Добірка наукової літератури з теми "CERAMIDI"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "CERAMIDI".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Статті в журналах з теми "CERAMIDI"
MATKOVSKA, Ivanna. "Zenoviy Flinta’s artistic ceramics of 1960-80s: Stages of development of the author’s creative manner and influence of artist’s painting on his artistic ceramicsand Ukrainization." Contemporary Art, no. 17 (November 30, 2021): 69–84. http://dx.doi.org/10.31500/2309-8813.17.2021.248429.
Повний текст джерелаCheng, Zhao Gang, Xin Hua Ni, and Xie Quan Liu. "The Mechanical-Stress-Field of Matrix in Eutectic Ceramic Composite." Applied Mechanics and Materials 121-126 (October 2011): 3607–11. http://dx.doi.org/10.4028/www.scientific.net/amm.121-126.3607.
Повний текст джерелаUchasova, E. G., O. V. Gruzdeva, and Yu A. Dyleva. "CERAMIDS AND THEIR ROLE IN THE DEVELOPMENT OF CARDIOVASCULAR DISEASES (REVIEW OF LITERATURE)." Russian Clinical Laboratory Diagnostics 65, no. 6 (May 15, 2020): 341–46. http://dx.doi.org/10.18821/0869-2084-2020-65-6-341-346.
Повний текст джерелаAlmohammed, Saleh N., Belal Alshorman, and Layla A. Abu-Naba’a. "Optical Properties of Five Esthetic Ceramic Materials Used for Monolithic Restorations: A Comparative In Vitro Study." Ceramics 5, no. 4 (November 10, 2022): 961–80. http://dx.doi.org/10.3390/ceramics5040069.
Повний текст джерелаKawana, Momoko, Masatoshi Miyamoto, Yusuke Ohno, and Akio Kihara. "Comparative profiling and comprehensive quantification of stratum corneum ceramides in humans and mice by LC/MS/MS." Journal of Lipid Research 61, no. 6 (April 7, 2020): 884–95. http://dx.doi.org/10.1194/jlr.ra120000671.
Повний текст джерелаLiu, Li-Ka, Vineet Choudhary, Alexandre Toulmay, and William A. Prinz. "An inducible ER–Golgi tether facilitates ceramide transport to alleviate lipotoxicity." Journal of Cell Biology 216, no. 1 (December 23, 2016): 131–47. http://dx.doi.org/10.1083/jcb.201606059.
Повний текст джерелаSuchard, Suzanne J., Vania Hinkovska-Galcheva, Pamela J. Mansfield, Laurence A. Boxer, and James A. Shayman. "Ceramide Inhibits IgG-Dependent Phagocytosis in Human Polymorphonuclear Leukocytes." Blood 89, no. 6 (March 15, 1997): 2139–47. http://dx.doi.org/10.1182/blood.v89.6.2139.
Повний текст джерелаKalhorn, Thomas, and Richard A. Zager. "Renal cortical ceramide patterns during ischemic and toxic injury: assessments by HPLC-mass spectrometry." American Journal of Physiology-Renal Physiology 277, no. 5 (November 1, 1999): F723—F733. http://dx.doi.org/10.1152/ajprenal.1999.277.5.f723.
Повний текст джерелаDrazba, Margaret A., Ida Holásková, Nadine R. Sahyoun, and Melissa Ventura Marra. "Associations of Adiposity and Diet Quality with Serum Ceramides in Middle-Aged Adults with Cardiovascular Risk Factors." Journal of Clinical Medicine 8, no. 4 (April 17, 2019): 527. http://dx.doi.org/10.3390/jcm8040527.
Повний текст джерелаSpassieva, Stefka D., Thomas D. Mullen, Danyelle M. Townsend, and Lina M. Obeid. "Disruption of ceramide synthesis by CerS2 down-regulation leads to autophagy and the unfolded protein response." Biochemical Journal 424, no. 2 (November 11, 2009): 273–83. http://dx.doi.org/10.1042/bj20090699.
Повний текст джерелаДисертації з теми "CERAMIDI"
Dobedoe, Richard Simon. "Glass-ceramics for ceramic/ceramic and ceramic/metal joining applications." Thesis, University of Warwick, 1997. http://wrap.warwick.ac.uk/4217/.
Повний текст джерелаWade, James. "Contact damage of ceramics and ceramic nanocomposites." Thesis, Loughborough University, 2017. https://dspace.lboro.ac.uk/2134/24932.
Повний текст джерелаMinatti, José Luiz [UNESP]. "Desenvolvimento de cerâmicas de mulita a partir de alumina, ácido silícico e aerosil." Universidade Estadual Paulista (UNESP), 2009. http://hdl.handle.net/11449/103747.
Повний текст джерелаCoordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Neste trabalho, apresenta-se uma rota alternativa para produção de cerâmicas de mulita (3Al2O3.2SiO2), a partir da mistura de pós de alumina (Al2O3) e sílica (SiO2), para uma possível aplicação em um dispositivo de perfuração de rochas por jato supersônico quente (thermal spallation). Os pós precursores foram utilizados de dois modos diferentes: no primeiro com tamanho micrométrico, tal como fornecido pelos fabricantes; no segundo, a alumina foi moída e misturada separadamente com ácido silícico e aerosil nanométricos, ambos usados como fontes de sílica. O processo consistiu basicamente na mistura a úmido dos pós, secagem, prensagem e sinterização. Além do tamanho das partículas dos pós, foi avaliada a influência da pressão de prensagem (40 a 300 MPa), dos aditivos de sinterização (MgO, CaO e Y2O3), do meio de dispersão (água e álcool), da calcinação dos pós, da temperatura (1600 e 1650 ºC) e do tempo (1 e 3h) de sinterização. As cerâmicas obtidas foram caracterizadas de acordo com a contração, perda de massa, porosidade e densidade aparente e resistência à flexão. A microestrutura foi caracterizada por meio da microscopia óptica e microscopia eletrônica de varredura (MEV), e complementada com difração de raios X. Os resultados obtidos mostram que cerâmicas de mulita para aplicações comerciais, que requerem resistência mecânica até aproximadamente 207 MPa, podem ser obtidas utilizando pós de alumina moída e aerosil 380, com 1 % de CaO, homogeneizadas com álcool, calcinadas a 600 ºC, prensadas com 160 MPa (ou mais), pré-sinterizadas a 1000 ºC por 1h e sinterizadas a 1650 ºC por 1h. Estas cerâmicas demonstram também, grande potencial para uso em queimadores para fornos e tubeiras para thermal spallation.
The present study was made in order to obtain an alternative process to produce mullite ceramic (3Al2O3.2SiO2), from powder mixture of alumina (Al2O3) and silica (SiO2), for a possible use in a device for rock drilling hot supersonic jet (thermal spallation). The precursors powders were employed in two different ways: the first powder, in micrometric size, was used as supplied by the manufacturer; the second, milled alumina was alternated with silicic acid and nanometric aerosil®, both used as silica sources. The ceramic processing consisted basically of four steps: mixture of humid powders, drying, pressing and sintering. Besides the powder particle size, it was also evaluated the influence of the pressing (40 to 300 MPa), the sintering additives (MgO, CaO and Y2O3), the middle of dispersion (water and alcohol), the powder calcination and the time (1 and 3h) and sintering temperature (1600 and 1650 ºC). The obtained ceramics were characterized according to the contraction, mass loss, porosity, densification and resistance to flexing. The microstructure was analyzed by light microscopy, scanning electron microscopy (SEM) besides X-ray diffraction. The obtained results show that mullite ceramic for commercial applications requiring mechanical resistance up to about approximately 207 MPa, it can be obtained using milled alumina powder and aerosil 380® with 1 % CaO, homogenized with alcohol, calcined in 600 ºC, pressed with 160 MPa (or more), pre-sintered to 1000 ºC for 1h and sintered to 1650 ºC for 1h. These ceramic also show, great potential to be used in burners for ovens and nozzles for thermal spallation.
Mussi, Toschi Vitoria. "Lead-free ferroelectric ceramics for multilayer ceramic capacitors." Thesis, Université Paris-Saclay (ComUE), 2019. http://www.theses.fr/2019SACLC089.
Повний текст джерелаMLCC consumption is today increasing due to their high efficiency, reliability and frequency characteristics. MLCCs that can work from 300 to 350°C are required both for miniaturization, resulting in greater volume heat dissipation and for new applications. Moreover, environmental requirements are also increasing, the REACH and RoHS regulations prohibiting the use of lead in Europe. It is imperative to create new lead-free materials that are able to meet those requirements.However, the compatibility with the production methods, price, and market are important industrial limitations that need to be considered.Three families of lead-free materials were examined: BaTiO3-based, K0.5Na0.5NbO3-based and Na0.5Bi0.5TiO3-based materials. NBT-BT at the morphotropic phase boundary (6% BT) was chosen as the base dielectric material.Several synthesis methods and parameters were studied to determine the best synthesis conditions. Solid-state synthesis and traditional sintering were chosen for the bulk samples and tape casting was chosen for the layer samples preparation. Sintering was done under ZrO2 powder to prevent the evaporation of volatile species.All samples had secondary Ba-containing phases (Ba2TiO4 and Ba2Ti9O20) formed because of the evaporation of Na during sintering. A skin-effect was observed due to a phase coexistence (tetragonal, rhombohedral, and cubic) due to the local concentration of Ba in the NBT lattice.The effects of the synthesis parameters and the stoichiometry of the reactants on dielectric properties, insulation resistance, and phase separation were analysed.The Na0.44Bi0.48Ba0.06TiO3 nominal stoichiometry was the most suitable for the MLCCs due to its high insulation resistance, low dielectric losses, and stability of permittivity in temperature.The phase separation was initially beneficial, due to the resulting elimination of oxygen vacancies. Above a critical volume fraction (2.5 to 3.0%) and a critical mean surface area (0.9 to 3.0 m2), the trend was reversed due to the conductive nature of the secondary phases.To achieve the critical volume fraction and surface area of the secondary phases, a dispersing agent was used during ball-milling in YSZ jar, with MEK and ethanol as solvents, and without drying the reactants prior to weighing. Finally, a strain relaxation was done at 400°C for 3 hours.Three models explained the frequency dispersion of the dielectric properties: the Maxwell-Wagner model, the Nyquist plot and the modified Curie-Weiss law.Incompatibilities between the dielectric properties of NBT-BT reported in the literature were then analysed, showing the importance of maintaining strict synthesis and measurement methods. The three main factors affected the dielectric properties, creating these incompatibilities in the bulk samples. There were the stoichiometry, the metallization method, and the fixing of the electrical leads using silver paste.An increase of the high-temperature dielectric losses after each thermal cycle reaching more than 300°C was observed, indicating a thermal degradation of the material.Finally, the sintered ceramic monolayers showed a low density (62%), limiting the temperature range corresponding to Exxelia’s specifications. However, after pressing the layers together before sintering, the sintered multilayer sample showed a high density (89%). Dielectric property measurement should be carried out for these synthesized multilayers
Hill, Arnold Hill. "PRODUCTION OF BULK CERAMIC SHAPES FROM POLYMER DERIVED CERAMICS." Master's thesis, University of Central Florida, 2008. http://digital.library.ucf.edu/cdm/ref/collection/ETD/id/4248.
Повний текст джерелаM.S.M.S.E.
Department of Mechanical, Materials and Aerospace Engineering;
Engineering and Computer Science
Materials Science & Engr MSMSE
Feilden, Ezra. "Additive manufacturing of ceramics and ceramic composites via robocasting." Thesis, Imperial College London, 2017. http://hdl.handle.net/10044/1/55940.
Повний текст джерелаSütçü, Mücahit Akkurt Sedat. "Development of Dense Ceramic Tiles From Mixtures of Alumina Powders With Different Psd/." [s.l.]: [s.n.], 2004. http://library.iyte.edu.tr/tezler/master/malzemebilimivemuh/T000462.pdf.
Повний текст джерелаSantana, Jerusa Góes Aragão [UNESP]. "Desenvolvimento de cerâmicas multicamadas de carbeto de silício destinadas a aplicações térmicas." Universidade Estadual Paulista (UNESP), 2010. http://hdl.handle.net/11449/103760.
Повний текст джерелаCoordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Companhia Siderurgica de Tubarao
Cerâmicas multicamadas de carbeto de silício foram obtidas por conformação por consolidação ou prensagem e utilizando diferentes técnicas de adesão das camadas. Produzidas com duas ou três camadas e apresentando gradientes de porosidades, a sistemática para obtenção destas cerâmicas teve início com o estudo individual das amostras. Para atender a níveis de porosidades previamente estabelecidos (15, 30 e 50%), foram conformadas amostras com diferentes composições e percentuais de sólidos. Na prensagem uniaxial utilizou-se um aditivo de sinterização (YAG) para controle do nível de porosidade das amostras. Por meio da realização de ensaios físicos, mecânicos, microscópicos e termomecânicos, foi possível conhecer as particularidades e características inerentes ao método de conformação empregado. As cerâmicas conformadas por prensagem apresentaram melhores acabamentos superficiais, poros pequenos, menores incidências de defeitos, porosidade e resistência mecânica influenciada pelo teor de aditivo empregado. Nas cerâmicas conformadas por consolidação, a existência de uma elevada porosidade associada a defeitos como trincas e fissuras, deterioraram a resistência mecânica das amostras. Baseando-se nos resultados obtidos, partiu-se então, para confecção das cerâmicas multicamadas. Na conformação por consolidação foram produzidas cerâmicas com duas ou três camadas, utilizando-se dois métodos: sobreposição direta e sobreposição por meio de sulcos. Na sobreposição direta a constituição das camadas ocorreu por entorno da dispersão sobre uma camada anteriormente processada. Entretanto, as tensões originadas durante as etapas de secagem conduziram a formação de abaulamento no ponto de adesão das camadas, comprometendo a sua resistência. A utilização de um defloculante polietilenimina...
Multilayer ceramics of silicon carbide were obtained by consolidation or pressing by using different techniques for layers adhesion. Produced with two or three layers and showing porosity gradients, the method for obtaining these ceramics began with the individual study of the samples. In order to achieve the porosity levels previously established (15, 30 and 50%), the samples were conformed with different compositions and percentages of solids. A sintering additive (YAG) was used in the uniaxial pressing in order to control the porosity of the samples. Through physical, mechanical, microscopic and thermomechanical tests, it was possible to know the peculiarities and characteristics related to the conforming method that was used. The obtained ceramics by pressing showed better superficial finish, small pores, lower incidence of defects, porosity and mechanical strength, influenced by the percentage of additive employed in the samples. The ceramic samples by consolidation had their mechanical strength damaged due to the high porosity associated with defects such as cracks and fissures. Multilayer ceramics were produced from the obtained results. Ceramic samples were produced by consolidation with two or three layers, by using two methods: direct overlap and overlap through grooves. In the direct overlap, the layer forming was performed by pouring the dispersion over another layer previously processed. However, the arisen tensions during the drying steps, made the interface between the layers become convex, compromising their strength. The use of the dispersant polyethylenimine (Lupasol SK), with high molecular weight, formed a thick film on the sample surface, allowing the production of grooves between the layers. The reduction of tensions on sample layers enabled the ceramic forming without defects on the interface. Samples produced... (Complete abstract click electronic access below)
Gasparotto, Gisele [UNESP]. "Síntese e caracterização da cerâmica PZT dopada com estrôncio e com nióbio e estrôncio." Universidade Estadual Paulista (UNESP), 2002. http://hdl.handle.net/11449/92039.
Повний текст джерелаA cerâmica Titanato Zirconato de Chumbo, PZT, se destaca por suas notáveis características piezoelétricas, sendo candidata a várias aplicações tecnológicas como transdutores, dispositivos ressonantes, entre outras, devido também a seu baixo custo e facilidade na fabricação (DESHPANDE, 1994). A adição de íons modificadores pode melhorar as propriedades da cerâmica, tornando-a mais eficiente. Inúmeros íons como nióbio (Nb+5) e estrôncio (Sr+2) podem ser usados para alterar parâmetros estruturais ad estrutura perovskita A(B’B”)O3 . O método Pechini é um dos mais empregados para síntese de pós cerâmicos com homogeneidade adequada ao estudo da dopagem. Neste trabalho, este método foi utilizado para síntese de pós de PZTS e PZTSN seguindo a composição Pb(1-x)Srx(Zr0,5Ti0,5)O3 e Pb(1-x)Srx[(Zr0,5Ti0,5)Nb0,04]O3, respectivamente, onde 0,01
Adicks, Michael Kent. "Strength characterization of thin-wall hollow ceramic spheres from slurries." Thesis, Georgia Institute of Technology, 1989. http://hdl.handle.net/1853/9318.
Повний текст джерелаКниги з теми "CERAMIDI"
Design, innovazione e cultura del territorio: Ceramica Fioranese fra prodotto e processo. Bologna]: Logo Fausto Lupetti editore, 2020.
Знайти повний текст джерелаR, Levine Stanley, ed. Ceramics and ceramic-matrix composites. New York, N.Y: American Society of Mechanical Engineers, 1992.
Знайти повний текст джерелаŻak, Katarzyna. Bolesławiec, miasto ceramiki =: Bolesławiec, town of ceramics. Jelenia Góra: Moniatowicz Foto Studio, 2004.
Знайти повний текст джерелаSansoni, Marta, and Alessio Sarri. Raw-less: Designer ceramics = ceramica d'autore. Firenze: Mandragora, 2018.
Знайти повний текст джерелаShi, Feng. Ceramic materials: Progress in modern ceramics. Rijeka, Croatia: InTech, 2012.
Знайти повний текст джерелаVary, Alex. NDE of ceramis and ceramic composites. [Washington, DC]: National Aeronautics and Space Administration, 1991.
Знайти повний текст джерелаeditrice, Gruppo editoriale Faenza, ed. Glossario europeo della ceramica =: European ceramics glossary. Faenza, Italy: Gruppo editoriale Faenza editrice, 1992.
Знайти повний текст джерелаCanada. Office of Industrial Innovation. Advanced ceramics. [Ottawa]: Office of Industrial Innovation, 1986.
Знайти повний текст джерелаOntario, Ministry of Industry Trade and Technology. The Impact of advanced ceramics on Ontario industry: An overview = L'effet des céramiques de pointe sur l'industrie en Ontario : aperçu. [Toronto]: Technology Policy Branch, Ontario Ministry of Industry, Trade and Technology, 1988.
Знайти повний текст джерелаSeminar and Meeting on Ceramics, Cells, and Tissues (4th 1997 Museo di Storia Naturale Malmerendi). Ceramics, Cells and Tissues: Ceramic- polymer composites. Faenza (Ravenna): Istituto di ricerche tecnologiche per la ceramica del CNR, 1998.
Знайти повний текст джерелаЧастини книг з теми "CERAMIDI"
Li, Mao Qiang. "Making Fluorophlogopite Ceramics through Ceramic Processing." In Key Engineering Materials, 1833–35. Stafa: Trans Tech Publications Ltd., 2007. http://dx.doi.org/10.4028/0-87849-410-3.1833.
Повний текст джерелаSchmidt, Helmut, Frank Tabellion, Karl-Peter Schmitt, and Peter-William Oliveira. "Ceramic Nanoparticle Technologies for Ceramics and Composites." In Ceramic Transactions Series, 171–86. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2012. http://dx.doi.org/10.1002/9781118406083.ch18.
Повний текст джерелаSahoo, Prasanta, and J. Paulo Davim. "Tribology of Ceramics and Ceramic Matrix Composites." In Tribology for Scientists and Engineers, 211–31. New York, NY: Springer New York, 2013. http://dx.doi.org/10.1007/978-1-4614-1945-7_7.
Повний текст джерелаGodin, Nathalie, Pascal Reynaud, and Gilbert Fantozzi. "AE in Ceramics and Ceramic Matrix Composites." In Springer Tracts in Civil Engineering, 663–710. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-67936-1_22.
Повний текст джерелаNiwa, Koichi, Koji Omote, Yasushi Goto, and Nobuo Kamehara. "Ceramic-Metal Interfaces in Electronic Ceramics —Interface Between Ain Ceramics and Conductors." In Ceramic Microstructures, 391–97. Boston, MA: Springer US, 1998. http://dx.doi.org/10.1007/978-1-4615-5393-9_37.
Повний текст джерелаBährle-Rapp, Marina. "Ceramide." In Springer Lexikon Kosmetik und Körperpflege, 96–97. Berlin, Heidelberg: Springer Berlin Heidelberg, 2007. http://dx.doi.org/10.1007/978-3-540-71095-0_1755.
Повний текст джерелаBecker, Katrin Anne, and Erich Gulbins. "Ceramide." In Encyclopedia of Cancer, 1–3. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014. http://dx.doi.org/10.1007/978-3-642-27841-9_1030-2.
Повний текст джерелаHannun, Yusuf A., Lina M. Obeid, and Ghassan S. Dbaibo. "Ceramide." In Lipid Second Messengers, 177–204. Boston, MA: Springer US, 1996. http://dx.doi.org/10.1007/978-1-4899-1361-6_5.
Повний текст джерелаBecker, Katrin Anne, and Erich Gulbins. "Ceramide." In Encyclopedia of Cancer, 906–8. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014. http://dx.doi.org/10.1007/978-3-662-46875-3_1030.
Повний текст джерелаNicholson, Patrick S. "Processing Defects and the Fracture of Ceramics and Designed Ceramic/Ceramic Composites." In Mechanical Behavior of Materials, 133–46. Dordrecht: Springer Netherlands, 1990. http://dx.doi.org/10.1007/978-94-009-1968-6_15.
Повний текст джерелаТези доповідей конференцій з теми "CERAMIDI"
Easley, M. L., and J. R. Smyth. "Ceramic Gas Turbine Technology Development." In ASME 1996 International Gas Turbine and Aeroengine Congress and Exhibition. American Society of Mechanical Engineers, 1996. http://dx.doi.org/10.1115/96-gt-367.
Повний текст джерелаFeng, X., X. Wang, L. Deng, and J. Xie. "The Oxidation Behavior and Mechanism of Plasma Spraying ZrB2 Ceramic Coating with SiC Addition." In ITSC2017, edited by A. Agarwal, G. Bolelli, A. Concustell, Y. C. Lau, A. McDonald, F. L. Toma, E. Turunen, and C. A. Widener. DVS Media GmbH, 2017. http://dx.doi.org/10.31399/asm.cp.itsc2017p0996.
Повний текст джерелаKara-Slimane, A., and D. Treheux. "Prebrazing of Ceramics by Plasma Spraying for Metal-Ceramic Joining." In ITSC 1998, edited by Christian Coddet. ASM International, 1998. http://dx.doi.org/10.31399/asm.cp.itsc1998p1513.
Повний текст джерелаChavez, T., C. B. DiAntonio, M. Winter, M. Rodriguez, P. Yang, G. Burns, and A. Blea. "Ceramic processing of template-induced microstructure textured ceramics PI008." In 2008 17th IEEE International Symposium on the Applications of Ferroelectrics (ISAF). IEEE, 2008. http://dx.doi.org/10.1109/isaf.2008.4693807.
Повний текст джерелаEspinosa, H. D. "High strain rate modeling of ceramics and ceramic composites." In High-pressure science and technology—1993. AIP, 1994. http://dx.doi.org/10.1063/1.46434.
Повний текст джерелаLEVINE, STANLEY. "Ceramics and ceramic matrix composites - Aerospace potential and status." In 33rd Structures, Structural Dynamics and Materials Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1992. http://dx.doi.org/10.2514/6.1992-2445.
Повний текст джерелаSong, Xiao-Fei, Jianhui Peng, Ling Yin, and Bin Lin. "In Vitro Dental Cutting of Feldspar and Leucite Glass Ceramics Using an Electric Handpiece." In ASME 2012 International Manufacturing Science and Engineering Conference collocated with the 40th North American Manufacturing Research Conference and in participation with the International Conference on Tribology Materials and Processing. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/msec2012-7290.
Повний текст джерелаHentschel, Manfred P., Karl-Wolfram Harbich, Joerg Schors, and Axel Lange. "X-Ray Refraction Characterization of the Interface Structure of Ceramics." In ASME Turbo Expo 2000: Power for Land, Sea, and Air. American Society of Mechanical Engineers, 2000. http://dx.doi.org/10.1115/2000-gt-0061.
Повний текст джерелаScheitz, S., F. L. Toma, T. Kuntze, C. Leyens, and S. Thiele. "Surface Preparation for Ceramics Functionalization by Thermal Spraying." In ITSC2015, edited by A. Agarwal, G. Bolelli, A. Concustell, Y. C. Lau, A. McDonald, F. L. Toma, E. Turunen, and C. A. Widener. ASM International, 2015. http://dx.doi.org/10.31399/asm.cp.itsc2015p0684.
Повний текст джерелаSmyth, J. R., R. E. Morey, and R. W. Schultze. "Ceramic Gas Turbine Technology Development and Applications." In ASME 1993 International Gas Turbine and Aeroengine Congress and Exposition. American Society of Mechanical Engineers, 1993. http://dx.doi.org/10.1115/93-gt-361.
Повний текст джерелаЗвіти організацій з теми "CERAMIDI"
Clarke, D. R., and D. Wolf. Grain boundaries in ceramics and ceramic-metal interfaces. Office of Scientific and Technical Information (OSTI), January 1986. http://dx.doi.org/10.2172/6923214.
Повний текст джерелаTortorelli, P. F. High-temperature corrosion resistance of ceramics and ceramic coatings. Office of Scientific and Technical Information (OSTI), June 1996. http://dx.doi.org/10.2172/450771.
Повний текст джерелаWeiss, Charles, William McGinley, Bradford Songer, Madeline Kuchinski, and Frank Kuchinski. Performance of active porcelain enamel coated fibers for fiber-reinforced concrete : the performance of active porcelain enamel coatings for fiber-reinforced concrete and fiber tests at the University of Louisville. Engineer Research and Development Center (U.S.), May 2021. http://dx.doi.org/10.21079/11681/40683.
Повний текст джерелаWayne, S. F., J. H. Selverian, and D. O'Neil. Development of adherent ceramic coatings to reduce contact stress damage of ceramics. Office of Scientific and Technical Information (OSTI), November 1992. http://dx.doi.org/10.2172/6623608.
Повний текст джерелаWayne, S. F., J. H. Selverian, and D. O`Neil. Development of adherent ceramic coatings to reduce contact stress damage of ceramics. Final report: DOE/ORNL Ceramic Technology Project. Office of Scientific and Technical Information (OSTI), November 1992. http://dx.doi.org/10.2172/10145939.
Повний текст джерелаLange, Fred F., M. P. Rao, A. J. Sanchez-Herencia, G. E. Beltz, and R. M. McMeeking. Reliable Ceramic Structural Composites Designed with a Threshold Strength. Laminar Ceramics That Exhibit a Threshold Strength. Fort Belvoir, VA: Defense Technical Information Center, April 2000. http://dx.doi.org/10.21236/ada389140.
Повний текст джерелаLilley, E., G. A. Rossi, and P. J. Pelletier. Tribology of improved transformation-toughened ceramics-heat engine test. Final report: DOE/ORNL Ceramic Technology Project. Office of Scientific and Technical Information (OSTI), April 1992. http://dx.doi.org/10.2172/10176289.
Повний текст джерелаSpoerke, Erik, Jill Wheeler, Jonathon Ihlefeld, Mia Blea, Harlan Brown-Shaklee, and Mark Rodriguez. Ion Selective Ceramics for Waste Separations: Performance and Design of Ion Selective Ceramic Membrane for Molten Salt Recycle. Office of Scientific and Technical Information (OSTI), September 2014. http://dx.doi.org/10.2172/1163124.
Повний текст джерелаPilania, Ghanshyam. Misfit dislocations at metal-ceramic and ceramic-ceramic interfaces. Office of Scientific and Technical Information (OSTI), June 2015. http://dx.doi.org/10.2172/1184608.
Повний текст джерелаGoh, Geok Yian, and John Miksic. The Istana Kampung Gelam (IKG) Site: A Preliminary Report. National University of Singapore Press, May 2022. http://dx.doi.org/10.56159/sitereport10.
Повний текст джерела