Добірка наукової літератури з теми "Chaos map"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Chaos map".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Статті в журналах з теми "Chaos map":

1

Danca, Marius-F., Michal Fečkan, and Miguel Romera. "Generalized Form of Parrondo's Paradoxical Game with Applications to Chaos Control." International Journal of Bifurcation and Chaos 24, no. 01 (January 2014): 1450008. http://dx.doi.org/10.1142/s0218127414500084.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
In this paper, we show that a generalized form of Parrondo's paradoxical game can be applied to discrete systems, working out the logistic map as a concrete example, to generate stable orbits. Written in Parrondo's terms, this reads: chaos1 + chaos2 + ⋯ + chaosN = order, where chaosi, i = 1, 2, …, N, are denoted as the chaotic behaviors generated by N values of the parameter control, and by order one understands some stable behavior. The numerical results are sustained by quantitative dynamics generated by Parrondo's game. The implementation of the generalized Parrondo's game is realized here via the parameter switching (PS) algorithm for continuous-time systems [Danca, 2013] adapted to the logistic map. Some related results for more general maps on averaging, which represent discrete analogies of the PS method for ODE, are also presented and discussed.
2

Boyarsky, Abraham, Peyman Eslami, Paweł Góra, Zhenyang Li, Jonathan Meddaugh, and Brian E. Raines. "Chaos for successive maxima map implies chaos for the original map." Nonlinear Dynamics 79, no. 3 (November 21, 2014): 2165–75. http://dx.doi.org/10.1007/s11071-014-1802-6.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Begun, Nikita, Pavel Kravetc, and Dmitrii Rachinskii. "Chaos in Saw Map." International Journal of Bifurcation and Chaos 29, no. 02 (February 2019): 1930005. http://dx.doi.org/10.1142/s0218127419300052.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
We consider the dynamics of a scalar piecewise linear “saw map” with infinitely many linear segments. In particular, such maps are generated as a Poincaré map of simple two-dimensional discrete time piecewise linear systems involving a saturation function. Alternatively, these systems can be viewed as a feedback loop with the so-called stop hysteresis operator. We analyze chaotic sets and attractors of the “saw map” depending on its parameters.
4

Gururajan, N., and M. Sambassivame. "Chaos-Logistic Map-Tent Map -Corresponding Cellular Automata." Mapana - Journal of Sciences 9, no. 2 (November 30, 2010): 28–34. http://dx.doi.org/10.12723/mjs.17.4.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
We study the characteristic features of Tent Mop and Logistic Map towards Chaos. Cellular Automata is obtained for Tent Mop and Logistic Map. The behavior of Tent Mop and Logistic Mop is reflected in the Cellular Automata generated.
5

Caranicolas, N. D. "Controlling chaos in map models." Mechanics Research Communications 26, no. 1 (January 1999): 13–20. http://dx.doi.org/10.1016/s0093-6413(98)00094-9.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Han, Xiujing, Chun Zhang, Yue Yu, and Qinsheng Bi. "Boundary-Crisis-Induced Complex Bursting Patterns in a Forced Cubic Map." International Journal of Bifurcation and Chaos 27, no. 04 (April 2017): 1750051. http://dx.doi.org/10.1142/s0218127417500511.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
This paper reports novel routes to complex bursting patterns based on a forced cubic map, in which boundary-crisis-induced novel bursting patterns are investigated. Typically, the cubic map exhibits stable upper and lower branches of fixed points, which may evolve into chaos in opposite parameter directions by a cascade of period-doubling bifurcations. We show that the chaotic attractors on the stable branches may suddenly disappear by boundary crisis, thus leading to fast transitions from chaos to other attractors and giving rise to switchings between the stable branches of solutions of the cubic map. In particular, the attractors that the trajectory switches to by boundary crisis can be fixed points, periodic orbits and chaos, dependent on parameter values of the cubic map, and this helps us to reveal three general types of boundary-crisis-induced bursting, i.e. bursting of chaos-point type, bursting of chaos-cycle type and bursting of chaos-chaos type. Moreover, each bursting type may contain various bursting patterns. For bursting of chaos-cycle type, we see rich bursting patterns, e.g. chaos-period-2 bursting, chaos-period-4 bursting, chaos-period-8 bursting, etc. Our results enrich the possible routes to complex bursting patterns as well as the underlying mechanisms of complex bursting patterns.
7

Yusof, Norliza Muhamad, Muhamad Luqman Sapini, Lidiya Irdeena Az’hari, Nor Akma Hanis Roslee, Siti Noor Afiqah Rahmat, and Siti Hidayah Muhad Salleh. "Chaos Theory of 0-1 Test and Logistic Map in New Confirmed COVID-19 Cases." Science and Technology Indonesia 7, no. 2 (April 19, 2022): 179–85. http://dx.doi.org/10.26554/sti.2022.7.2.179-185.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
This study aims to forecast the new number of positive cases of COVID-19 using the logistic map, where the presence of chaos is determined using the 0-1 Test. There are a small number of investigations on chaos utilizing the 0-1 Test and logistic map in the literature. This study provides a straightforward technique of forecasting and a current way of determining chaos. Information on new confirmed COVID-19 cases and population of ten countries involving China, Vietnam, Korea, Malaysia, Singapore, New Zealand, India, USA, Brazil, and Mexico for six months from January 20 to June 15, 2020, are selected as samples. The logistic map runs through three stages: data training, forecasting, and validation using the Mean Absolute Error method (MAE). The data training procedure is critical for determining the best growth rate, r, for the logistic map. In chaotic investigations of the 0-1 Test, there appears to be an inverse expectation toward a logistic map. The 0-1 Test in the data of new confirmed COVID-19 cases in all the selected countries reveals the presence of non-chaotic. This contrasts with the existence of chaos in the logistic map forecasts for the USA, Brazil, and Mexico. Regardless, the logistic map was found to be capable of forecasting new COVID-19 positive cases with low error instances. Beginning in the middle of May 2020, new COVID-19 positive cases are forecasted to be on the rise in the USA, Brazil, and Mexico.
8

Inoue, Kei, Masanori Ohya, and Igor V. Volovich. "On a Combined Quantum Baker's Map and Its Characterization by Entropic Chaos Degree." Open Systems & Information Dynamics 16, no. 02n03 (September 2009): 179–93. http://dx.doi.org/10.1142/s123016120900013x.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Quantum Baker's map is a theoretical model that exhibits chaos in a quantum system. In this paper, we introduce a combined map by combining several quantum Baker's maps. Chaos of such a combined dynamics is studied by the entropic chaos degree.
9

Babilonová-Štefánková, Marta. "Extreme Chaos and Transitivity." International Journal of Bifurcation and Chaos 13, no. 07 (July 2003): 1695–700. http://dx.doi.org/10.1142/s0218127403007540.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
In the eighties, Misiurewicz, Bruckner and Hu provided examples of functions chaotic in the sense of Li and Yorke almost everywhere. In this paper we show that similar results are true for distributional chaos, introduced in [Schweizer & Smítal, 1994]. In fact, we show that any bitransitive continuous map of the interval is conjugate to a map uniformly distributionally chaotic almost everywhere. Using a result of A. M. Blokh we get as a consequence that for any map f with positive topological entropy there is a k such that fk is semiconjugate to a continuous map uniformly distributionally chaotic almost everywhere, and consequently, chaotic in the sense of Li and Yorke almost everywhere.
10

Sahid, Sahid, Atmini Dhoruri, Dwi Lestari, Eminugroho Ratna Sari, and Muhammad Fauzan. "Sistem Kriptografi Stream Cipher Berbasis Fungsi Chaos untuk Keamanan Informasi." Jurnal Sains Dasar 8, no. 1 (February 10, 2021): 6–12. http://dx.doi.org/10.21831/jsd.v8i1.38666.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Tujuan penelitian ini adalah menerapkan Fungsi chaos Logistic Map dalam meningkatkan keamanan pengiriman informasi. Fungsi chaos memiliki tingkah laku yang sangat kompleks, irregular dan random di dalam sebuah sistem yang deterministik. Chaos mempunyai sifat yang kacau atau acak, perubahan sedikit saja akan membangkitkan bilangan yang berbeda, hal ini berguna dalam membangkitkan kunci. Fungsi chaos Logistic Map akan digunakan untuk membangkitkan kunci. Selanjutnya, digunakan fungsi sinus berosilasi tinggi untuk meningkatkan keacakan bilangan. Dalam menentukan pembangkit kunci akan digunakan protokol perjanjian kunci stickel. Selanjutnya pembangkit kunci akan di proses menggunakan fungsi chaos Logistic Map dikombinasikan dengan fungsi sinus berosilasi tinggi dan akan diperoleh kunci yang akan digunakan untuk enkripsi serta dekripsi. Pada proses enkripsi dilakukan perhitungan dengan rumus 15Ci=Ki+Pi" mod 256, sedangkan proses dekripsi dilakukan perhitungan dengan rumus 15Ci=Ki-Pi" mod 256, dengan 15Ci" adalah Ciphertext, 15 Pi" adalah Plaintext, serta 15Ki " adalah Kunci. Dengan menggunakan Logistic Map dan fungsi sinus pada pembangkit kunci diperoleh sifat chaos yang tinggi untuk nilai parameter tertentu, bersifat chaos hanya pada beberapa iterasi awal, selanjutnya error berkaitan dengan nilai 15xi=0" . Untuk nilai-nilai parameter yang lain diperoleh barisan kunci yang konvergen setelah beberapa iterasi.

Дисертації з теми "Chaos map":

1

Barton, Nicholas. "Transport and spectral properties of the one dimensional sine map." Thesis, University of Warwick, 2002. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.269050.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Cartwright, Julyan H. E. "Chaos in dissipative systems : bifurcations and basins." Thesis, Queen Mary, University of London, 1992. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.313920.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Švihálková, Kateřina. "Stabilizace chaosu: metody a aplikace." Master's thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2016. http://www.nusl.cz/ntk/nusl-254422.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
The diploma thesis is focused on the use of heuristic and metaheuristic methods to stabilization and controlling the selected systems distinguished by the deterministic chaos behavior. There are discussed parameterization of chosen optimization methods, which are the genetic algorithm, simulated annealing and pattern search. The thesis also introduced the suitable controlling methods and the definition of the objective function. In the theoretical part of the thesis there is a brief introduction to the deterministic chaos theory. The next chapters describes the most common and deployed methods in~the~control theory, especially OGY and Pyragas methods. The practical part of the thesis is divided into two chapters. The first one describes the~stabilization of the artifical chaotic systems with the time delayed Pyragas method - TDAS and its modification ETDAS. The second chapter shows the real chaotic system control. The Duffing oscillator system was chosen to serve this purpose.
4

Guo, Yu. "BIFURCATION AND CHAOS OF NONLINEAR VIBRO-IMPACT SYSTEMS." OpenSIUC, 2013. https://opensiuc.lib.siu.edu/dissertations/725.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Vibro-impact systems are extensively used in engineering and physics field, such as impact damper, particle accelerator, etc. These systems are most basic elements of many real world applications such as cars and aircrafts. Such vibro-impact systems possess both the continuous characteristics as continuous dynamical systems and discrete characteristics introduced by impacts at the same time. Thus, an appropriately developed discrete mapping system is required for such vibro-impact systems in order to simplify investigation on the complexity of motions. In this dissertation, a few vibro-impact oscillators will be investigated using discrete maps in order to understand the dynamics of vibro-impact systems. Before discussing the nonlinear dynamical phenomena and behaviors of these vibro-impact oscillators, the theory for nonlinear discrete systems will be applied to investigate a two-dimensional discrete system (Henon Map). And the complete dynamics of such a nonlinear discrete dynamical system will be presented using the inversed mapping method. Neimark bifurcations in such a discrete system have also drawn a lot of interest to the author. The Neimark bifurcations in such a system have actually formed a boundary dividing the stable solution of positive and negative maps (inversed mapping). For the first time, one is able to obtain a complete prediction of both stable and unstable solutions in such a discrete dynamical system. And a detailed parameter map will be presented to illustrate how changes of parameters could affect the different solutions in such a system. Then, the theory of discontinuous dynamical systems will be adopted to investigate the vibro-impact dynamics in several vibro-impact systems. First, the bouncing ball dynamics will be analytically discussed using a single discrete map. Different types of motions (periodic and chaotic) will be presented to understand the complex behavior of this simple model. Analytical condition will be expressed using switching phase of the system in order to easily predict stick and grazing motion. After that, a horizontal impact damper model will be studied to show how complex periodic motions could be developed analytically. Complete set of symmetric and asymmetric periodic motions can also be easily predicted using the analytical method. Finally, a Fermi-Accelerator being excited at both ends will be discussed in detail for application. Different types of motions will be thoroughly studied for such a vibro-impact system under both same and different excitations.
5

Taylor, Imogen T. F. "Control and synchronisation of coupled map lattices : interdisciplinary modelling of synchronised dynamic behaviour (insects in particular)." Thesis, University of Derby, 2003. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.275687.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Lippolis, Domenico. "How well can one resolve the state space of a chaotic map?" Diss., Georgia Institute of Technology, 2010. http://hdl.handle.net/1853/33841.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
All physical systems are affected by some noise that limits the resolution that can be attained in partitioning their state space. For chaotic, locally hyperbolic flows, this resolution depends on the interplay of the local stretching/contraction and the smearing due to noise. My goal is to determine the `finest attainable' partition for a given hyperbolic dynamical system and a given weak additive white noise. That is achieved by computing the local eigenfunctions of the Fokker-Planck evolution operator in linearized neighborhoods of the periodic orbits of the corresponding deterministic system, and using overlaps of their widths as the criterion for an optimal partition. The Fokker-Planck evolution is then represented by a finite transition graph, whose spectral determinant yields time averages of dynamical observables. The method applies in principle to both continuous- and discrete-time dynamical systems. Numerical tests of such optimal partitions on unimodal maps support my hypothesis.
7

Courtot, Ariane. "Réviser les pluies de météores : caractérisation du chaos dans les courants de météoroïdes." Electronic Thesis or Diss., Université Paris sciences et lettres, 2023. http://www.theses.fr/2023UPSLO007.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Un courant de météoroïdes est formé lorsque des météoroïdes sont éjectés par un corps parent (astéroïde ou comète). Lorsque ce courant rencontre la Terre, une pluie de météores apparaît. Ce lien entre météores observés et corps parent est difficile à établir, à cause notamment de la dynamique complexe des météoroïdes (forces non-gravitationelles -FNGs- et rencontres proches). Je définis donc un "groupe de météores" comme un ensemble de météores aux caractéristiques proches, mais dont le lien avec le corps parent est incertain. J'ai passé en revue les méthodes utilisées pour former des groupes: critère de dissimilarité des orbites et algorithmes de groupement. Au vu des incomplétudes remarquées, j'ai choisi de m'intéresser à ce problème sous l'angle du chaos, défini comme l'augmentation exponentielle de la distance entre deux orbites initialement infiniment proches. J'ai sélectionné un indicateur de chaos adapté, puis j'ai réalisé des cartes de chaos sur les Géminides, les Draconides et les Léonides, trois pluies de météores aux orbites très différentes. On montre comment les résonances de moyen mouvement (RMMs) capturent les particules et les empêchent de rencontrer la planète responsable de la RMM. Cet effet est plus important dans le cas de RMMs plus larges. Cependant, les FNGs peuvent modifier cet effet. Pour les Géminides, il existe un rayon limite en-dessous duquel la diffusion due aux FNGs empêche la capture dans les RMMs. En revanche, pour les Draconides et les Léonides, ce rayon limite est bien plus faible, et n'est pas atteint dans mes simulations. Cela est dû à la fois à la largeur des RMMs, bien supérieure à celle des Géminides, et l'effet plus faible des FNGs à masse égale par rapport aux Géminides. Enfin, je me suis intéressée aux Taurides, pour lesquelles le lien avec le corps parent fait l'objet de recherches, et plus particulièrement aux branches Nord et Sud. Cette fois, j'ai choisi d'utiliser les observations des météores. Elles se sont révélées difficiles à exploiter pour une étude dynamique et j'ai donc dû sélectionner moi-même des particules qui correspondent aux Taurides (selon leur position dans le ciel et leur vitesse au moment de leur rencontre avec la Terre). Les cartes montrent le chaos très élevé des Taurides et l’absence du mécanisme lié aux RMMs. Ces différences pourraient justifier la classification des Taurides en groupe plutôt qu'en pluie. J'ai eu des difficultés à retrouver les Taurides Sud dans mes données, ce qui jette un doute sur la validité de cette branche. D'autres intégrations sont nécessaires pour investiguer ces résultats, mais les cartes de chaos donnent de premières indications sur la différence groupe/pluie
A meteoroid stream is formed when meteoroids are ejected by a parent body (asteroid or comet). When this stream encounters the Earth, a meteor shower appears. This link between observed meteors and their parent body is difficult to establish, mainly because of the complex dynamics of meteoroids (non-gravitational forces -NGFs- and close encounters). I therefore define a 'meteor group' as a set of meteors with similar characteristics, but whose link with the parent body is uncertain.I have reviewed the methods used to form groups: orbit dissimilarity criteria and grouping algorithms. In view of the incompleteness observed, I chose to look at this problem from the angle of chaos, defined as the exponential increase in the distance between two orbits that are initially infinitely close.I selected a suitable chaos indicator and then produced chaos maps of the Geminids, Draconids and Leonids, three meteor showers with very different orbits. I showed how mean motion resonances (MMRs) capture the particles and prevent them from encountering the planet responsible for the MMR. This effect is greater in the case of larger MMRs.However, NGFs can modify this effect. For Geminids, there is a limiting radius below which diffusion due to NGFs prevents capture in MMRs. On the other hand, for Draconids and Leonids, this limiting radius is much smaller, and is not reached in my simulations. This is due both to the width of the RMMs, which is much greater than that of the Geminids, and to the weak effect of the NGFs for the same mass for these orbits, unlike the Geminids.Finally, I turned my attention to the Taurids, for which the link with the parent body is the topic of several studies, and more particularly to the North and South branches. This time, I chose to use meteor observations. These proved difficult to exploit for a dynamic study, so I had to select the particles that corresponded to the Taurids myself (according to their position in the sky and their speed at the time of their encounter with the Earth).The maps show the very high chaos of the Taurids and the absence of the MMR mechanism. These differences could justify classifying the Taurids as a group rather than a shower. I had difficulty finding the Southern Taurids in my data, which casts doubt on the validity of this branch. Further integrations are needed to investigate these results, but the chaos maps give some initial indications of the group/shower distinction
8

Rollin, Guillaume. "Chaos dynamique dans le problème à trois corps restreint." Thesis, Besançon, 2015. http://www.theses.fr/2015BESA2028/document.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Capture-évolution-éjection de particules par des systèmes binaires (étoile-planète, étoile binaire, étoile-trou noir supermassif, trou noir binaire, ...). Dans une première partie, en utilisant une généralisation de l'application de Kepler, nous décrivons, au travers du cas de 1P/Halley, la dynamique chaotique des comètes dans le système solaire. Le système binaire, alors considéré, est composé du Soleil et de Jupiter. L'application symplectique utilisée permet de rendre compte des différentes caractéristiques de la dynamique : trajectoires chaotiques, îlots invariants de KAM associés aux résonances avec le mouvement orbital de Jupiter,... Nous avons déterminé de façon exacte et semi-analytique l'énergie échangée (fonction kick) entre le système solaire et la comète de Halley à chaque passage au périhélie. Cette fonction kick est la somme des contributions des problèmes à trois corps Soleil-planète-comète associés aux 8 planètes du système solaire. Nous avons montré que chacune de ces contributions peut être décomposée en un terme keplerien associé au potentiel gravitationnel de la planète et un terme dipolaire dû au mouvement du soleil autour du centre de masse du système solaire. Dans une deuxième partie, nous avons utilisé la généralisation de l'application de Kepler pour étudier la capture de particules de matière noire au sein des systèmes binaires. La section efficace de capture a été calculée et montre que la capture à longue portée est bien plus efficace que la capture due aux rencontres proches. Nous montrons également l'importance de la vitesse de rotation du système binaire dans le processus de capture. Notamment, un système binaire en rotation ultrarapide accumulera en son sein une densité de matière jusqu'à 10^4 fois celle du flot de matière le traversant. Dans la dernière partie, en intégrant les équations du mouvement du problème à trois corps restreint plan, nous avons étudié l'éjection des particules capturées par un système binaire. Dans le cas d'un système binaire dont les deux corps sont de masses comparables, alors que la majorité des particules sont éjectées immédiatement, nous montrons, sur les sections de Poincaré, que la trace des particules restant indéfiniment aux abords du système binaire forme une structure fractale caractéristique d'un répulseur étrange associé à un système chaotique ouvert. Cette structure fractale, également présente dans l'espace réel, a une forme de spirale à deux bras partageant des similitudes avec les structures spiralées des galaxies comme la nôtre
This work is devoted to the study of the restricted 3-body problem and particularly to the capture-evolution-ejection process of particles by binary systems (star-planet, binary star, star-supermassive black hole, binary black hole, ...). First, using a generalized Kepler map, we describe, through the case of 1P/Halley, the chaotic dynamics of comets in the Solar System. The here considered binary system is the couple Sun-Jupiter. The symplectic application we use allows us to depict the main characteristics of the dynamics: chaotic trajectories, KAM islands associated to resonances with Jupiter orbital motion, ... We determine exactly and semi-analytically the exchange of energy (kick function) between the Solar System and 1P/Halley at its passage at perihelion. This kick function is the sum of the contributions of 3-body problems Sun-planet-comet associated to the eight planets. We show that each one of these contributions can be split in a keplerian term associated to the planet gravitational potential and a dipolar term due to the Sun movement around Solar System center of mass. We also use the generalized Kepler map to study the capture of dark matter particles by binary systems. We derive the capture cross section showing that long range capture is far more efficient than close encounter induced capture. We show the importance of the rotation velocity of the binary in the capture process. Particularly, a binary system with an ultrafast rotation velocity accumulates a density of captured matter up to 10^4 times the density of the incoming flow of matter. Finally, by direct integration of the planar restricted 3-body problem equations of motion, we study the ejection of particles initially captured by a binary system. In the case of a binary with two components of comparable masses, although almost all the particles are immediately ejected, we show, on Poincaré sections, that the trace of remaining particles in the vicinity of the binary form a fractal structure associated to a strange repeller associated to chaotic open systems. This fractal structure, also present in real space, has a shape of two arm spiral sharing similarities with spiral structures observed in galaxies such as the Milky Way
9

Krützmann, Nikolai Christian. "Application of Complexity Measures to Stratospheric Dynamics." Thesis, University of Canterbury. Physics and Astronomy, 2008. http://hdl.handle.net/10092/2020.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
This thesis examines the utility of mathematical complexity measures for the analysis of stratospheric dynamics. Through theoretical considerations and tests with artificial data sets, e.g., the iteration of the logistic map, suitable parameters are determined for the application of the statistical entropy measures sample entropy (SE) and Rényi entropy (RE) to methane (a long-lived stratospheric tracer) data from simulations of the SOCOL chemistry-climate model. The SE is shown to be useful for quantifying the variability of recurring patterns in a time series and is able to identify tropical patterns similar to those reported by previous studies of the ``tropical pipe'' region. However, the SE is found to be unsuitable for use in polar regions, due to the non-stationarity of the methane data at extra-tropical latitudes. It is concluded that the SE cannot be used to analyse climate complexity on a global scale. The focus is turned to the RE, which is a complexity measure of probability distribution functions (PDFs). Using the second order RE and a normalisation factor, zonal PDFs of ten consecutive days of methane data are created with a Bayesian optimal binning technique. From these, the RE is calculated for every day (moving 10-day window). The results indicate that the RE is a promising tool for identifying stratospheric mixing barriers. In Southern Hemisphere winter and early spring, RE produces patterns similar to those found in other studies of stratospheric mixing. High values of RE are found to be indicative of the strong fluctuations in tracer distributions associated with relatively unmixed air in general, and with gradients in the vicinity of mixing barriers, in particular. Lower values suggest more thoroughly mixed air masses. The analysis is extended to eleven years of model data. Realistic inter-annual variability of some of the RE structures is observed, particularly in the Southern Hemisphere. By calculating a climatological mean of the RE for this period, additional mixing patterns are identified in the Northern Hemisphere. The validity of the RE analysis and its interpretation is underlined by showing that qualitatively similar patterns can be seen when using observational satellite data of a different tracer. Compared to previous techniques, the RE has the advantage that it requires significantly less computational effort, as it can be used to derive dynamical information from model or measurement tracer data without relying on any additional input such as wind fields. The results presented in this thesis strongly suggest that the RE is a useful new metric for analysing stratospheric mixing and its variability from climate model data. Furthermore, it is shown that the RE measure is very robust with respect to data gaps, which makes it ideal for application to observations. Hence, using the RE for comparing observations of tracer distributions with those from model simulations potentially presents a novel approach for analysing mixing in the stratosphere.
10

Weirauch, Angelika. "Kreativität – wie man Sinn und Freude im Chaos der Existenz findet." Master's thesis, Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2013. http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-115571.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Die Arbeit befasst sich mit unterschiedlichen philosophischen, psychologischen und erziehungswissenschaftlichen Ansätzen der Kreativitätsforschung und mit einem Selbstversuch. Eine These ist, dass veränderte Bewusstseinszustände (wie z.B. Schlaf, Rausch, Krankheit aber auch körperliche Ausarbeitung wie das Wandern) besondere Zugänge zur Kreativität sind.

Книги з теми "Chaos map":

1

Ausloos, Marcel, and Michel Dirickx, eds. The Logistic Map and the Route to Chaos. Berlin, Heidelberg: Springer Berlin Heidelberg, 2006. http://dx.doi.org/10.1007/3-540-32023-7.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Beck, Christian. Spatio-temporal chaos and vacuum fluctuations of quantized fields. New Jersey: World Scientific, 2002.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Julian, Stephanie. Chaos & danger. [Place of publication not identified]: Ellora'S Cave Publishing, 2013.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Thīmasēn, Murīt. Chao wan mai. Krung Thēp: Čhatphim dōi Murīt Thīmasēn, 2010.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Day, S. J. Eve of chaos. New York: Tor Books, 2013.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Peter, David. The chaos kid. New York: Ace Books, 2000.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Peter, David. The Chaos kid. New York: Diamond Books, 1991.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Veronesi, Sandro. Quiet chaos: A novel. New York: Ecco, 2011.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Blanc, Hélène. Le mal russe: Du chaos à l'espoir--. Paris: L'Archipel, 2000.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Brackett, Donald. Fleetwood Mac: 40 years of creative chaos. Westport, CT: Praeger, 2008.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Частини книг з теми "Chaos map":

1

Frøyland, Jan. "The Circle Map." In Introduction to Chaos and Coherence, 38–48. New York: Routledge, 2022. http://dx.doi.org/10.1201/9780203750162-4.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Frøyland, Jan. "The Logistic Map." In Introduction to Chaos and Coherence, 9–37. New York: Routledge, 2022. http://dx.doi.org/10.1201/9780203750162-3.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Hasegawa, H. H., and W. C. Saphir. "Kinetic Theory for the Standard Map." In Solitons and Chaos, 192–200. Berlin, Heidelberg: Springer Berlin Heidelberg, 1991. http://dx.doi.org/10.1007/978-3-642-84570-3_23.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Mandelbrot, Benoit B. "The complex quadratic map and its ℳ-set." In Fractals and Chaos, 73–95. New York, NY: Springer New York, 2004. http://dx.doi.org/10.1007/978-1-4757-4017-2_5.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Balazs, N. L. "Tunnelling and the Lazy Baker’s Map." In Quantum Chaos — Quantum Measurement, 139–43. Dordrecht: Springer Netherlands, 1992. http://dx.doi.org/10.1007/978-94-015-7979-7_10.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Mazer, Arthur. "Hitting Times to a Target for the Baker’s Map." In Control and Chaos, 251–59. Boston, MA: Birkhäuser Boston, 1997. http://dx.doi.org/10.1007/978-1-4612-2446-4_16.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Cvitanović, Predrag. "Scaling Behavior in a Map of a Circle Onto Itself: Empirical Results." In Universality in Chaos, 403–11. CRC Press Taylor & Francis Group 6000 Broken Sound Parkway NW, Suite 300 Boca Raton, FL 33487-2742: CRC Press, 2017. http://dx.doi.org/10.1201/9780203734636-41.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Kaneko, K. "Simulating Spatiotemporal Chaos with Coupled Map Lattices." In Springer Proceedings in Physics, 260–71. Berlin, Heidelberg: Springer Berlin Heidelberg, 1992. http://dx.doi.org/10.1007/978-3-642-84821-6_49.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Mandelbrot, Benoit B. "Continuous interpolation of the quadratic map and intrinsic tiling of the interiors of Julia sets." In Fractals and Chaos, 125–36. New York, NY: Springer New York, 2004. http://dx.doi.org/10.1007/978-1-4757-4017-2_11.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Bountis, Tassos, Konstantinos Kaloudis, and Helen Christodoulidi. "Dynamics and Statistics of Weak Chaos in a 4-D Symplectic Map." In Chaos, Fractals and Complexity, 109–21. Cham: Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-031-37404-3_7.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Тези доповідей конференцій з теми "Chaos map":

1

Tufaile, Alberto. "Circle Map Dynamics in the Bubble Gun Experiment." In EXPERIMENTAL CHAOS: 6th Experimental Chaos Conference. AIP, 2002. http://dx.doi.org/10.1063/1.1487553.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Wang, Lidong, Bing Li, and Zhenyan Chu. "Distributional chaos in coupled map lattices." In 2009 Chinese Control and Decision Conference (CCDC). IEEE, 2009. http://dx.doi.org/10.1109/ccdc.2009.5192877.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

LIND, PEDRO GONÇALVES, JOÃO ALEXANDRE MEDINA CORTE-REAL, and JASON ALFREDO CARLSON GALLAS. "WAVE PATTERNS IN COUPLED MAP LATTICES." In Space-Time Chaos: Characterization, Control and Synchronization. WORLD SCIENTIFIC, 2001. http://dx.doi.org/10.1142/9789812811660_0006.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Li, Changpin, Li Ma, and Huang Xiao. "Anti-Control of Chaos in Fractional Difference Equations." In ASME 2013 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/detc2013-12835.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Fractional difference equations, or fractional maps, appear at least in two ways. One way is that some of them directly come from the discrete dynamical process with memory or heredity. Another one is that some of them are originated from the discretization of the continuous fractional differential equations. Such maps may be not chaotic. On the other hand, anti-control of chaos (or chaotification for brevity) has potential applications in secure communication. In this paper, we make non-chaotic fractional maps chaotic by constructing suitable controllers. The presented control technique and method has been applied to the non-chaotic fractional Tent map, Hénon map, and Lozi map, which become chaotic via the designed controllers. The computer graphics are also displayed to show the efficiency of the designed controllers.
5

Ryu, Heung-Gyoon, and Jun-Hyun Lee. "High Security Wireless CDSK-Based Chaos Communication with New Chaos Map." In MILCOM 2013 - 2013 IEEE Military Communications Conference. IEEE, 2013. http://dx.doi.org/10.1109/milcom.2013.139.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Bielawski, S., M. Bouazzaoui, D. Derozier, and P. Glorieux. "Controlling Laser Chaos." In Nonlinear Dynamics in Optical Systems. Washington, D.C.: Optica Publishing Group, 1992. http://dx.doi.org/10.1364/nldos.1992.tua5.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
In 1990 Ott, Grebogi and Yorke described an attractive method (OGY) whereby small time-dependent perturbation applied to a chaotic system allowed to stabilize unstable periodic orbits[1]. This method is applicable to experimental situations in which a priori analytical knowledge of the system is not available[2,3]. Their method assumes the dynamics of the system can be represented as arising from a nonlinear map (e.g., a return map). The iterates are then given by Xn+1 = F(Xn,p), where p is some accessible parameter of the system. To control chaotic dynamics one only needs to learn the local dynamics around the desired unstable periodic orbit (e.g., a fixed point Xn=XF) on the nonlinear map : especially, the derivatives with respect to p of the orbit location. When the motion is near the periodic orbit(Xn#XF), small appropriate temporal perturbations of the control parameter p allow to hold the motion on its unstable periodic orbits.
7

Wang, Xiaohua, Zhongliang Jing, and Albert C. J. Luo. "On a Chaos Control for the Logistic Map." In ASME 2001 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2001. http://dx.doi.org/10.1115/imece2001/de-23225.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Abstract A method for chaos control based on the feedback control principle is presented. The chaotic behavior of logistic map for μ = 4 is discussed as a simple problem. Comparison of control performance between two different control methods is given. The simulation results show that the presented control method for chaos gives a better performance than the inverse system method.
8

Yue, Chao, Qiang Lu, and Tiecheng Xia. "Discrete Chaos in Fractional Coupled Logistic Map." In 2019 5th International Conference on Control, Automation and Robotics (ICCAR). IEEE, 2019. http://dx.doi.org/10.1109/iccar.2019.8813423.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Horvat, Martin, Marko Robnik, and Valery Romanovski. "Triangle Map and Its Ergodic Properties." In LET’S FACE CHAOS THROUGH NONLINEAR DYNAMICS: Proceedings of “Let’s Face Chaos Through Nonlinear Dynamics” 7th International Summer School and Conference. AIP, 2008. http://dx.doi.org/10.1063/1.3046276.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Hashim, Mohammed Mahdi, Abdul Razzaq Jabr Almajidi, Raed Khalid Ibrahim, Bashar I. Jasem, Mohammed Ayad Saad, and Abdullah A. Nahi. "Image Cryptography Scheme Based on Improvement Chaos Logistic Function, Chaos Arnold Cat Map and Gingerbread Man Process." In 2024 IEEE International Conference on Artificial Intelligence and Mechatronics Systems (AIMS). IEEE, 2024. http://dx.doi.org/10.1109/aims61812.2024.10513196.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Звіти організацій з теми "Chaos map":

1

Weishi Wan, J. R. Cary, and S. G. Shasharina. Finding four dimensional symplectic maps with reduced chaos: Preliminary results. Office of Scientific and Technical Information (OSTI), June 1998. http://dx.doi.org/10.2172/621892.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Schmidt, G. Investigation of transitions from order to chaos in dynamical systems. Final technical report, period ending May 31, 1996. Office of Scientific and Technical Information (OSTI), December 1996. http://dx.doi.org/10.2172/639743.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Smith, G. V., V. M. Malhotra, T. Wiltowski, and E. Myszka. Clean, premium-quality chars: Demineralized and carbon enriched. [Quarterly] technical report, March 1, 1993--May 31, 1993. Office of Scientific and Technical Information (OSTI), September 1993. http://dx.doi.org/10.2172/10176095.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Ajzenman, Nicolás, Gregory Elacqua, Analia Jaimovich, and Graciela Pérez-Nuñez. Humans versus Chatbots: Scaling-up behavioral interventions to reduce teacher shortages. Inter-American Development Bank, August 2023. http://dx.doi.org/10.18235/0005059.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Empirical results in economics often stem from success in controlled experimental settings, but often fail when scaled up. This study presents a behavioral intervention and a scalable equivalent aimed at reducing teacher shortages by motivating high school students to pursue an education degree. The intervention was delivered through WhatsApp chats by trained human promoters (humans arm) and rule-based Chatbots programmed to closely replicate the humans program (bots arm). Results show that the humans arm successfully increased high-school students demand for and enrollment in education majors, particularly among high-performing students. The bots arm showed positive but smaller and statistically insignificant effects. These findings indicate that a relatively low-cost intervention can effectively reduce teacher shortages, but scaling up such interventions may have limitations. Therefore,testing scalable solutions during the design stage of experiments is crucial.
5

Buckius, R. O., J. E. Peters, and H. Krier. Combustion of Illinois coals and chars with natural gas. [Quarterly] technical report, March 1, 1992--May 31, 1992. Office of Scientific and Technical Information (OSTI), October 1992. http://dx.doi.org/10.2172/10181880.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Geologic map of the Lassen Peak, Chaos Crags, and Upper Hat Creek area, California. US Geological Survey, 2002. http://dx.doi.org/10.3133/i2723.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Topographic map of the Margaritifer Chaos region of Mars -- MTM 500k-10/337E OMKT. US Geological Survey, 2003. http://dx.doi.org/10.3133/i2793.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Geologic map of the Lassen Peak, Chaos Crags, and Upper Hat Creek area, California. US Geological Survey, 2002. http://dx.doi.org/10.3133/imap2723.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

[The physics of cellular automata and coherence and chaos in classical many-body systems]. Progress report, May 1991--present. Office of Scientific and Technical Information (OSTI), June 1992. http://dx.doi.org/10.2172/10160190.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

До бібліографії