainable locomotor activity is synchronized to the zeitgeber and maintain its oscillatory properties in absence of any cue. The onset of daily locomotor activity occurred one day later in mutants with respects to the wild type. This delay is linked to the slower striated muscle development in the gr-/- which recover regular fiber density at 6 days post fertilization. Furthermore, gr-/- larvae showed differences in the expression levels or in the peak phase of positive (arntl1a and clock1a) and negative (per1, per2a and cry1a) elements of the molecular clock. Outside the core clock network, an analysis on gr-/- adult livers reported an abolished daily expression of pck2, a gene involved in gluconeogenesis. In addition, srebp1 expression level has an anticipated acrophase in gr-/-. Feeding entrainment fails to occur in the mutants. Larvae and adults produced abnormal profiles of circadian locomotor activity. Further molecular investigation revealed this behavioral disruption wasn’t associated with a breakdown of molecular rhythms in the core clock genes. Nevertheless, the molecular phenotypes observed during feeding entrainment underlined a cry1a lack of rhythmicity. These data suggest the existence of a blurred boundary between the circadian-glucocorticoids crosstalk. A complex organization of the two produces an altered behavioral output in a food entrained schedule in gr-/- zebrafish. The proximate cause of input and output misalignment underlying food entrained locomotion has not been provided, but a step towards a more exhaustive comprehension about the circadian-glucocorticoids interaction paves the way for an in-depth investigation.
6

Trujillo, Jennifer L. "Relationships between circadian rhythms and ethanol intake in mice." Diss., [La Jolla] : University of California, San Diego, 2009. http://wwwlib.umi.com/cr/ucsd/fullcit?p3359855.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Thesis (Ph. D.)--University of California, San Diego, 2009.
Title from first page of PDF file (viewed July 23, 2009). Available via ProQuest Digital Dissertations. Vita. Includes bibliographical references (p. 127-136).
7

Power, Andrea. "Neuronal Regulation of Circadian Rhythms in Mice." Thesis, University of Manchester, 2009. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.501978.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Middleton, Benita. "Investigations of factors influencing human circadian rhythms." Thesis, University of Surrey, 1998. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.265103.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

O'Neill, John Stuart. "The molecular biology of mammalian circadian rhythms." Thesis, University of Cambridge, 2007. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.612807.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Ragsdale, Raven, Colin Shone, Madeleine Miller, Andrew Shields, Thomas C. Jones, and Darrell Moore. "Circadian Resonance and Entrainment in Three Spider Species (Frontinella communis, Metazygia wittfeldae, and Cyclosa turbinata)." Digital Commons @ East Tennessee State University, 2019. https://dc.etsu.edu/asrf/2019/schedule/140.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Circadian clocks are vital to the proper functioning of organisms’ internal processes and behavioral outputs and typically have endogenous periods that approximate (within 1-2 hours) the 24-hour solar day. Clocks that deviate significantly from about 24 hours are often associated with metabolic syndromes or other disease states. For instance, organisms with near-24-hour clocks have higher survivorship under 24-h light:dark (LD) cycles than with 22- or 26-hour cycles. Likewise, mutant organisms with 22-hour clocks survive better under 22-h cycles but fare poorly under 24- and 26-h cycles. In other words, organisms suffer if their circadian clocks do not “resonate” with environmental cycles. Organisms fail to synchronize (entrain) their activity with non-resonant LD cycles and this failure typically leads to a number of physiological disruptions. Interestingly, several spider species have endogenous circadian periods that deviate by several hours from the period of the Earth’s solar day. The object of the present study is to investigate whether the phenomenon of circadian resonance also pertains to these atypical spider circadian rhythms. We investigated three spider species, two of which have internal periods (τ) significantly different from 24 hours. Approximately 50 individuals of each species of spider (Frontinella communis: τ=29.05±0.62 hours; Metazygia wittfeldae: τ=22.74±0.24h; and Cyclosa turbinata: τ=18.54±0.28h) were placed into chambers with periods of 19 (9.5:9.5h L:D), 24 (12:12h L:D), or 29 hours (14.5:14.5h L:D). If resonance is pertinent for spiders, we would expect survivorship to decrease in non-resonant LD cycles. Instead, no spider species exhibited decreased longevity in non-resonant L:D cycles. These findings contradict all previous research into circadian resonance and suggest that spiders do not suffer the costs of extreme desynchronization. In a second experiment, 10-11 spiders from each species were placed into infrared activity monitors to determine if their locomotor activity could entrain to (synchronize with) the three different LD cycles. Individuals from all three spider species entrained to all LD period lengths, again in contrast with prior research in other species. These results indicate that spider circadian clocks have highly unusual limits of entrainment and suggest a remarkable level of plasticity in their release from the selective pressure to maintain an internal period of approximately 24 hours.

Книги з теми "Circadian rhythms":

1

1949-, Young Michael W., ed. Circadian rhythms. San Diego: Elsevier Academic Press, 2005.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Ezio, Rosato. Circadian Rhythms. New Jersey: Humana Press, 2007. http://dx.doi.org/10.1385/1597452572.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Rosato, Ezio, ed. Circadian Rhythms. Totowa, NJ: Humana Press, 2007. http://dx.doi.org/10.1007/978-1-59745-257-1.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Dworska, Karolina. Circadian Rhythms. [Lincoln, Lincolnshire, England]: the artist, 2016.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Refinetti, Roberto. Circadian physiology. Boca Raton, Fla: CRC Press, 2000.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Refinetti, Roberto. Circadian physiology. 2nd ed. Boca Raton: CRC/Taylor & Francis, 2006.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Refinetti, Roberto. Circadian physiology. 2nd ed. Boca Raton, FL: CRC/Taylor & Francis, 2005.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Edmunds, Leland N. Cellular and molecular bases of biological clocks: Models and mechanisms for circadian timekeeping. New York: Springer-Verlag, 1988.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Kramer, Achim, and Martha Merrow. Circadian clocks. Heidelberg: Springer, 2013.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Golovkin, Luka. Circadian rhythms: Biology, cognition, and disorders. Hauppauge, N.Y: Nova Science, 2011.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Частини книг з теми "Circadian rhythms":

1

Lack, Leon C. "Circadian rhythms: Circadian rhythm disorders." In Encyclopedia of psychology, Vol. 2., 85–87. Washington: American Psychological Association, 2000. http://dx.doi.org/10.1037/10517-036.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Hargrove, James L. "Circadian Rhythms." In Dynamic Modeling in the Health Sciences, 211–18. New York, NY: Springer New York, 1998. http://dx.doi.org/10.1007/978-1-4612-1644-5_20.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Diamond, Bruce J., and Walter Barr. "Circadian Rhythms." In Encyclopedia of Clinical Neuropsychology, 795–97. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-57111-9_546.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Hoyer, Daniel, Eric P. Zorrilla, Pietro Cottone, Sarah Parylak, Micaela Morelli, Nicola Simola, Nicola Simola, et al. "Circadian Rhythms." In Encyclopedia of Psychopharmacology, 285–89. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-540-68706-1_287.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Diamond, Bruce J., and Walter Barr. "Circadian Rhythms." In Encyclopedia of Clinical Neuropsychology, 1–3. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-56782-2_546-5.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Lemmer, Björn. "Circadian Rhythms." In Encyclopedia of Psychopharmacology, 354–58. Berlin, Heidelberg: Springer Berlin Heidelberg, 2015. http://dx.doi.org/10.1007/978-3-642-36172-2_287.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Page, Terry L. "Circadian Rhythms." In States of Brain and Mind, 17–20. Boston, MA: Birkhäuser Boston, 1988. http://dx.doi.org/10.1007/978-1-4899-6771-8_7.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Kalmar, Jayne M., Brigid M. Lynch, Christine M. Friedenreich, Lee W. Jones, A. N. Bosch, Alessandro Blandino, Elisabetta Toso, et al. "Circadian Rhythms." In Encyclopedia of Exercise Medicine in Health and Disease, 191–92. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-540-29807-6_2232.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Andrews, D. F., and A. M. Herzberg. "Circadian Rhythms." In Springer Series in Statistics, 285–90. New York, NY: Springer New York, 1985. http://dx.doi.org/10.1007/978-1-4612-5098-2_49.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Vitalini, Michael W., Jay C. Dunlap, Christian Heintzen, Yi Liu, Jennifer Loros, and Deborah Bell-Pedersen. "Circadian Rhythms." In Cellular and Molecular Biology of Filamentous Fungi, 442–66. Washington, DC, USA: ASM Press, 2014. http://dx.doi.org/10.1128/9781555816636.ch29.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Тези доповідей конференцій з теми "Circadian rhythms":

1

Scheff, Jeremy D., Ioannis P. Androulakis, Steve E. Calvano, and Stephen F. Lowry. "Modeling Circadian Rhythms in Inflammation." In 2010 IEEE International Conference on BioInformatics and BioEngineering. IEEE, 2010. http://dx.doi.org/10.1109/bibe.2010.39.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Takeuchi, T., T. Hinohara, K. Uchida, and S. Shibata. "Control theoretic views on circadian rhythms." In 2006 IEEE Conference on Computer Aided Control System Design, 2006 IEEE International Conference on Control Applications, 2006 IEEE International Symposium on Intelligent Control. IEEE, 2006. http://dx.doi.org/10.1109/cacsd-cca-isic.2006.4776904.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Takeuchi, T., T. Hinohara, K. Uchida, and S. Shibata. "Control Theoretic Views on Circadian Rhythms." In 2006 IEEE International Conference on Control Applications. IEEE, 2006. http://dx.doi.org/10.1109/cca.2006.286136.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Nasso, Rosarita, Valentina Pagliara, Antonio Ascione, Mariorosario Masullo, and Rosaria Arcone. "Circadian rhythms, physical activity and longevity." In Journal of Human Sport and Exercise - 2019 - Summer Conferences of Sports Science. Universidad de Alicante, 2019. http://dx.doi.org/10.14198/jhse.2019.14.proc5.11.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

GALLUZZI, MICHAEL. "Circadian rhythms as an organizational management consideration." In 4th Space Logistics Symposium. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1991. http://dx.doi.org/10.2514/6.1991-4108.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Stein, Phyllis K., Eric J. Lundequam, Daniel Clauw, Kenneth E. Freedland, Robert M. Carney, and Peter P. Domitrovich. "Circadian and Ultradian Rhythms in Cardiac Autonomic Modulation." In Conference Proceedings. Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE, 2006. http://dx.doi.org/10.1109/iembs.2006.259558.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Stein, Phyllis K., Eric J. Lundequam, Daniel Clauw, Kenneth E. Freedland, Robert M. Carney, and Peter P. Domitrovich. "Circadian and Ultradian Rhythms in Cardiac Autonomic Modulation." In Conference Proceedings. Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE, 2006. http://dx.doi.org/10.1109/iembs.2006.4397428.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Felten, M., S. Ferencik, C. Tan, E. Letsiou, N. W. Suttorp, and M. Witzenrath. "Inflammation Impairs Circadian Rhythms in Alveolar Epithelial Cells." In American Thoracic Society 2020 International Conference, May 15-20, 2020 - Philadelphia, PA. American Thoracic Society, 2020. http://dx.doi.org/10.1164/ajrccm-conference.2020.201.1_meetingabstracts.a5589.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Chen, Hung-Wei, Chien-Yu Chen, and Pei-Jung Wu. "The Influence of Lighting on Human Circadian Rhythms." In 2019 16th China International Forum on Solid State Lighting & 2019 International Forum on Wide Bandgap Semiconductors China (SSLChina: IFWS). IEEE, 2019. http://dx.doi.org/10.1109/sslchinaifws49075.2019.9019751.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Ren, Zhou, Ren Haipeng, and Huang Xiaona. "Circadian rhythms recovery based on slide mode controller." In 2015 34th Chinese Control Conference (CCC). IEEE, 2015. http://dx.doi.org/10.1109/chicc.2015.7260983.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Звіти організацій з теми "Circadian rhythms":

1

Cassone, Vincent M. Melatonin, the Pineal Gland, and Circadian Rhythms. Fort Belvoir, VA: Defense Technical Information Center, February 1994. http://dx.doi.org/10.21236/ada280467.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Bucan, Maja. A Genetic Approach to Mammalian Circadian Rhythms. Fort Belvoir, VA: Defense Technical Information Center, January 1995. http://dx.doi.org/10.21236/ada330711.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Cassone, Vincent M. Melatonin, The Pineal Gland and Circadian Rhythms. Fort Belvoir, VA: Defense Technical Information Center, April 1992. http://dx.doi.org/10.21236/ada250640.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Eskin, Arnold. Gene Regulation in Memory Formation and Circadian Rhythms. Fort Belvoir, VA: Defense Technical Information Center, May 1994. http://dx.doi.org/10.21236/ada280445.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Kelly, Tamsin L. Circadian Rhythms: Importance for Models of Cognitive Performance. Fort Belvoir, VA: Defense Technical Information Center, February 1996. http://dx.doi.org/10.21236/ada310265.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Blood, Mary. A comparison of circadian rhythms in day and night shift workers. Portland State University Library, January 2000. http://dx.doi.org/10.15760/etd.5875.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Boulos, Z., and M. C. Moore-Ede. Pharmacological Resetting of the Circadian Sleep-Wake Cycle Effects of Triazolam on Reentrainment of Circadian Rhythms in a Diurnal Primate. Fort Belvoir, VA: Defense Technical Information Center, June 1990. http://dx.doi.org/10.21236/ada224227.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Kennaway, David J. Disruption of the Circadian Rhythms of Gene Expression and the Development of Breast Cancer. Fort Belvoir, VA: Defense Technical Information Center, February 2009. http://dx.doi.org/10.21236/ada506316.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Glass, David J. Study of SCN Neurochemistry Using in Vivo Microdialysis in the Conscious Brain: Correlation with Overt Circadian Rhythms. Fort Belvoir, VA: Defense Technical Information Center, October 1991. http://dx.doi.org/10.21236/ada247172.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Casey, Therese, Sameer J. Mabjeesh, Avi Shamay, and Karen Plaut. Photoperiod effects on milk production in goats: Are they mediated by the molecular clock in the mammary gland? United States Department of Agriculture, January 2014. http://dx.doi.org/10.32747/2014.7598164.bard.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
US scientists, Dr. Theresa Casey and Dr. Karen Plaut, collaborated with Israeli scientists, Dr. SameerMabjeesh and Dr. AviShamay to conduct studies proposed in the BARD Project No. US-4715-14 Photoperiod effects on milk production in goats: Are they mediated by the molecular clock in the mammary gland over the last 3 years. CLOCK and BMAL1 are core components of the circadian clock and as heterodimers function as a transcription factor to drive circadian-rhythms of gene expression. Studies of CLOCK-mutant mice found impaired mammary development in late pregnancy was related to poor lactation performance post-partum. To gain a better understanding of role of clock in regulation of mammary development studies were conducted with the mammary epithelial cell line HC11. Decreasing CLOCK protein levels using shRNA resulted in increased mammary epithelial cell growth rate and impaired differentiation, with lower expression of differentiation markers including ad herens junction protein and fatty acid synthesis genes. When BMAL1 was knocked out using CRISPR-CAS mammary epithelial cells had greater growth rate, but reached stationary phase at a lower density, with FACS indicating cells were growing and dying at a faster rate. Beta-casein milk protein levels were significantly decreased in BMAL1 knockout cells. ChIP-seq analysis was conducted to identify BMAL1 target genes in mammary epithelial cells. Studies conducted in goats found that photoperiod duration and physiological state affected the dynamics of the mammary clock. Effects were likely independent of the photoperiod effects on prolactin levels. Interestingly, circadian rhythms of core body temperature, which functions as a key synchronizing cue sent out by the central clock in the hypothalamus, were profoundly affected by photoperiod and physiological state. Data support that the clock in the mammary gland regulates genes important to development of the gland and milk synthesis. We also found the clock in the mammary is responsive to changes in physiological state and photoperiod, and thus may serve as a mechanism to establish milk production levels in response to environmental cues.

До бібліографії