Добірка наукової літератури з теми "Characterization techniques for microelectroniq"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Characterization techniques for microelectroniq".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Статті в журналах з теми "Characterization techniques for microelectroniq":

1

Klymko, N. R., J. A. Casey, L. Tai, J. A. Fitzsimmons, and F. Adar. "Role of Raman Microprobe Spectroscopy in the Characterization of Microelectronic Materials." Microscopy and Microanalysis 7, S2 (August 2001): 150–51. http://dx.doi.org/10.1017/s1431927600026829.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
The production of semiconductor chips and packaging materials involves the use of a wide array of materials, from solvents and polymers, to photoresists, to metal and dielectric layers, to conductive and thermal pastes. Characterization of these materials, both in raw form and as formulated for in-process use, is integral to successful use of them in microelectronic manufacturing. Physical and chemical analytical techniques are employed to determine parameters such as composition, cure state, and interface chemistry. More often than not, it is the successful combination of complementary analyses which provide the complete understanding of material parameters needed.This paper reports the use of Raman microprobe spectroscopy as a characterization technique for microelectronic materials. Several examples will be given, illustrating the type of information which can be obtained and the complementary use of Raman spectroscopy in conjunction with other analytical techniques such as Fourier transform infrared spectroscopy (FTIR) and x-ray photoelectron spectroscopy (XPS) to characterize microelectronic packaging materials and organic materials used in semiconductor manufacture.
2

Busch, Brett W., Olivier Pluchery, Yves J. Chabal, David A. Muller, Robert L. Opila, J. Raynien Kwo, and Eric Garfunkel. "Materials Characterization of Alternative Gate Dielectrics." MRS Bulletin 27, no. 3 (March 2002): 206–11. http://dx.doi.org/10.1557/mrs2002.72.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
AbstractContinued scaling of microelectronic devices is demanding that alternatives to SiO2 as the gate dielectric be developed soon. This in turn has placed enormous pressure on the abilities of physical characterization techniques to address critical issues such as film and interface structure and composition, transport properties, and thermal or chemical stability. This article summarizes the strengths and capabilities of four techniques used for the materials characterization of alternative gate dielectrics: scanning transmission electron microscopy (STEM) in conjunction with electron energy-loss spectroscopy (EELS), medium-energy ion scattering (MEIS), infrared-absorption spectroscopy (IRAS), and x-ray photoelectron spectroscopy (XPS). The complementary nature of these techniques has allowed for a detailed picture of the various properties of alternative gate dielectrics, and in particular of the dielectric/silicon interface. Critical issues and features of several important alternative gate dielectrics, ZrO2, AI2O3, Y2O3, and Gd2O3, are explored in light of the well-studied SiO2/Si system.
3

Zhou, Shenglin, Zhaohui Yang, and Xiaohua Zhang. "Characterization tools of thin polymer films." International Journal of Modern Physics B 32, no. 18 (July 15, 2018): 1840007. http://dx.doi.org/10.1142/s0217979218400076.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Materials having nanoscale structures have shown potentials for applications in microelectronics, biomedicine and energy storage. A continuing challenge is the capability of fabricating multi-function nanodevices with controlled nanostructures and excellent performances. Measurement platforms, which provide accurate and detailed information on internal structures, surface morphologies, mechanical properties and electrochemical properties are a key to this challenge. In this review, we, in particular, highlight the crucial role of measurement techniques in quantifying these nanostructures and their properties.
4

Huang, Zhiheng, Ziyan Liao, Kaiwen Zheng, Xin Zeng, Yuezhong Meng, Hui Yan, and Yang Liu. "Microstructural Hierarchy Descriptor Enabling Interpretative AI for Microelectronic Failure Analysis." EDFA Technical Articles 26, no. 2 (May 1, 2024): 10–18. http://dx.doi.org/10.31399/asm.edfa.2024-2.p010.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Abstract This article proposes the MicroStructural Hierarchy Descriptor (µSHD) as a systematic and quantitative approach to spectra and image data in microelectronics failure analysis. It discusses concrete routes for employing µSHD directly as the quantitative descriptor for supervised and unsupervised machine learning. The authors propose that µSHD tools can be used to automate and improve characterization techniques and image processing and analysis protocols.
5

Mouro, João, Rui Pinto, Paolo Paoletti, and Bruno Tiribilli. "Microcantilever: Dynamical Response for Mass Sensing and Fluid Characterization." Sensors 21, no. 1 (December 27, 2020): 115. http://dx.doi.org/10.3390/s21010115.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
A microcantilever is a suspended micro-scale beam structure supported at one end which can bend and/or vibrate when subjected to a load. Microcantilevers are one of the most fundamental miniaturized devices used in microelectromechanical systems and are ubiquitous in sensing, imaging, time reference, and biological/biomedical applications. They are typically built using micro and nanofabrication techniques derived from the microelectronics industry and can involve microelectronics-related materials, polymeric materials, and biological materials. This work presents a comprehensive review of the rich dynamical response of a microcantilever and how it has been used for measuring the mass and rheological properties of Newtonian/non-Newtonian fluids in real time, in ever-decreasing space and time scales, and with unprecedented resolution.
6

Murray, Conal E., A. J. Ying, S. M. Polvino, I. C. Noyan, and Z. Cai. "Nanoscale strain characterization in microelectronic materials using X-ray diffraction." Powder Diffraction 25, no. 2 (June 2010): 108–13. http://dx.doi.org/10.1154/1.3394205.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
The engineering of strained semiconductor materials represents an important aspect of the enhancement in CMOS device performance required for current and future generations of microelectronic technology. An understanding of the mechanical response of the Si channel regions and their environment is key to the prediction and design of device operation. Because of the complexity of the composite geometries associated with microelectronic circuitry, in situ characterization at a submicron resolution is necessary to verify the predicted strain distributions. Of the measurement techniques commonly used for strain characterization, synchrotron-based X-ray microbeam diffraction represents the best nondestructive method to provide spatially resolved information. The mapping of strain distributions in silicon-on-insulator (SOI) features induced by overlying silicon nitride structures and embedded heteroepitaxial features adjacent to SOI device channels are presented. The interaction regions of the SOI strain were observed to extend large distances from the SOI/stressor interfaces leading to significant overlap in the strain distributions at technically relevant dimensions. Experimental data were also compared to several mechanical models to assess their validity in predicting these strain distributions.
7

Jansen, K. M. B., V. Gonda, L. J. Ernst, H. J. L. Bressers, and G. Q. Zhang. "State-of-the-Art of Thermo-Mechanical Characterization of Thin Polymer Films." Journal of Electronic Packaging 127, no. 4 (December 22, 2004): 530–36. http://dx.doi.org/10.1115/1.2070092.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
In microelectronic industry, thin polymer layers are one of the more commonly used product constituents. Examples are glue layers, coatings, and dielectric layers. The thicknesses of these films vary from a few tens of nanometers to over a hundred micrometers. Since at film thicknesses below 100nm the thermal and mechanical properties start to deviate from those in the bulk, adequate characterization techniques are required. In the present paper we will report the results of an extensive literature search on the state-of-the-art of thermo-mechanical thin film characterization methods, such as the substrate curvature test, nanoindentation technique, bulge test, and impulsive stimulated thermal scattering.
8

Guégan, Hervé. "Use of a Nuclear Microprobe in Electronic Device Characterization." EDFA Technical Articles 9, no. 4 (November 1, 2007): 14–19. http://dx.doi.org/10.31399/asm.edfa.2007-4.p014.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Abstract Microelectronics failure analysis is based on several approaches to study and understand the origin of failure. In addition to “classic” elemental methods (SIMS, ESCA, etc.), there are a number of less-common techniques that can be valuable but require significant equipment investment, specialized operators, and administrative infrastructure to make them available to analysts, if needed. Ion beam analysis methods (RBS, PIXE, NRA), found at the Bordeaux Nuclear Research Center (France), are examples of these specialized tool sets. The capabilities and improved sensitivities of this site for device examination are demonstrated by several examples.
9

Ruales, Mary, and Kinzy Jones. "Characterization of silicate sensors on Low Temperature Cofire Ceramic (LTCC) substrates using DSC and XRD techniques." International Symposium on Microelectronics 2012, no. 1 (January 1, 2012): 000598–603. http://dx.doi.org/10.4071/isom-2012-wa31.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Characterization of Silicate sensors using Differential Scanning Calorimeter (DSC), X-ray Diffraction (XRD) and Scanning Electron microscopy (SEM) is presented. These silicate sensors are based on three primary materials: Li2SiO3, K2SiO3, and CaSiO3. Silicate powders were transform into adequate inks that were added to a Low Temperature Cofire Ceramic (LTCC) substrates with thick film technology using screen printing which continues to offer innovative and cost effective solutions to the increasing demands for higher circuit densities. These silicate sensors are low power-high temperature heated ceramic sensors to detect halogen gases. Every sensor responded to the gas showing stability and reproducibility. Phase diagrams for these silicates were used to produce different combinations. The use of the eutectoid point in the phase diagrams was critical to reduce the operating temperature. Testing and characterization of these silicate sensors is presented. The impact of various parameters (e.g. materials design, structure, properties, performance and processing) for the sensors including their relationships for electronic packaging was reviewed and it was found critical to determine the microelectronics packaging reliability and integrity. The fundamentals of the sensor behavior including the sensitivity as well as response and recovery times were also determined.
10

Nguyen, T. K., L. M. Landsberger, V. Logiudice, and C. Jean. "Electrical characterization of fluorine-implanted gate oxide structures." Canadian Journal of Physics 74, S1 (December 1, 1996): 74–78. http://dx.doi.org/10.1139/p96-836.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
In the ongoing quest for thinner and more reliable gate dielectrics for microelectronics, fluorination of gate oxide structures has emerged as a leading technique. In this work, the fluorine is implanted into the polysilicon gate before the poly etch. After the subsequent poly etch and anneal, the samples are not sent through the remainder of the process, but are subjected to electrical reliability stressing by two methods: constant-current Fowler–Nordheim tunnelling stress, and constant-voltage stress (J–t analysis). Two different fluorination cases (doses and implant energies) are studied, along with unimplanted controls. In the fluorinated cases, improvement vs. controls is found in device reliability indicators: mid-gap Dit, Qf, and ΔVth. J–t analysis corroborates the improvement, and the combination of techniques is found to offer a more, comprehensive view of complex variations in fluorinated oxide properties.

Дисертації з теми "Characterization techniques for microelectroniq":

1

Vavrille, Benjamin. "Développement d'une méthode innovante de mesures des propriétés thermomécaniques de films minces. Application à un dispositif imageur." Electronic Thesis or Diss., Université Grenoble Alpes, 2023. http://www.theses.fr/2023GRALI126.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Les polymères sont des matériaux de plus en plus utilisés dans le domaine de la microélectronique. Outre les propriétés électriques ou optiques intéressantes pour les intégrations, ils présentent généralement de forts contrastes de propriétés thermomécaniques avec les substrats semi-conducteurs mais aussi avec les autres matériaux également intégrés dans les dispositifs, tels que les oxydes ou les métaux. Cette inadéquation entre les matériaux provoque généralement une forte augmentation des contraintes dans les différentes couches considérées, ce qui entraine en retour une forte augmentation de la courbure de la plaque. Des contraintes trop intenses peuvent provoquer l'apparition de fissure ou un délaminage, menaçant l'intégrité mécanique de la structure. Connaître les propriétés de chaque couche, en particulier des films polymères, permet aux concepteurs de vérifier la compatibilité des matériaux intégrés et de garantir la fiabilité du composant. Toutefois pour atteindre cet objectif, il est essentiel de développer des techniques de caractérisation de ces propriétés thermomécaniques spécifiquement adaptées pour les films minces déposés sur substrat.Ainsi, l'objectif de ce travail est de mettre au point une méthode expérimentale de détermination précise et réaliste des propriétés thermomécaniques des couches d'intégration, et ensuite de vérifier à l'aide d'outils de simulation analytiques ou numériques, l'intégrité mécanique des dispositifs microélectroniques. Cette méthode est basée sur la mesure de l'évolution de la courbure des plaques au cours de cycles en température. Elle permet non seulement de vérifier l'achèvement du processus de réticulation des polymères, mais aussi d'estimer leurs températures de transition vitreuse. En mesurant la courbure en température de deux substrats distincts sur lesquels sont déposés un même matériau polymère, la méthode développée permet de déterminer le module biaxial et le coefficient de dilatation thermique du film. La caractérisation d'un grand nombre de polymères par cette technique permet de constituer une base de données matériaux que l'on peut compléter avec les propriétés des autres matériaux intégrés. Ces données alimentent des modélisations dans le but de prédire le niveau de déformation de plusieurs dispositifs utilisés en microélectronique.Nous étudierons en particulier le cas des capteurs d'images en réalisant un calcul prédictif des déformations et des contraintes dans les empilements afin d'examiner la compatibilité des différents matériaux. Nous travaillerons également sur l'intégrité mécanique de ces dispositifs, afin de garantir leur fabrication et leur fiabilité dans le temps. Nous montrerons que le choix des matériaux est facilité par la modélisation des structures et qu'il est également possible d'étudier l'initiation et la propagation de fissures à l'aide de modèles numériques
Polymers are very widespread in microelectronics. In addition to their relevant electrical and optical properties for integration, their thermomechanical properties generally exhibit a high contrast with semiconductor substrates, but also with other materials also integrated into microchips, like oxides or metals. This mismatch between materials generally leads to a sharp increase of stresses in the various layers under consideration, which in returns results of a sharp increase in the wafer curvature. Excessive stresses can lead to cracking or delamination, threatening the mechanical integrity of the structure. Knowing the properties of each layer, especially polymer films, enables designers to verify the compatibility of integrated materials and guarantee component reliability. However, to achieve this goal, it is mandatory to develop characterization techniques, especially for thin films deposited on substrates.Thus, the aim of this work is to develop an experimental method to determine the thermomechanical properties of integrated layers, and then to verify the mechanical integrity of microelectronic devices using analytical or numerical simulation tools. This method is based on measuring the variation of curvature during thermal cycles. Then the completion of the polymer cross-linking process can be checked and its temperature of glass transition can be determined. By measuring the thermally induced curvature of two distinct substrates with the same deposited polymer material, the biaxial modulus and the coefficient of thermal expansion of the film are determined. By characterizing a large number of polymers using this technique, we can build up a materials database that can be supplemented with other integrated materials. These data are used in modeling to predict the strain and stress levels of several devices used in microelectronics.In particular, we will study the case of image sensors by performing a predictive calculation of strain and stress distributions of stacks in order to examine the compatibility of different materials. We will also work on the mechanical integrity of these devices, to guarantee their manufacture and reliability over time. We will show that the material selection is eased by structural modeling and a method to study crack initiation and propagation using numerical models
2

Py, Matthieu. "A study of interfaces and nanostructures by time of flight mass spectrometry : towards a spatially resolved quantitative analysis." Phd thesis, Université de Grenoble, 2011. http://tel.archives-ouvertes.fr/tel-00721832.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Les dispositifs avancés pour la microélectronique intègrent divers matériaux et sont de dimensions nanométriques. Une connaissance précise de leur composition est requise pour améliorer leurs procédés de fabrication et comprendre leur comportement électrique. Le ToF-SIMS est un candidat intéressant, qui souffre cependant des effets de matrice et ne possède pas toujours une résolution spatiale suffisante. Le but de ce travail est de permettre une analyse quantitative et résolue en profondeur de matériaux et structures pour la microélectronique avancée à l'aide d'un ToF-SIMS standard. Cette étude porte sur SiGe, sur des matériaux à haute permittivité, des implants basse énergie et des matériaux organiques. Elle se concentre sur la préparation d'échantillons, l'optimisation des conditions expérimentales et le traitement de données pour mettre au point des protocoles d'analyse originaux dont la précision est évaluée grâce à d'autres techniques de caractérisation de pointe. Ces protocoles permettent d'améliorer la qualité des analyses en termes de résolution en profondeur, de précision et de reproductibilité
3

Neelamraju, Bharati. "Characterization Techniques for Photonic Materials." Thesis, The University of Arizona, 2016. http://hdl.handle.net/10150/613403.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
The advancement of photonics technologies depends on synthesis of novel materials and processes for device fabrication. The characterization techniques of the optical, electrical and magnetic properties of the synthesized materials and devices, by non-contact, non-invasive and nondestructive methods plays a significant role in development of new photonics technologies. The research reported in this thesis focuses on two such aspects of photonic materials characterization: Magneto-Optic characterization and Spectroscopic Ellipsometry. The theoretical and experimental basis of these two techniques, and experimental data analysis are presented in two parts. In Part 1, the changes in magneto-optic parameters of FePT PS-P2VP block copolymer nanocomposites with increasing concentrations of FePt nanoparticles in the block copolymer are analyzed. We present the results of change in MO anisotropy factor with the wt% of FePt and try to analyze these changes with further experimentation. Part 2 presents the results of spectroscopic ellipsometry of group III-IV multilayered thin film materials to give their precise thicknesses and optical constants. Both these techniques are unique ways to understand novel material characteristics for future use in device development.
4

Bosley, Amber L. "Algae Characterization and Processing Techniques." University of Toledo / OhioLINK, 2011. http://rave.ohiolink.edu/etdc/view?acc_num=toledo1321538296.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

FRANCO, CAROLINE SOUSA. "GLASS ELECTROTHERMAL POLING AND CHARACTERIZATION TECHNIQUES." PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO, 2004. http://www.maxwell.vrac.puc-rio.br/Busca_etds.php?strSecao=resultado&nrSeq=5435@1.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
CONSELHO NACIONAL DE DESENVOLVIMENTO CIENTÍFICO E TECNOLÓGICO
ERICSSON DO BRASIL
É possível criar uma não-linearidade de segunda ordem em amostras de sílica a partir do processo de polarização. Essas amostras vítreas com o X(2) induzido potencialmente podem ser utilizadas na fabricação de componentes como moduladores ópticos e dobradores de freqüência. O processo de polarização eletrotérmica utiliza alta tensão e alta temperatura e forma uma região de depleção de íons (camada de depleção) onde um campo elétrico intenso é gravado de forma permanente dentro da amostra. Neste trabalho, foram utilizadas diferentes técnicas de caracterização para medir a extensão dessa camada e os resultados foram comparados. As técnicas escolhidas foram: Ataque Químico Interferométrico (com ácido fluorídrico), Maker Fringe, Microscopia Óptica e de Força Atômica e Ataque Interferométrico com Medida de Segundo Harmônico em Tempo Real. Além disso, foram feitos alguns estudos paralelos visando à otimização e a reprodutibilidade do processo de polarização. Foram realizadas dessa forma análises sobre o material dos eletrodos utilizados e sobre a influência da condição inicial da superfície da amostra antes da polarização.
It is possible to create a second order non linearity in silica samples with the poling process. The glass samples with an induced X(2) have a potential application on the fabrication of optical devices such as modulators and frequency converters. In the electrothermal poling process, high voltage and high temperature are applied to the samples forming an ion depleted region (depletion layer), where an intense electric field is permanently recorded. In this work, several characterization techniques have been utilized to measure the width of the depletion layer and compared the obtained results. The chosen techniques were: Interferometric Etching, Maker Fringe, Optical and Atomic Force Microscopy and the Interferometric Etching with Real Time Second Harmonic Measurement. In addition to this, we performed other studies aiming the optimization and reproducibility of the poling process. In this way, we analyzed the material used for the electrodes and the influence of the initial condition of the sample surface before poling.
6

Damianou, Christakis 1964. "Characterization techniques for contaminated gate oxide." Thesis, The University of Arizona, 1990. http://hdl.handle.net/10150/278760.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
The effect of homogeneous contamination on the oxide integrity is studied by electrical measurements. The contamination is introduced in the Buffered Oxide Etchant (BOE) used for the pre-oxidation clean. The DC parametric test of forcing 1 nA and measuring voltage across the oxide is used to relate contamination to the leakage current and also to the number of failures. The factors affecting the measured voltage such as temperature, light and noise are eliminated so that contamination dominates the change in the measured voltage. The current-transport mechanism through the oxide was found to obey the Fowler-Nordheim equation at high fields. The barrier height at both interfaces was lowered in some devices. A technique for measuring the low-field breakdown which is caused by defects in the oxide is developed.
7

Stangoni, Maria Virginia. "Scanning probe techniques for dopant profile characterization /." [S.l.] : [s.n.], 2005. http://e-collection.ethbib.ethz.ch/show?type=diss&nr=16024.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Xia, Huiyong. "Materials characterization using novel ion beam techniques." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1997. http://www.collectionscanada.ca/obj/s4/f2/dsk2/ftp03/NQ28531.pdf.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Wisell, David. "Measurement Techniques for Characterization of Power Amplifiers." Doctoral thesis, Stockholm : KTH School of Electrical Engineering, 2007. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-4566.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

George, Lindsay. "Characterization of Unsaturated Soils Using Acoustic Techniques." ScholarWorks @ UVM, 2009. http://scholarworks.uvm.edu/graddis/91.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Recently there has been a great interest in the ability to relate the hydro-mechanical properties of soils to their acoustic response. This ability could enhance high resolution non-destructive evaluation of the shallow subsurface, and would have applications in a variety of fields including groundwater and contaminant hydrogeology, oil recovery, soil dynamics, and the detection of buried objects. Groundwater hydrologists and environmental engineers are challenged with the task of characterizing the material, mechanical and hydraulic properties of the subsurface with limited information generally collected from discrete points. Geophysical testing offers a suite of measurement techniques that allow for the non destructive evaluation of potentially large areas in a continuous manner. Acoustic testing is one geophysical method used by many professions to characterize the subsurface. Unsaturated and multiphase flow modeling relies on the relationship between the capillary pressure and the level of saturation of the porous media. It has been previously suggested that this relationship may be non-unique and rate dependent. A theory which relates this dynamic relationship to the acoustic properties of the soil was developed by others. This research attempts to experimentally verify this theory by meeting the following three objectives: (1) develop an apparatus and procedure to collect acoustic waveforms on laboratory sized unsaturated soil samples, (2) develop a forward modeling technique using a one-dimensional wave propagation model as an alternative analysis method for waves collected on relatively small laboratory specimens, and (3) apply the theory to the measured acoustic data in an attempt to predict the dynamic behavior of the capillary pressure relationship. The acoustic data collected showed variation in compressional wave velocity and attenuation with saturation, and the trends were consistent with data collected by others in partially saturated rocks. The forward modeling technique was shown to provide objective results with reasonable accuracy and low computational time. The dynamic effects predicted with these acoustic measurements did not sufficiently explain the dynamic behavior seen in the laboratory. This is attributed to other causes of significant attenuation not accounted for in the wave propagation theory that was evaluated.

Книги з теми "Characterization techniques for microelectroniq":

1

John, Lowell, Chen Ray T, Mathur Jagdish P, and Society of Photo-optical Instrumentation Engineers., eds. Optical characterization techniques for high-performance microelectronic device manufacturing II: 25-26 October 1995, Austin, Texas. Bellingham, Wash: SPIE, 1995.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Damon, DeBusk, Ajuria Sergio, Society of Photo-optical Instrumentation Engineers., Semiconductor Equipment and Materials International., Solid State Technology (Organization), and Electrochemical Society, eds. In-line characterization techniques for performance and yield enhancement in microelectronic manufacturing: 1-2 October 1997, Austin, Texas. Bellingham, Wash., USA: SPIE, 1997.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Sergio, Ajuria, Hossain Tim Z, Society of Photo-optical Instrumentation Engineers., and Solid State Technology (Organization), eds. In-line characterization techniques for performance and yield enhancement in microelectronic manufacturing II: 23-24 September, 1998, Santa Clara, California. Bellingham, Washington: SPIE, 1998.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Maliva, Robert G. Aquifer Characterization Techniques. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-32137-0.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Campbell, D. Polymer characterization: Physical techniques. London: Chapman and Hall, 1989.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Mike, Resso, and Bogatin Eric, eds. Signal integrity characterization techniques. Chicago, Ill: International Engineering Consortium, 2008.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

D, Campbell. Polymer characterization: Physical techniques. London: Chapman and Hall, 1989.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

D, Campbell. Polymer characterization: Physical techniques. 2nd ed. Cheltenham, Glos., U.K: S. Thornes, 2000.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Ortiz Ortega, Euth, Hamed Hosseinian, Ingrid Berenice Aguilar Meza, María José Rosales López, Andrea Rodríguez Vera, and Samira Hosseini. Material Characterization Techniques and Applications. Singapore: Springer Singapore, 2022. http://dx.doi.org/10.1007/978-981-16-9569-8.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Provder, Theodore, Marek W. Urban, and Howard G. Barth, eds. Hyphenated Techniques in Polymer Characterization. Washington, DC: American Chemical Society, 1994. http://dx.doi.org/10.1021/bk-1994-0581.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Частини книг з теми "Characterization techniques for microelectroniq":

1

Herrera Ramirez, Jose Martin, Raul Perez Bustamante, Cesar Augusto Isaza Merino, and Ana Maria Arizmendi Morquecho. "Characterization Techniques." In Unconventional Techniques for the Production of Light Alloys and Composites, 129–65. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-48122-3_8.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Meredith, G. R. "Characterization Techniques." In Nonlinear Optical Effects in Organic Polymers, 385–87. Dordrecht: Springer Netherlands, 1989. http://dx.doi.org/10.1007/978-94-009-2295-2_34.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Hernández Hernández, Marla Berenice, Mario Alberto García-Ramírez, Yaping Dan, Josué A. Aguilar-Martínez, Bindu Krishnan, and Sadasivan Shaji. "Characterization Techniques." In Semiconductors, 95–126. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-02171-9_3.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Eigler, Siegfried, and Ayrat M. Dimiev. "Characterization Techniques." In Graphene Oxide, 85–120. Chichester, UK: John Wiley & Sons, Ltd, 2016. http://dx.doi.org/10.1002/9781119069447.ch3.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Herman, Marian A., and Helmut Sitter. "Characterization Techniques." In Molecular Beam Epitaxy, 135–227. Berlin, Heidelberg: Springer Berlin Heidelberg, 1996. http://dx.doi.org/10.1007/978-3-642-80060-3_4.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Pampillón Arce, María Ángela. "Characterization Techniques." In Growth of High Permittivity Dielectrics by High Pressure Sputtering from Metallic Targets, 41–62. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-66607-5_3.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Arya, Sandeep, and Prerna Mahajan. "Characterization Techniques." In Solar Cells, 211–35. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-99-7333-0_8.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Purkait, Mihir Kumar, and Randeep Singh. "Characterization Techniques." In Membrane Technology in Separation Science, 101–29. Boca Raton : Taylor & Francis, [2018]: CRC Press, 2018. http://dx.doi.org/10.1201/9781315229263-4.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Panoth, Deepthi, Kunnambeth M. Thulasi, Fabeena Jahan, Sindhu Thalappan Manikkoth, Divya Puthussery, Baiju Kizhakkekilikoodayil Vijayan, and Anjali Paravannoor. "Characterization Techniques." In Supercapacitors and Their Applications, 87–104. Boca Raton: CRC Press, 2023. http://dx.doi.org/10.1201/9781003258384-6.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Bolokang, A. S., and M. N. Mathabathe. "Characterization Techniques." In Advanced Materials Processing and Manufacturing, 113–75. New York: CRC Press, 2023. http://dx.doi.org/10.1201/9781003356714-6.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Тези доповідей конференцій з теми "Characterization techniques for microelectroniq":

1

Motooka, Teruaki, T. Iwanaga, and M. Koutani. "Ellipsometric characterization techniques for Si processing technologies." In Microelectronic Manufacturing '95, edited by John K. Lowell, Ray T. Chen, and Jagdish P. Mathur. SPIE, 1995. http://dx.doi.org/10.1117/12.221191.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Carpio, Ronald A., and Jon Taylor. "Advanced optical characterization techniques for borophosphosilicate films." In Microelectronic Manufacturing '95, edited by John K. Lowell, Ray T. Chen, and Jagdish P. Mathur. SPIE, 1995. http://dx.doi.org/10.1117/12.221205.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Držík, Milan. "Laser and optical measurement techniques for characterization of microelectronic components." In SPIE Proceedings, edited by Anton Štrba, Dagmar Senderákova, and Miroslav Hrabovský. SPIE, 2005. http://dx.doi.org/10.1117/12.638919.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Paniez, Patrick J., Benedicte P. Mortini, Severine Gally, Alain Prola, Charles Rosilio, and Pierre-Olivier Sassoulas. "Understanding advanced lithographic materials: challenges and new characterization techniques." In Microelectronic Manufacturing Technologies, edited by Chris A. Mack and Tom Stevenson. SPIE, 1999. http://dx.doi.org/10.1117/12.346879.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Drzik, Milan, and Juraj Chlpik. "Mechanical characterization of microelectronic structures by optical vibrational measurements." In Sixth International Conference on Vibration Measurements by Laser Techniques: Advances and Applications. SPIE, 2004. http://dx.doi.org/10.1117/12.579566.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Cristoloveanu, S., M. Bawedin, and I. Ionica. "Special characterization techniques for advanced FDSOI process." In 2015 IEEE SOI-3D-Subthreshold Microelectronics Technology Unified Conference (S3S). IEEE, 2015. http://dx.doi.org/10.1109/s3s.2015.7333543.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Boostandoost, M., X. Ycaza, R. Leihkauf, U. Kerst, and C. Boit. "Challenges for Parametric Analysis of the Solar Cells Using Failure Analysis Technique Developed for the Microelectronics." In ISTFA 2012. ASM International, 2012. http://dx.doi.org/10.31399/asm.cp.istfa2012p0255.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Abstract In this study, the challenges to transfer the microelectronics failure analysis techniques to the photovoltaic industry have been discussed. The main focus of this study was the PHEMOS as a tool with strong technological research capacity developed for microelectronics failure analysis, and OBIC (Optical Beam Induced Current) as a non-destructive technique for detecting and localizing various defects in semiconductor devices. This failure analysis tool was a high resolution optical infrared photon emission microscope used mainly in microelectronics for qualitative analysis and localization of semiconductor defects. Such failure analysis equipment was designed to meet requirements for modern microelectronic devices. Characterization of current photovoltaic device often requires quantitative analysis and should provide information about the electrical and material properties of the solar cell. Therefore, in addition to the demand for further data processing of the obtained results we had to study the corresponding operating regime of solar cells to allow for a correct interpretation of measurement results. In this paper, some of the related problems we faced during this study, e.g. large amount of data processing, the spatial misalignment of the images obtained as EL (Electroluminescence) and IR-LBIC (Infrared Light Beam Induced Current), the implemented laser wavelength, its profile and power density for IR-LBIC measurement. These topics have been discussed in detailed to facilitate a reliable transfer of these techniques from microelectronics to the photovoltaic world.
8

Furlong, Cosme, and Ryszard J. Pryputniewicz. "Advanced OEH Methodology for Evaluation of Microelectronics and Packaging." In ASME 2002 International Mechanical Engineering Congress and Exposition. ASMEDC, 2002. http://dx.doi.org/10.1115/imece2002-39508.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
With the microelectronics industry being one of the most dynamic, in terms of new technologies, electronic packages have to be designed and optimized for new and ever more demanding applications in relatively short periods of time. In addition, for certain applications, the nondestructive testing (NDT) of electronic packages may be needed, especially for applications requiring noninvasive, full-field-of-view, real-time testing the behavior of a specific package subjected to actual operating conditions. This type of NDT can be accomplished by application of optical techniques and, in particular, speckle phase correlation techniques in the form of optoelectronic holography (OEH). In this paper, advanced OEH techniques are described and representative applications of OEH for the effective characterization of microelectronic components and packages are presented.
9

Ogita, Yoh-Ichiro, Hiroshi Shinohara, Tsuyoshi Sawanobori, and Masaki Kurokawa. "Silicon wafer subsurface characterization with blue-laser/microwave and UV-laser/millimeter-wave photoconductivity techniques." In Microelectronic Manufacturing, edited by Sergio A. Ajuria and Tim Z. Hossain. SPIE, 1998. http://dx.doi.org/10.1117/12.324421.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Wise, Michael L., and Stephen W. Downey. "Characterization of Semiconductor Materials by the Photoionization of Sputtered Neutrals Using Ultra-High Laser Intensities." In Laser Applications to Chemical and Environmental Analysis. Washington, D.C.: Optica Publishing Group, 1996. http://dx.doi.org/10.1364/lacea.1996.lfb.6.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
The depth profiling of dopant concentrations across ultrathin device structures is critical to microelectronic device design and fabrication. Secondary Ion Mass Spectrometry (SIMS) remains an extremely important technique for semiconductor characterization. However, secondary ion production during sputtering is extremely dependent on matrix composition, complicating the characterization of elemental concentrations at or near the interfaces of two materials. For this reason, complementary analytical techniques referred to as Sputtered Neutrals Mass Spectrometry (SNMS) have been developed. In SNMS, a laser beam is used to ionize the neutral species in the gas phase above the sample after ion beam sputtering. These "post-ionization" techniques can accomplish surface analysis and depth profiling with high sensitivity and relative freedom from matrix effects. The application of ultra-high intensity lasers (>1014 W / cm2) to the post-ionization technique creates the possibility that all the sputtered species, regardless of electronic structure, will be non-resonantly ionized with high efficiency1. Uniform ionization of all the sputtered species within the laser volume will greatly simplify the quantification of unknown materials.

Звіти організацій з теми "Characterization techniques for microelectroniq":

1

Rossabi, J., and S. E. Nave. Characterization of DNAPL Using Fluorescence Techniques. Office of Scientific and Technical Information (OSTI), March 1998. http://dx.doi.org/10.2172/633949.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Siderius, Martin. Acoustic Characterization Techniques for Shallow Water. Fort Belvoir, VA: Defense Technical Information Center, September 2003. http://dx.doi.org/10.21236/ada629541.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Abraham, M. M. (Optical characterization techniques applied to ceramic oxides). Office of Scientific and Technical Information (OSTI), October 1990. http://dx.doi.org/10.2172/6493049.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Ragland, William. Evaluation of Characterization Techniques for Carbon-Carbon Composites. Fort Belvoir, VA: Defense Technical Information Center, May 1992. http://dx.doi.org/10.21236/ada252693.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Cleaver, A. E., P. Huntsman, C. J. Rickwood, E. Berryman, J. Cole, H. P. White, L. He, and P. Unger. Fugitive dust monitoring and characterization techniques: challenges and opportunities. Natural Resources Canada/CMSS/Information Management, 2022. http://dx.doi.org/10.4095/g274826.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Glen, Crystal Chanea, Andres L. Sanchez, Gabriel Anthony Lucero, Randal L. Schmitt, Mark S. Johnson, Matthew S. Tezak, and Brandon Lee Servantes. Aerosol characterization study using multi-spectrum remote sensing measurement techniques. Office of Scientific and Technical Information (OSTI), September 2013. http://dx.doi.org/10.2172/1096516.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Beechem, Iii, Thomas Edwin, Justin Raymond Serrano, and Patrick E. Hopkins. Simultaneous electronic and lattice characterization using coupled femtosecond spectroscopic techniques. Office of Scientific and Technical Information (OSTI), September 2009. http://dx.doi.org/10.2172/1097197.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Meeks, A. M., J. M. Keller, J. M. Giaquinto, and T. Ross. Improved separation techniques for the characterization of radioactive waste samples. Office of Scientific and Technical Information (OSTI), December 1994. http://dx.doi.org/10.2172/28208.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Gala, H., and R. Hucko. Application of surface and bulk characterization techniques for coal preparation. Office of Scientific and Technical Information (OSTI), January 1990. http://dx.doi.org/10.2172/6994530.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Taylor, L. T., J. W. Hellgeth, and A. Sequeira. Coal liquefaction process streams characterization and evaluation. Chromatographic and spectroscopic techniques. Office of Scientific and Technical Information (OSTI), January 1992. http://dx.doi.org/10.2172/10148085.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

До бібліографії