Добірка наукової літератури з теми "Cell microscopy"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Cell microscopy".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Статті в журналах з теми "Cell microscopy"

1

Radosavljević, Jasna Simonović, Aleksandra Lj Mitrović, Ksenija Radotić, László Zimányi, Győző Garab, and Gábor Steinbach. "Differential Polarization Imaging of Plant Cells. Mapping the Anisotropy of Cell Walls and Chloroplasts." International Journal of Molecular Sciences 22, no. 14 (July 17, 2021): 7661. http://dx.doi.org/10.3390/ijms22147661.

Повний текст джерела
Анотація:
Modern light microscopy imaging techniques have substantially advanced our knowledge about the ultrastructure of plant cells and their organelles. Laser-scanning microscopy and digital light microscopy imaging techniques, in general—in addition to their high sensitivity, fast data acquisition, and great versatility of 2D–4D image analyses—also opened the technical possibilities to combine microscopy imaging with spectroscopic measurements. In this review, we focus our attention on differential polarization (DP) imaging techniques and on their applications on plant cell walls and chloroplasts, and show how these techniques provided unique and quantitative information on the anisotropic molecular organization of plant cell constituents: (i) We briefly describe how laser-scanning microscopes (LSMs) and the enhanced-resolution Re-scan Confocal Microscope (RCM of Confocal.nl Ltd. Amsterdam, Netherlands) can be equipped with DP attachments—making them capable of measuring different polarization spectroscopy parameters, parallel with the ‘conventional’ intensity imaging. (ii) We show examples of different faces of the strong anisotropic molecular organization of chloroplast thylakoid membranes. (iii) We illustrate the use of DP imaging of cell walls from a variety of wood samples and demonstrate the use of quantitative analysis. (iv) Finally, we outline the perspectives of further technical developments of micro-spectropolarimetry imaging and its use in plant cell studies.
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Yang, Shuntao. "Digital holographic microscopy of highly sensitive living cells." Journal of Computational Methods in Sciences and Engineering 21, no. 6 (December 7, 2021): 1985–97. http://dx.doi.org/10.3233/jcm215504.

Повний текст джерела
Анотація:
In order to solve the problem that the existing living cell microscopy technology can not display the detailed information of cells, a high sensitivity digital holographic living cell microscopy technology is proposed in this paper. By measuring the phase distribution and refractive index distribution of living cells, the data of living cells are extracted and converted into digital hologram of living cells. Simulation and comparison of the commonly used two-dimensional living cell microscope methods. The experimental results show that the high-sensitivity digital holographic microscopic detection method can obtain the detailed information of living cells, which proves the effectiveness of this study.
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Wait, Eric C., Michael A. Reiche, and Teng-Leong Chew. "Hypothesis-driven quantitative fluorescence microscopy – the importance of reverse-thinking in experimental design." Journal of Cell Science 133, no. 21 (November 1, 2020): jcs250027. http://dx.doi.org/10.1242/jcs.250027.

Повний текст джерела
Анотація:
ABSTRACTOne of the challenges in modern fluorescence microscopy is to reconcile the conventional utilization of microscopes as exploratory instruments with their emerging and rapidly expanding role as a quantitative tools. The contribution of microscopy to observational biology will remain enormous owing to the improvements in acquisition speed, imaging depth, resolution and biocompatibility of modern imaging instruments. However, the use of fluorescence microscopy to facilitate the quantitative measurements necessary to challenge hypotheses is a relatively recent concept, made possible by advanced optics, functional imaging probes and rapidly increasing computational power. We argue here that to fully leverage the rapidly evolving application of microscopes in hypothesis-driven biology, we not only need to ensure that images are acquired quantitatively but must also re-evaluate how microscopy-based experiments are designed. In this Opinion, we present a reverse logic that guides the design of quantitative fluorescence microscopy experiments. This unique approach starts from identifying the results that would quantitatively inform the hypothesis and map the process backward to microscope selection. This ensures that the quantitative aspects of testing the hypothesis remain the central focus of the entire experimental design.
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Shotton, D. M. "Video-enhanced light microscopy and its applications in cell biology." Journal of Cell Science 89, no. 2 (February 1, 1988): 129–50. http://dx.doi.org/10.1242/jcs.89.2.129.

Повний текст джерела
Анотація:
The combination of novel optical microscopic techniques with advanced video and digital image-processing technology now permits dramatic improvements in the quality of light-microscope images. Such video-enhanced light microscopy has lead to a renaissance in the applications of the light microscope for the study of living cells in two important areas: the intensification of faint fluorescence images, permitting observation of fluorescently labelled cells under conditions of very low illuminating intensity; and the enhancement of extremely low contrast images generated by minute cellular structures, so that these may be clearly seen and their normal intracellular movements recorded. Application of both these aspects of video-enhanced light microscopy have recently led to major discoveries concerning the functioning of the living cell. In this review I discuss the equipment, procedures and image-processing principles employed in these applications, and describe and illustrate some of the spectacular results that have recently been obtained.
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Yang, Thomas Zhirui, and Yumin Wu. "Seeing cells without a lens: Compact 3D digital lensless holographic microscopy for wide-field imaging." Theoretical and Natural Science 12, no. 1 (November 17, 2023): 61–72. http://dx.doi.org/10.54254/2753-8818/12/20230434.

Повний текст джерела
Анотація:
Optical microscopy is an essential tool for biomedical discoveries and cell diagnosis at micro- to nano-scales. However, conventional microscopes rely on lenses to record 2-D images of samples, which limits in-depth inspection of large volumes of cells. This research project implements a novel 3-D lensless microscopic imaging system that achieves a wide field of view, high resolution, and an extremely compact, cost-effective design: the Digital Lensless Holographic Microscope (DLHM).A lensless holographic microscope is built with only a light source, a sample, and an imaging chip (with other non-essential supporting structures). The entire setup costs $500 to $600. A series of MATLAB-based algorithms were designed to reconstruct phase information of samples simultaneously from the recorded hologram with built-in high-resolution and phase unwrapping functions. This produces 3-D images of cell samples. The 3-D cell reconstruction of biological samples maintained a comparable resolution with conventional optical microscopes while covering a field of view of 36.2 mm2, which is 20-30 times larger. While most microscopes are extremely time-consuming and require professional expertise, the lensless holographic microscope is portable, low-cost, high-stability, and extremely simple. This makes it accessible for point-of-care testing (POCT) to a broader coverage, including developing regions with limited medical facilities.
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Kosaka, Yudai, and Tetsuhiko Ohba. "3P174 Study on membrane microfluidity of living cells using Muller Matrix microscopy(12. Cell biology,Poster)." Seibutsu Butsuri 53, supplement1-2 (2013): S240. http://dx.doi.org/10.2142/biophys.53.s240_5.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Schneckenburger, Herbert, and Christoph Cremer. "Axial Tomography in Live Cell Microscopy." Biophysica 4, no. 2 (March 29, 2024): 142–57. http://dx.doi.org/10.3390/biophysica4020010.

Повний текст джерела
Анотація:
For many biomedical applications, laser-assisted methods are essential to enhance the three-dimensional (3D) resolution of a light microscope. In this report, we review possibilities to improve the 3D imaging potential by axial tomography. This method allows us to rotate the object in a microscope into the best perspective required for imaging. Furthermore, images recorded under variable angles can be combined to one image with isotropic resolution. After a brief review of the technical state of the art, we show some biomedical applications, and discuss future perspectives for Deep View Microscopy and Molecular Imaging.
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Sagvolden, G., I. Giaever, E. O. Pettersen, and J. Feder. "Cell adhesion force microscopy." Proceedings of the National Academy of Sciences 96, no. 2 (January 19, 1999): 471–76. http://dx.doi.org/10.1073/pnas.96.2.471.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Konishi, Hiromi, Akira Ishikawa, Ying-Bing Jiang, Peter Buseck, and Huifang Xu. "Sealed Environmental Cell Microscopy." Microscopy and Microanalysis 9, S02 (July 15, 2003): 902–3. http://dx.doi.org/10.1017/s1431927603444516.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Hillebrand, Merle, Sophie E. Verrier, Andreas Ohlenbusch, Annika Schäfer, Hans-Dieter Söling, Fred S. Wouters, and Jutta Gärtner. "Live Cell FRET Microscopy." Journal of Biological Chemistry 282, no. 37 (July 3, 2007): 26997–7005. http://dx.doi.org/10.1074/jbc.m702122200.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Дисертації з теми "Cell microscopy"

1

Jaritz, Fritz Simon. "Single Cell Expansion Microscopy." Thesis, KTH, Tillämpad fysik, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-279445.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Raabe, Isabel. "Visualization of cell-to-cell communication by advanced microscopy techniques." Doctoral thesis, Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2015. http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-178404.

Повний текст джерела
Анотація:
In order to maintain a multicellular organism cells need to interact and communicate with each other. Signalling cascades such as the Bone Morphogenic Protein (BMP) and Hedgehog (Hh) signalling pathways therefore play essential roles in development and disease. Intercellular signalling also underlies the function of stem cell niches, signalling microenvironments that regulate behaviour of associated stem cells. Range and intensity of the niche signal controls stem cell proliferation and differentation and must therefore be strictly regulated. The testis and ovary of the fruit fly Drosophila melanogaster are established models of stem cell niche biology. In the apical tip of the testis, germ line stem cell (GSCs) and somatic cyst stem cells (CySCs) are arranged around a group of postmitotic somatic cells termed hub. While it is clear which signals regulate GSC maintenance it is unclear how these signals are spatially regulated. Here I show that BMP signalling is specifically activated at the interface of niche and stem cells. This local activation is possible because the transport of signalling and adhesion molecules is coupled and directed towards contact sites between niche and stem cells. I further show that the generation of the BMP signal in the wing disc follows the same mechanism. Hh signalling controls somatic stem cell populations in the Drosophila ovary and the mammalian testis. However, it was unknown what role Hh might play in the fly testis, where the components of this signalling cascade are also expressed. Here I show that overactivation of Hh signalling leads to an increased proliferation and an expansion of the cyst stem cell compartment. Finally, while the major components of the Hh signalling pathway are known, detailed knowledge of how signal transduction is implemented at the cell biological level is still lacking. Here, I show that localisation of the key signal transducer Smo to the plasma membrane is sufficient for phosphorylation of its cytoplasmic tail and downstream pathway activation. Using advanced, microscopy based biophysical methods I further demonstrate that Smo clustering is, in contrast to the textbook model, independent of phosphorylation.
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Ronteix, Gustave. "Inferring cell-cell interactions from quantitative analysis of microscopy images." Thesis, Institut polytechnique de Paris, 2021. http://www.theses.fr/2021IPPAX111.

Повний текст джерела
Анотація:
Les systèmes biologiques sont bien plus que la somme de leurs constituants. En effet, ils sont souvent caractérisés par des comportements macroscopiques complexes résultant de boucles d'interactions et de rétroactions. Par exemple, la régulation et le rejet éventuel des tumeurs par le système immunitaire est le résultat de multiples réseaux de régulation, influençant à la fois le comportement des cellules cancéreuses et immunitaires. Pour simuler ces effets complexes in-vitro, j'ai conçu une puce microfluidique permettant de confronter des sphéroïdes de mélanome à de multiples cellules T et d'observer les interactions qui en résultent avec une haute résolution spatio-temporelle et sur de longues périodes de temps. En utilisant de l'analyse d'images avancée, combinée à des modèles mathématiques, je démontre qu'une boucle de rétroaction positive conduit l'accumulation de cellules T sur la tumeur, ayant pour conséquence une fragmentation accrue des sphéroïdes. Cette étude met en lumière l'initiation de la réponse immunitaire à l'échelle de la cellule unique : elle montre que même le tout premier contact entre une cellule T et un sphéroïde tumoral augmente la probabilité que la cellule T suivante arrive sur la tumeur. Elle montre également qu'il est possible de récapituler des comportements antagonistes complexes in-vitro, ce qui ouvre la voie à l'élaboration de protocoles plus sophistiqués, impliquant par exemple un micro-environnement tumoral plus complexe.De nombreux processus biologiques sont le résultat d'interactions entre de multiples types de cellules, en particulier au cours du développement. Le foie fœtal est le lieu de la maturation et de l'expansion du système hématopoïétique, mais on sait peu de choses sur sa structure et son organisation. De nouveaux protocoles expérimentaux ont été récemment mis au point pour imager cet organe et j'ai développé des outils pour interpréter et quantifier ces données, permettant la construction d'un "réseau jumeau" de chaque foie fœtal. Cette méthode permet de combiner les échelles unicellulaire et de l'organe dans une seule analyse, révélant l'accumulation de cellules myéloïdes autour des vaisseaux sanguins irriguant le foie fœtal aux derniers stades du développement de l'organe. À l'avenir, cette technique permettra d'analyser précisément les environnements de cellules d'intérêt de manière quantitative. Ceci pourrait à son tour nous aider à comprendre les étapes du développement de types cellulaires cruciaux tels que les cellules souches hématopoïétiques.Les interactions entre les bactéries et leur environnement sont essentielles pour comprendre l'émergence de comportements collectifs complexes tels que la formation de biofilms. Un mécanisme d'intérêt est celui de la rhéotaxie, par lequel le mouvement bactérien est entraîné par les gradients de la contrainte de cisaillement du fluide dans lequel les cellules se déplacent. J'ai développé une méthode pour calculer les équations semi-analytiques guidant le mouvement des bactéries dans la contrainte de cisaillement. Ces équations prédisent des comportements qui ne sont pas observés expérimentalement, mais la divergence est résolue une fois que la diffusion rotationnelle est prise en compte. Les résultats expérimentaux correspondent bien à la prédiction théorique : les bactéries dans les gouttelettes se séparent de manière asymétrique lorsqu'un cisaillement est généré dans le milieu
In his prescient article “More is different”, P. W. Anderson counters the reductionist argument by highlighting the crucial role of emergent properties in science. This is particularly true in biology, where complex macroscopic behaviours stem from communication and interaction loops between much simpler elements. As an illustration, I hereby present three different instances in which I developed and used quantitative methods in order to learn new biological processes.For instance, the regulation and eventual rejection of tumours by the immune system is the result of multiple positive and negative regulation networks, influencing both the behaviour of the cancerous and immune cells. To mimic these complex effects in-vitro, I designed a microfluidic assay to challenge melanoma tumour spheroids with multiple T cells and observe the resulting interactions with high spatiotemporal resolution over long (>24h) periods of time. Using advanced image analysis combined with mathematical modelling I demonstrate that a positive feedback loop drives T cell accumulation to the tumour site, leading to enhanced spheroid fragmentation. This study sheds light on the initiation if the immune response at the single cell scale: showing that even the very first contact between T cell and tumour spheroid increases the probability of the next T cell to come to the tumour. It also shows that it is possible to recapitulate complex antagonistic behaviours in-vitro, which paves the way for the elaboration of more sophisticated protocols, involving for example a more complex tumour micro-environment.Many biological processes are the result of complex interactions between cell types, particularly so during development. The foetal liver is the locus of the maturation and expansion of the hematopoietic system, yet little is known about its structure and organisation. New experimental protocols have been recently developed to image this organ and I developed tools to interpret and quantify these data, enabling the construction of a “network twin” of each foetal liver. This method makes it possible to combine the single-cell scale and the organ scale in the analysis, revealing the accumulation of myeloid cells around the blood vessels irrigating the foetal liver at the final stages of organ development. In the future, this technique will make it possible to analyse precisely the environmental niches of cell types of interest in a quantitative manner. This in turn could help us understand the developmental steps of crucial cell types such as hematopoietic stem cells.The interactions between bacteria and their environment is key to understanding the emergence of complex collective behaviours such a biofilm formation. One mechanism of interest is that of rheotaxis, whereby bacterial motion is driven by gradients in the shear stress of the fluid the cells are moving in. I developed a framework to calculate the semi-analytical equations guiding bacteria movement in shear stress. These equations predict behaviours that aren’t observed experimentally, but the discrepancy is solved once rotational diffusion is taken into account. Experimental results are well-fitted by the theoretical prediction: bacteria in droplets segregate asymmetrically when a shear is generated in the media.Although relating to very different topics, these three studies highlight the pertinence of quantitative approaches for understanding complex biological phenomena: biological systems are more than the sum of their constituents.a
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Sjögren, Florence. "Dermal cell trafficking : from microscopy to microdialysis /." Linköping : Univ, 2005. http://www.bibl.liu.se/liupubl/disp/disp2005/med883s.pdf.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Samsuri, Fahmi B. "Single Cell analysis using AtomicForce Microscopy (AFM)." Thesis, University of Canterbury. Electrical and Computer Engineering, 2010. http://hdl.handle.net/10092/5516.

Повний текст джерела
Анотація:
Replication of biological cells for the purpose of imaging and analysis under electron and scanning probe microscopy has facilitated the opportunity to study and examine some molecular processes and structures of living cells in a manner that were not possible before. The difficulties faced in direct cellular analysis when using and operating Atomic Force Microscopy (AFM) in situ for morphological studies of biological cells have led to the development of a novel method for biological cell studies based on nanoimprint lithography. The realization of the full potential of high resolution AFM imaging has revealed some very important biological events such as exocytosis and endocytosis. In this work, a soft lithography Bioimprint replication technique, which involved simple fabrication steps, was used to form a hard replica of the cell employing a newly developed biocompatible polymer that has fast curing time at room temperature essential for this process. The structure and topography of the rat muscle cell and the endometrial (Ishikawa) cancer cell were investigated in this study. Cells were cultured and incubated in accordance with standard biological culturing procedures and protocols approved by the Human Ethics Committee, University of Otago. An impression of the cell profile was created by applying a layer of the polymer onto the cells attached to a substrate and rapidly cured under UV-light. Fast UV radiation helps to lock cellular processes within seconds after exposure and replicas of the cancer cells exhibit ultra-cellular structures and features down to nanometer scale. Elimination of the AFM tip damping effects due to probing of the soft biological tissue allows imaging with unprecedented resolution. Highxx resolution AFM imagery provides the opportunity to examine the structure and topography of the cells closely so that any abnormalities can be identified. Craters that resemble granules and features down to 100 nm were observed. These represent steps on a transitional series of sequential structures that indicate either an endocytotic or exocytotic processes, which were evident on the replicas. These events, together with exocytosis, play a very significant part in the tumorigenesis of these cancer cells. By forming cell replica impressions, not only have they the potential to understand biological cell conditions, but may also benefit in synthesizing three dimensional (3-D) scaffolds for natural growth of biological cells and providing an improvement over standard cell growth conditions. Further examinations by observing the characteristic behaviour of the plasma membrane when the cells were induced by certain compound such as cobalt chloride (CoCl2) under control and stimulated conditions have brought in the opportunity to examine the effect of this stimulant in inducing apoptosis in many different kinds of cells. Numbers of pores formed on the cells membrane were found to increase significantly after the cells where induced with CoCl2 that correlated well with the level of vascular endothelial growth factor (VEGF) receptors expression, which contributed to tumour growth. This indicates CoCl2 has exaggerated the expression of the VEGF growth factor. Investigations were also done to the cells using functionalized nanoparticles as bio-markers to establish the connection between exocytosis with nanopores found on the membrane surfaces of the cells. These microbeads were found attached to sites surrounding the nucleus of the cell and higher numbers of visible beads would confirm that there was an up-regulation of the VEGF expression in cells induced by CoCl2. All these can contribute to expanding the knowledge about exocytosis and fundamental physiology of cells, and also assist in understanding diseases especially cancer.
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Sun, Mingzhai. "Cell mechanics studied using atomic force microscopy." Diss., Columbia, Mo. : University of Missouri-Columbia, 2008. http://hdl.handle.net/10355/5499.

Повний текст джерела
Анотація:
Thesis (Ph. D.)--University of Missouri-Columbia, 2008.
The entire dissertation/thesis text is included in the research.pdf file; the official abstract appears in the short.pdf file (which also appears in the research.pdf); a non-technical general description, or public abstract, appears in the public.pdf file. Title from title screen of research.pdf file (viewed on June 17, 2009) Vita. Includes bibliographical references.
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Nguyen, Tran Thien Dat. "Bayesian Multi-Object Tracking for Cell Microscopy." Thesis, Curtin University, 2021. http://hdl.handle.net/20.500.11937/86947.

Повний текст джерела
Анотація:
Cell tracking is an essential tool for studying how cells behave and divide under different conditions. This thesis proposes new approaches to track cells and their lineages using random finite set, which allows the tracking errors to be statistically quantified. Additionally, this thesis also explores criteria to rank performance of basic vision task algorithms (e.g., object detection, instance-level segmentation, and tracking), which have not been received proportionate attention from the scientific community.
Стилі APA, Harvard, Vancouver, ISO та ін.
8

López, Ayón Gabriela. "Applying a commercial atomic force microscope for scanning near-field optical microscopy techniques and investigation of Cell-cell signalling." Thesis, McGill University, 2010. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=92400.

Повний текст джерела
Анотація:
The field of research of this thesis is Condensed Matter Physics applied to Biology. Specifically it describes the development of different Atomic Force Microscopy techniques and tools towards the study of living cells in physiological solution. Particular interest is put into the understanding of the influence of noise in the determination of ordered liquid layers above a mica surface - as work towards the study of the role of water and ions in biological processes - and the influence of "diving bell" to boost the Q factor and allow stable imaging and force spectroscopy with tips based on Scanning Near-field Optical Microscopy [LeDue, 2010 and LeDue, 2008]. By combining SNOM techniques as a local illumination method (and thus avoiding photo bleaching of individual molecules) and high resolution AFM techniques we will be able to investigate mechano-transduction and associated signaling in living cells and individual proteins.
Le domaine de recherche de cette thèse consiste en l'application de la physique de la matière condensée à la biologie. Plus précisément, ce travail décrit le développement de différentes techniques de Microscopie à Force Atomique (MFA) et d'outils permettant l'étude de cellules vivantes en solution physiologique. Un intérêt particulier est porté à la compréhension de l'influence du bruit dans la détermination de couches liquides ordonnées au-dessus d'une surface de mica - en tant que travail préalable à l'étude du rôle de l'eau et des ions dans les processus biologiques - et de l'influence d'une "cloche de plongée" pour renforcer le facteur Q ainsi que pour permettre l'imagerie stable et la spectrométrie de force avec des sondes basées sur la Microscopie Optique en Champ Proche (MOCP). En combinant des techniques MOCP, utilisées comme méthode d'éclairement local (évitant ainsi le photoblanchiment des molécules individuelles), et des techniques MFA haute résolution, nous serons capables d'investir la mécano-transduction et le signalement associé dans des cellules vivantes et dans des protéines individuelles.
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Makarchuk, Stanislaw. "Measurement of cell adhesion forces by holographic microscopy." Thesis, Strasbourg, 2016. http://www.theses.fr/2016STRAE034/document.

Повний текст джерела
Анотація:
Les forces mécaniques, générées par la cellule jouent un rôle crucial dans l'adhésion cellulaire, qui est un processus commun à un grand nombre de lignées cellulaires. Afin de mesurer la champ des forces pendant l'adhérence cellulaire, nous utilisons la microscopie de force de traction, où la cellule adhère à la surface plane d'un substrat souple dans le plan. Les forces sont calculées à partir du champ de déplacement mesuré à l'intérieur du substrat sous la cellule. Nous avons construit le microscope, dans lequel nous utilisons des billes sphériques en polystyrène pour mesurer le champ de déplacement. Les positions des marqueurs sont obtenues en analysant I' image interférentielle des particules. Avec cette technique, nous atteignons une précision nanométrique sur le champ de déplacement des particules, ce qui nous permet d'améliorer la résolution en force de ce type de microscope. Les premières mesures ont été effectuées avec la lignée de cellules cancéreuses SW 480
Mechanical forces, generated by the cell plays crucial role in cell adhesion - common process for different cell lines. ln order to measure the force map during cellular adhesion, we use Traction Force Microscopy (TFM), where cell adheres to the soft substrate in 20 plane, and the forces are calculated from measured displacement field inside the substrate underneath the cell. We built the microscope, where instead of using fluorescent markers, we use spherical polystyrene beads in order to measure the displacement field. Positions of the markers are obtained by analyzing the interference pattern caused by the beads in bright-field light. With this technique, we reach nanometer accuracy of the microsphere position determination, that, respectively, influence accuracy of the calculated force field. With the microscope first measurements were performed with cancer cell line SW 480
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Magnusson, Klas. "Cell tracking for automated analysis of timelapse microscopy." Thesis, KTH, Signalbehandling, 2011. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-53772.

Повний текст джерела
Анотація:
This document presents an algorithm to automatically perform two dimensional tracking of cells in in-vitro cultures. The developed software handles all the necessary data processing, from preprocessing the images to automaticallytracking the cells and it also provides an interface to manually correct the obtained cell trajectories and functions to analyze the data. The system is developed for, and tested on, muscle stem cells (MuSCs) but it can also be applied to other cell types that look and behave similarly. The software was used in a bio-medical study to investigate the effects on mouse MuSC fate caused by culturing the cells on substrates of different rigidities. In this study the software enabled important findings about cell behavior. The software is capable of handling automatic track initialization, false detections, adhering cells, death and cell division. These are functionalities that can all be problematic to achieve. Cell tracking is normally done manually, which is very labor intensive and limits the parameters that can be analyzed. Having reliable systems to analyze a wide range of cell types automatically would therefore greatly benefit research in cell biology. The software package described here was named the Baxter Algorithm after the Donald E. & Delia B. Baxter Foundation that funded it’s development.
Стилі APA, Harvard, Vancouver, ISO та ін.

Книги з теми "Cell microscopy"

1

Brian, Matsumoto, and American Society for Cell Biology., eds. Cell biological applications of confocal microscopy. 2nd ed. Amsterdam: Academic Press, 2002.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Kevin, Foskett J., and Grinstein Sergio, eds. Non-invasivetechniques in cell biology. New York: Wiley-Liss, 1990.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Kevin, Foskett J., and Grinstein Sergio 1950-, eds. Noninvasive techniques in cell biology. New York: Wiley-Liss, 1990.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

P, Hemmerich, and Diekmann Stephan, eds. Visions of the cell nucleus. Stevenson Ranch, Calif: American Scientific Publishers, 2005.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

1939-, Plattner Helmut, ed. Electron microscopy of subcellular dynamics. Boca Raton, Fla: CRC Press, 1989.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

National Institute of Standards and Technology (U.S.), ed. Overlap-based cell tracker. Gaithersburg, Md.]: U.S. Dept. of Commerce, National Institute of Standards and Technology, 2009.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Lansing, Taylor D., Wang Yu-Li, and American Society for Cell Biology., eds. Methods in cell biology.: Imaging and spectroscopy. San Diego: Academic Press, 1990.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Masters, Barry R. Confocal microscopy and multiphoton excitation microscopy: The genesis of live cell imaging. Bellingham, WA: SPIE Press, 2006.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

N, Harris, and Oparka K. J, eds. Plant cell biology: Practical approach. Oxford: IRLPress, 1994.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

1939-, Plattner Helmut, ed. Electron microscopy of subcellular dynamics. Boca Raton, Fla: CRC Press, 1989.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Частини книг з теми "Cell microscopy"

1

O'Farrell, Minnie. "Basic Light Microscopy." In Cell Biology Protocols, 1–19. Chichester, UK: John Wiley & Sons, Ltd, 2006. http://dx.doi.org/10.1002/0470033487.ch1.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Harris, J. Robin, Jeffrey A. Nickerson, and Jean Underwood. "Basic Electron Microscopy." In Cell Biology Protocols, 21–50. Chichester, UK: John Wiley & Sons, Ltd, 2006. http://dx.doi.org/10.1002/0470033487.ch2.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Prins, F. A., I. Cornelese-ten Velde, and E. Heer. "Reflection Contrast Microscopy." In Cell Imaging Techniques, 363–401. Totowa, NJ: Humana Press, 2006. http://dx.doi.org/10.1007/978-1-59259-993-6_18.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Gräf, Ralph, Jens Rietdorf, and Timo Zimmermann. "Live Cell Spinning Disk Microscopy." In Microscopy Techniques, 57–75. Berlin, Heidelberg: Springer Berlin Heidelberg, 2005. http://dx.doi.org/10.1007/b102210.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Miura, Kota. "Tracking Movement in Cell Biology." In Microscopy Techniques, 267–95. Berlin, Heidelberg: Springer Berlin Heidelberg, 2005. http://dx.doi.org/10.1007/b102218.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Carrillo-Barberà, Pau, Jose M. Morante-Redolat, and José F. Pertusa. "Cell Proliferation High-Content Screening on Adherent Cell Cultures." In Computer Optimized Microscopy, 299–329. New York, NY: Springer New York, 2019. http://dx.doi.org/10.1007/978-1-4939-9686-5_14.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Gray, Colin, and Daniel Zicha. "Microscopy of Living Cells." In Animal Cell Culture, 61–90. Chichester, UK: John Wiley & Sons, Ltd, 2011. http://dx.doi.org/10.1002/9780470669815.ch3.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Akkaya, Billur, Olena Kamenyeva, Juraj Kabat, and Ryan Kissinger. "Visualizing the Dynamics of T Cell–Dendritic Cell Interactions in Intact Lymph Nodes by Multiphoton Confocal Microscopy." In Confocal Microscopy, 243–63. New York, NY: Springer US, 2021. http://dx.doi.org/10.1007/978-1-0716-1402-0_13.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Gierlinger, Notburga. "Raman Imaging of Plant Cell Walls." In Confocal Raman Microscopy, 471–82. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-75380-5_19.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Gierlinger, Notburga. "Raman Imaging of Plant Cell Walls." In Confocal Raman Microscopy, 225–36. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-12522-5_10.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Тези доповідей конференцій з теми "Cell microscopy"

1

Senju, Yosuke. "Three-dimensional ultrastructural analysis of cell-cell junctions in epithelial cells by using super-resolution fluorescence and electron microscopy." In European Microscopy Congress 2020. Royal Microscopical Society, 2021. http://dx.doi.org/10.22443/rms.emc2020.1457.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Galvez, Dominique, Ricky Cordova, Kelli Kiekens, Andrew D. Rocha, William Drake, Photini Rice, John M. Heusinkveld, and Jennifer K. Barton. "Cell-acquiring fallopian endoscope for detection of ovarian cancer via reflectance imaging, fluorescence imaging, and cell collection." In Endoscopic Microscopy XVIII, edited by Melissa J. Suter, Guillermo J. Tearney, and Thomas D. Wang. SPIE, 2023. http://dx.doi.org/10.1117/12.2650875.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Alloyeau, Damien. "Monitoring the dynamic of cell-derived and synthetic vesicles by liquid-cell TEM." In European Microscopy Congress 2020. Royal Microscopical Society, 2021. http://dx.doi.org/10.22443/rms.emc2020.1157.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Schonbrun, Ethan, Giuseppe Di Caprio, and Diane Schaak. "Dye Exclusion Cell Microscopy." In Imaging Systems and Applications. Washington, D.C.: OSA, 2013. http://dx.doi.org/10.1364/isa.2013.im3e.3.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Mulhern, P. J., B. L. Blackford, and M. H. Jericho. "Scanning Force Microscopy of a Cell Sheath." In Scanned probe microscopy. AIP, 1991. http://dx.doi.org/10.1063/1.41413.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Dinant, Christoffel. "Whole cell segmentation of dense cell cultures in transmitted light images by deep learning." In European Microscopy Congress 2020. Royal Microscopical Society, 2021. http://dx.doi.org/10.22443/rms.emc2020.725.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

"Live-cell imaging of drug-treated cells – challenges beyond routine microscopy." In European Light Microscopy Initiative 2024. Royal Microscopical Society, 2024. http://dx.doi.org/10.22443/rms.elmi2024.28.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Zamir, Evan A. "What Forces Does Cell Traction Force Microscopy Measure?" In ASME 2011 Summer Bioengineering Conference. American Society of Mechanical Engineers, 2011. http://dx.doi.org/10.1115/sbc2011-53266.

Повний текст джерела
Анотація:
It is probably fair to say that the field of cell mechanics emerged with the pioneering work of Harris et al. [1], who observed that cells grown on thin silicone sheets generated wrinkling patterns — unfortunately, quantifying the forces at the cellular level was virtually impossible with their system. Almost two decades later, the study of cell mechanics began in earnest when Pelham and Wang [2] introduced a more rigorous method for quantifying individual cell-generated forces that quickly became known as cell traction force microscopy (CTFM), some form of which is now used in cell mechanics labs around the world. The basic idea underlying the original CTFM method is that the forces generated by cells can be calculated by solving an inverse problem for the displacement field experimentally measured by tracking microspheres embedded in a thin elastic substratum (typically polyacrylamide gel) on which the cells are cultured.
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Jackson, Timothy. "Robust morphology-based classification of cells following label-free cell-by-cell segmentation using convolutional neural networks." In Microscience Microscopy Congress 2021 incorporating EMAG 2021. Royal Microscopical Society, 2021. http://dx.doi.org/10.22443/rms.mmc2021.159.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

BOURGON, Julie. "Staining polymers in environmental liquid cell." In European Microscopy Congress 2020. Royal Microscopical Society, 2021. http://dx.doi.org/10.22443/rms.emc2020.1366.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Звіти організацій з теми "Cell microscopy"

1

Lapeira, Javier. Breast Cancer Endothelial Cell Calcium Dynamics Using Two-Photon Microscopy. Fort Belvoir, VA: Defense Technical Information Center, January 2013. http://dx.doi.org/10.21236/ada579069.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Lapeira, Javier. Breast Cancer Endothelial Cell Calcium Dynamics Using Two-Photon Microscopy. Fort Belvoir, VA: Defense Technical Information Center, January 2012. http://dx.doi.org/10.21236/ada558870.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Nguy, Amanda. Investigating the use of in situ liquid cell scanning transmission electron microscopy. Office of Scientific and Technical Information (OSTI), February 2016. http://dx.doi.org/10.2172/1342540.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Yang, Changhuei. Integrated Device for Circulating Tumor Cell Capture, Characterization, and Lens-Free Microscopy. Fort Belvoir, VA: Defense Technical Information Center, August 2012. http://dx.doi.org/10.21236/ada567187.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Cote, Richard, and Changhuei Yang. Integrated Device for Circulating Tumor Cell Capture, Characterization and Lens-Free Microscopy. Fort Belvoir, VA: Defense Technical Information Center, August 2011. http://dx.doi.org/10.21236/ada574570.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Cote, Richard, Changhuei Yang, and Ram Datar. Integrated Device for Circulating Tumor Cell Capture, Characterization and Lens-Free Microscopy. Fort Belvoir, VA: Defense Technical Information Center, August 2012. http://dx.doi.org/10.21236/ada581028.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Yang, Changhuei. Integrated Device for Circulating Tumor Cell Capture, Characterization, and Lens-Free Microscopy. Fort Belvoir, VA: Defense Technical Information Center, August 2011. http://dx.doi.org/10.21236/ada550879.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Heo, Jaeyoung, Bruce McNamara, and Edgar Buck. In-Situ Liquid Cell Transmission Electron Microscopy of Nanoparticles from Spent Nuclear Fuel. Office of Scientific and Technical Information (OSTI), November 2022. http://dx.doi.org/10.2172/1908677.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Zhang, Yun. Real time imaging of live cell ATP leaking or release events by chemiluminescence microscopy. Office of Scientific and Technical Information (OSTI), December 2008. http://dx.doi.org/10.2172/964390.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Jalali, Bahram, and Dino Di Carlo. Massively Parallel Rogue Cell Detection Using Serial Time-Encoded Amplified Microscopy of Inertially Ordered Cells in High Throughput Flow. Fort Belvoir, VA: Defense Technical Information Center, August 2011. http://dx.doi.org/10.21236/ada566873.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії