Добірка наукової літератури з теми "Catalytic cracking Data processing"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Catalytic cracking Data processing".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Статті в журналах з теми "Catalytic cracking Data processing"
Shi, Meirong, Xin Zhao, Qi Wang, and Le Wu. "Comparative Life Cycle Assessment of Co-Processing of Bio-Oil and Vacuum Gas Oil in an Existing Refinery." Processes 9, no. 2 (January 20, 2021): 187. http://dx.doi.org/10.3390/pr9020187.
Повний текст джерелаShakiyeva, Tatyana V., Larissa R. Sassykova, Anastassiya A. Khamlenko, Ulzhan N. Dzhatkambayeva, Albina R. Sassykova, Aigul A. Batyrbayeva, Zhanar M. Zhaxibayeva, Akmaral G. Ismailova, and Subramanian Sendilvelan. "Catalytic cracking of M-100 fuel oil: relationships between origin process parameters and conversion products." Chimica Techno Acta 9, no. 3 (July 4, 2022): 20229301. http://dx.doi.org/10.15826/chimtech.2022.9.3.01.
Повний текст джерелаOrazbayev, Batyr, Dinara Kozhakhmetova, Ryszard Wójtowicz, and Janusz Krawczyk. "Modeling of a Catalytic Cracking in the Gasoline Production Installation with a Fuzzy Environment." Energies 13, no. 18 (September 11, 2020): 4736. http://dx.doi.org/10.3390/en13184736.
Повний текст джерелаDolomatova, M. M., A. I. Bystrov, R. I. Khairudinov, R. S. Manapov, N. A. Zhuravleva, R. Z. Bakhtizin, and I. G. Kuzmin. "The Possibility of Estimating the Characteristics for the Fractional Composition of Heavy Oils by Optical Absorption Spectra." Chemistry and Technology of Fuels and Oils 631, no. 3 (2022): 10–13. http://dx.doi.org/10.32935/0023-1169-2022-631-3-10-13.
Повний текст джерелаKerssens, M. M., A. Wilbers, J. Kramer, P. de Peinder, G. Mesu, B. J. Nelissen, E. T. C. Vogt, and B. M. Weckhuysen. "Photo-spectroscopy of mixtures of catalyst particles reveals their age and type." Faraday Discussions 188 (2016): 69–79. http://dx.doi.org/10.1039/c5fd00210a.
Повний текст джерелаHe, Wei, Jufeng Li, Zhihe Tang, Beng Wu, Hui Luan, Chong Chen, and Huaqing Liang. "A Novel Hybrid CNN-LSTM Scheme for Nitrogen Oxide Emission Prediction in FCC Unit." Mathematical Problems in Engineering 2020 (August 17, 2020): 1–12. http://dx.doi.org/10.1155/2020/8071810.
Повний текст джерелаTowner, Tyler W., and Donald G. Plumlee. "Design and Fabrication of LTCC Catalyst Chambers." Additional Conferences (Device Packaging, HiTEC, HiTEN, and CICMT) 2011, CICMT (September 1, 2011): 000037–42. http://dx.doi.org/10.4071/cicmt-2011-ta15.
Повний текст джерелаKrymets, G. V., M. I. Litynska, and O. V. Melnychuk. "Catalytic processing of the acid tars." Catalysis and Petrochemistry, no. 33 (2022): 84–88. http://dx.doi.org/10.15407/kataliz2022.33.084.
Повний текст джерелаShakiyeva, Tatyana, Larissa Sassykova, Anastassiya Khamlenko, Binara Dossumova, Albina Sassykova, Albina Muratova, Madina Zhumagali, Nurbubi Zhakirova, and Tleutai Abildin. "Composite catalysts for the catalytic processing of fuel oil." MATEC Web of Conferences 340 (2021): 01017. http://dx.doi.org/10.1051/matecconf/202134001017.
Повний текст джерелаKoledin, O. S., M. Yu Dolomatov, E. A. Kovaleva, R. V. Garipov, and M. R. Valeev. "THE QSPR MODEL FOR PREDICTION OF OCTANE NUMBERS OF HYDROCARBONS OF A SERIES OF ALKENES BY TOPOLOGICAL CHARACTERISTICS OF MOLECULES." Electrical and data processing facilities and systems 17, no. 3-4 (2021): 92–102. http://dx.doi.org/10.17122/1999-5458-2021-17-3-4-92-102.
Повний текст джерелаДисертації з теми "Catalytic cracking Data processing"
Pashikanti, Kiran. "Predictive Modeling of Large-Scale Integrated Refinery Reaction and Fractionation Systems from Plant Data: Fluid Catalytic Cracking (FCC) and Continuous Catalyst Regeneration (CCR) Catalytic Reforming Processes." Diss., Virginia Tech, 2011. http://hdl.handle.net/10919/77181.
Повний текст джерелаPh. D.
Vu, Xuan Hoan, Sura Nguyen, Thanh Tung Dang, Udo Armbruster, and Andreas Martin. "Production of renewable biofuels and chemicals by processing bio-feedstock in conventional petroleum refineries." Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2015. http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-190806.
Повний текст джерелаBài báo trình bày kết quả nghiên cứu khả năng tích hợp sản xuất nhiên liệu sinh học và hóa phẩm từ nguồn nguyên liệu tái tạo sinh khối giầu triglyceride bằng công nghệ cracking xúc tác tấng sôi (FCC) trong nhà máy lọc dầu. Kết quả nghiên cứu cho thấy xúc tác có ảnh hưởng mạnh đến hiệu quả chuyển hóa triglyceride thành hydrocarbon. Tính acid của xúc tác càng mạnh thì độ chuyển hóa càng cao và thu được nhiều sản phẩm nhẹ hơn như xăng và các olefin nhẹ. Xúc tác vi mao quản trung bình như H-ZSM-5 có độ chọn lọc cao với hợp chất vòng thơm thuộc phân đoạn xăng và olefin nhẹ như propylen và ethylen. Với kích thước vi mao quản lớn, xúc tác công nghiệp FCC dựa trên zeolite Y ưu tiên hình thành C4 olefins và các olefin trong phân đoạn xăng. Ở điều kiện phản ứng của quá trình FCC, triglyceride chuyển hóa hiệu quả thành hydrocarbon mà có thể sử dụng làm xăng sinh học cho động cơ và olefin nhẹ làm nguyên liệu cho tổng hợp hóa dầu
Vu, Xuan Hoan, Sura Nguyen, Thanh Tung Dang, Udo Armbruster, and Andreas Martin. "Production of renewable biofuels and chemicals by processing bio-feedstock in conventional petroleum refineries." Technische Universität Dresden, 2014. https://tud.qucosa.de/id/qucosa%3A29110.
Повний текст джерелаBài báo trình bày kết quả nghiên cứu khả năng tích hợp sản xuất nhiên liệu sinh học và hóa phẩm từ nguồn nguyên liệu tái tạo sinh khối giầu triglyceride bằng công nghệ cracking xúc tác tấng sôi (FCC) trong nhà máy lọc dầu. Kết quả nghiên cứu cho thấy xúc tác có ảnh hưởng mạnh đến hiệu quả chuyển hóa triglyceride thành hydrocarbon. Tính acid của xúc tác càng mạnh thì độ chuyển hóa càng cao và thu được nhiều sản phẩm nhẹ hơn như xăng và các olefin nhẹ. Xúc tác vi mao quản trung bình như H-ZSM-5 có độ chọn lọc cao với hợp chất vòng thơm thuộc phân đoạn xăng và olefin nhẹ như propylen và ethylen. Với kích thước vi mao quản lớn, xúc tác công nghiệp FCC dựa trên zeolite Y ưu tiên hình thành C4 olefins và các olefin trong phân đoạn xăng. Ở điều kiện phản ứng của quá trình FCC, triglyceride chuyển hóa hiệu quả thành hydrocarbon mà có thể sử dụng làm xăng sinh học cho động cơ và olefin nhẹ làm nguyên liệu cho tổng hợp hóa dầu.
Chapelliere, Yann. "Investigation of the structure-property relationships of hierarchical Y zeolites for the co-processing of bio-oil with vacuum gas oil." Thesis, Lyon, 2020. http://www.theses.fr/2020LYSE1046.
Повний текст джерелаFluid Catalytic Cracking (FCC) gasoline represents one third of the global gasoline pool. In order to meet objectives regarding increased renewable share in transportation fuels, the production of a hybrid bio/fossil fuel by co-refining biomass pyrolysis liquids with crude oil fractions in an oil refinery is an achievable approach. Oxygenated molecules, typical of the bio-feedstock, are present in liquids produced from biomass pyrolysis. Because large lignocellulosic fragments could strongly adsorb on the FCC zeolite surface, they may not access catalytic sites or could diffuse very slowly in the microporous network. Hence, for high oxygenated molecule content, co-refining may lead to severe changes in product quality, such as a higher aromaticity, coke and residual oxygenates in the hybrid fuels that are produced. To adjust the reactivity of FCC catalysts towards bio-oil, four Y zeolites with well controlled hierarchical mesoporous – microporous network have been investigated. They mainly vary by the characteristics of the secondary mesoporous network (pore size, mesoporous volume) while their globally similar acidity displays some changes in nature (Lewis/Brønsted). The impact of hierarchical porous structures combined with changes in acidity is studied on catalytic activity and selectivity (e.g., coke formation). The issue of diffusion limitation in line with acidity changes are discussed based on Zero Length Column (ZLC) measurements, pyridine adsorption measurements, catalytic cracking of n-hexane and co-processing of vacuum gas oil and bio-oil in micro-activity test unit
Barbosa, Agremis Guinho. "Desenvolvimento de um software para reconciliação de dados de processos quimicos e petroquimicos." [s.n.], 2003. http://repositorio.unicamp.br/jspui/handle/REPOSIP/266241.
Повний текст джерелаDissertação (mestrado) - Universidade Estadual de Campinas, Faculdade de Engenharia Quimica
Made available in DSpace on 2018-08-10T21:51:34Z (GMT). No. of bitstreams: 1 Barbosa_AgremisGuinho_M.pdf: 1501070 bytes, checksum: c20fd373ba5e239e2b783608aebbc7f2 (MD5) Previous issue date: 2003
Resumo: O objetivo deste trabalho é o desenvolvimento de rotinas computacionais para o condicionamento de dados provenientes de um processo químico, de modo que estes sejam consistentes para a representação do comportamento do processo. A descrição adequada do comportamento de um processo é a base fundamental de qualquer sistema de controle e/ou otimização, uma vez que será em resposta às medições deste processo (sua descrição) que os referidos sistemas atuarão. Desta forma o tratamento e correção dos erros de medição, especificamente, e a estimativa de parâmetros, de um modo mais geral, constituem uma etapa que não deve ser negligenciada no controle e otimização de processos. O condicionamento de dados estudado neste trabalho é a reconciliação de dados, que tem como característica principal o uso de um modelo de restrições para condicionar a informação. Geralmente os modelos de restrição são balanços de massa e energia e os somatórios das frações mássicas e molares, mas outros modelos também podem ser usados. Matematicamente, a reconciliação de dados é um problema de otimização sujeito a restrições. Neste trabalho, a formulação do problema de reconciliação é a dos mínimos quadrados ponderados sujeito a restrições e a abordagem para a sua solução é a fatoração QR. Objetiva-se também reunir as rotinas desenvolvidas em uma única ferramenta computacional para a descrição, resolução e análise dos resultados do problema de reconciliação de dados, constituindo-se em um software de fácil utilização e que tenha ainda um mecanismo de comunicação com banco de dados, conferindo-lhe interatividade em tempo real com sistemas de aquisição de dados de processo
Abstract: The purpose of this work is the development of computational routines for conditioning chemical process data in order to represent the process behavior as reliable as possible. Reliable process description is fundamental for any control or optimization system development, since they respond to the process measurements (its description). Thus, data conditioning and correction of process measurement errors, and parameter estimation are a step that should not be neglected in process control and optimization. The data conditioning considered in this work is data reconciliation which has as the main characteristic the use of a constraint model. In general constraint models are mass and energy balances and mass and molar fraction summation, but other models may be used. Under a mathematical point of view, data reconciliation is an optimization subject to constraints. In this work, it is used the formulation of weighed least squares subject to constraints and QR factorization approach to solve the problem. The additional objective of this work is to accommodate the developed routines in such a way to build up an integrated computational tool characterized by its easy to use structure, capability to solve and perform data reconciliation. Its structure takes into account the interaction with data bank, giving it real time interactiveness with process data acquisition systems
Mestrado
Desenvolvimento de Processos Químicos
Mestre em Engenharia Química
Pimentel, Wagner Roberto de Oliveira. "Aplicação de redes neurais artificiais e de quimiometria na modelagem do processo de craqueamento catalitico fluido." [s.n.], 2005. http://repositorio.unicamp.br/jspui/handle/REPOSIP/267304.
Повний текст джерелаTese (doutorado) - Universidade Estadual de Campinas, Faculdade de Engenharia Quimica
Made available in DSpace on 2018-08-04T10:42:56Z (GMT). No. of bitstreams: 1 Pimentel_WagnerRobertodeOliveira_D.pdf: 4301837 bytes, checksum: f08b0ac18f93d5fcb06a99e56d205191 (MD5) Previous issue date: 2005
Resumo: O craqueamento catalítico fluido (FCC) é um dos mais importantes processos de refino da atualidade que produz, dentre outros produtos, gasolina e GLP. Trata-se de um processo que apresenta grande dificuldade de ser modelado fenomenologicamente. Dentro desse contexto surgem as redes neurais artificiais (RNA) como ferramenta de modelagem, visto que as RNA são capazes de ¿aprender¿ o que ocorre no processo por meio de um conjunto limitado de dados e apresentam um menor tempo de processamento se comparado aos modelos fenomenológicos. O objetivo principal deste trabalho é desenvolver modelos empíricos, baseados em RNA e na quimiometria, capazes de relacionar as variáveis de entrada com as variáveis de saída do processo de craqueamento catalítico fluido (planta piloto e unidade industrial). Os dados experimentais foram obtidos na unidade piloto de FCC da Petrobrás localizada na usina de xisto em São Mateus do Sul ¿ PR e os dados industriais foram obtidos da unidade de RLAM localizada em São Francisco do Conde ¿ BA. Para uma boa performance das redes foi utilizada a técnica de análise dos componentes principais (PCA) para um pré-processamento dos dados e em seguida foram usadas redes MLP com os seguintes algoritmos de treinamento supervisionado: Método de Broyden-Fletcher-Goldfarb-Shanno (BFGS), Método do Gradiente Conjugado Escalonado (SCG) e Levenberg-Marquardt (LM)... Observação: O resumo, na íntegra, poderá ser visualizado no texto completo da tese digital
Abstract: The fluidized bed catalytic cracking process is one of the most important refining processes. It produces, among other distillates, gasoline and liquefied petroleum gas (LPG). It is very difficult to model it by fundamental balances. On the other hand, artificial neural networks (ANN) offer convenient tools to describe complex processes. They are able to learn what is going on with in the process through a limited amount of information, requiring less computing time than phenomenological modeling. The main objective of this work was to develop empirical models ¿ based on ANNs and chemometrics ¿ able to relate input and output variables of the FCC process, using data from a pilot and from an industrial plant. Experimental data were obtained from the Petrobras FCC pilot plant located in São Mateus do Sul, Parané, nd from the Petrobras Landulpho Alves Refinery PCC industrial plant located in São Francisco do Conde, Bahia. The principal component analysis (PCA) technique was initially used to preprocess the data. Artificial neural networks were then employed with the following supervising training algorithms: Broyden-Fletcher-Godfarb-Shanno (BFGS), Scale Conjugated Gradient (SCG) and Levenberg-Marquardt (LM). Methods devised to increase the artificial network prediction power were also used... Note: The complete abstract is available with the full electronic digital thesis or dissertations
Doutorado
Engenharia de Processos
Doutor em Engenharia Química
Heideklang, René. "Data Fusion for Multi-Sensor Nondestructive Detection of Surface Cracks in Ferromagnetic Materials." Doctoral thesis, Humboldt-Universität zu Berlin, 2018. http://dx.doi.org/10.18452/19586.
Повний текст джерелаFatigue cracking is a dangerous and cost-intensive phenomenon that requires early detection. But at high test sensitivity, the abundance of false indications limits the reliability of conventional materials testing. This thesis exploits the diversity of physical principles that different nondestructive surface inspection methods offer, by applying data fusion techniques to increase the reliability of defect detection. The first main contribution are novel approaches for the fusion of NDT images. These surface scans are obtained from state-of-the-art inspection procedures in Eddy Current Testing, Thermal Testing and Magnetic Flux Leakage Testing. The implemented image fusion strategy demonstrates that simple algebraic fusion rules are sufficient for high performance, given adequate signal normalization. Data fusion reduces the rate of false positives is reduced by a factor of six over the best individual sensor at a 10 μm deep groove. Moreover, the utility of state-of-the-art image representations, like the Shearlet domain, are explored. However, the theoretical advantages of such directional transforms are not attained in practice with the given data. Nevertheless, the benefit of fusion over single-sensor inspection is confirmed a second time. Furthermore, this work proposes novel techniques for fusion at a high level of signal abstraction. A kernel-based approach is introduced to integrate spatially scattered detection hypotheses. This method explicitly deals with registration errors that are unavoidable in practice. Surface discontinuities as shallow as 30 μm are reliably found by fusion, whereas the best individual sensor requires depths of 40–50 μm for successful detection. The experiment is replicated on a similar second test specimen. Practical guidelines are given at the end of the thesis, and the need for a data sharing initiative is stressed to promote future research on this topic.
Santos, Bjorn Sanchez. "Liquid-phase Processing of Fast Pyrolysis Bio-oil using Pt/HZSM-5 Catalyst." Thesis, 2013. http://hdl.handle.net/1969.1/149605.
Повний текст джерелаКниги з теми "Catalytic cracking Data processing"
Satinover, Jeffrey. Cracking the Bible code. New York: Quill, 1998.
Знайти повний текст джерелаCatalytic formations: Architecture and digital design. London: Taylor & Francis, 2006.
Знайти повний текст джерелаSatinover, Jeffrey. Cracking the Bible code. New York: W. Morrow, 1997.
Знайти повний текст джерелаPierce, Douglas. Cracking the TOEFL iBT. 2nd ed. New York: Random House/Princeton Review, 2008.
Знайти повний текст джерелаKassandra, Bentley, ed. Cyber-investing: Cracking Wall Street with your personal computer. New York: John Wiley, 1995.
Знайти повний текст джерелаL, Brown David. Cyber-investing: Cracking Wall Street with your personal computer. 2nd ed. New York: Wiley, 1997.
Знайти повний текст джерелаPotsdam, Germany) International Beilstein Symposium on Glyco-Bioinformatics (2nd 2011. Proceedings of the 2nd Beilstein Symposium on Glyco-Bioinformatics: Cracking the sugar code by navigating the glycospace : June 27th-July 1st, 2011, Potsdam, Germany. Berlin: Logos Verlag Berlin GmbH, 2012.
Знайти повний текст джерелаL, Brown David. Cyber-investing: Cracking Wall Street with your personal computer. 2nd ed. New York: Wiley, 1997.
Знайти повний текст джерелаLandreth, Bill. Out of the inner circle: The true story of a computer intruder capable of cracking the nation's most secure computersystems. Redmond, Washington: Tempus Books, 1989.
Знайти повний текст джерелаHandbook of crack opening data: A compendium of equations, graphs, computer software, and references for opening profiles of cracks in loaded components and structures. Cambridge, England: Abington Pub., 1992.
Знайти повний текст джерелаЧастини книг з теми "Catalytic cracking Data processing"
Nag, Ashis. "Fluid Catalytic Cracking Unit (FCCU)." In Hydrocarbon Processing and Refining, 75–132. Boca Raton: CRC Press, 2022. http://dx.doi.org/10.1201/9781003268246-2.
Повний текст джерелаLetzsch, Warren. "Fluid Catalytic Cracking (FCC) in Petroleum Refining." In Handbook of Petroleum Processing, 261–316. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-14529-7_2.
Повний текст джерелаLetzsch, Warren. "Fluid Catalytic Cracking (FCC) in Petroleum Refining." In Handbook of Petroleum Processing, 1–48. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-05545-9_2-1.
Повний текст джерелаLin, X., J. Y. Ma, F. X. Lin, D. Q. Wang, and X. S. Xiao. "Key Feature Selecting in the Clean Oil Refinery Process Based on a Two-Stage Data Mining Framework." In Advances in Transdisciplinary Engineering. IOS Press, 2021. http://dx.doi.org/10.3233/atde210339.
Повний текст джерела"Residue and deep hydrotreated feedstock processing." In Fluid Catalytic Cracking Handbook, 297–308. Elsevier, 2020. http://dx.doi.org/10.1016/b978-0-12-812663-9.00016-3.
Повний текст джерелаSadeghbeigi, Reza. "Residue and Deep Hydrotreated Feedstock Processing." In Fluid Catalytic Cracking Handbook, 311–23. Elsevier, 2012. http://dx.doi.org/10.1016/b978-0-12-386965-4.00034-3.
Повний текст джерела"Determination of TBP Cut Points from ASTM D-86 Source: Daubert, T. E., “Petroleum Fraction Distillation Interconversions,” Hydrocarbon Processing, September 1994, pp. 75–7875767778." In Fluid Catalytic Cracking Handbook, 351–52. Elsevier, 2000. http://dx.doi.org/10.1016/b978-088415289-7/50021-4.
Повний текст джерела"Conversion of ASTM 50% Point to TBP 50% Point Temperature Source: Daubert, T. E., “Petroleum Fraction Distillation Interconversions,” Hydrocarbon Processing, September 1994, pp. 75–7875767778." In Fluid Catalytic Cracking Handbook, 350. Elsevier, 2000. http://dx.doi.org/10.1016/b978-088415289-7/50020-2.
Повний текст джерелаReyes, Juan D., Adriana L. Rodríguez, and Carlos A. M. Riascos. "Data Analysis and Modelling of a Fluid Catalytic Cracking Unit (FCCU) for an Implementation of Real Time Optimization." In 12th International Symposium on Process Systems Engineering and 25th European Symposium on Computer Aided Process Engineering, 611–16. Elsevier, 2015. http://dx.doi.org/10.1016/b978-0-444-63578-5.50097-9.
Повний текст джерелаAl Jamri, Mohamed, Robin Smith, and Jie Li. "Molecular Modelling of Co-processing Biomass Pyrolysis Oil with Vacuum Gasoil in an Oil Refinery Fluid Catalytic Cracking Unit." In Computer Aided Chemical Engineering, 991–96. Elsevier, 2019. http://dx.doi.org/10.1016/b978-0-12-818634-3.50166-1.
Повний текст джерелаТези доповідей конференцій з теми "Catalytic cracking Data processing"
O’Hern, T. J., S. M. Trujillo, J. B. Oelfke, P. R. Tortora, and S. L. Ceccio. "Solids-Loading Measurements in a Gas-Solid Riser." In ASME 2004 Heat Transfer/Fluids Engineering Summer Conference. ASMEDC, 2004. http://dx.doi.org/10.1115/ht-fed2004-56602.
Повний текст джерелаWang, Yungan, Jizheng Chu, and Kebing Lu. "Neural Network Prediction of Gasoline and Diesel Production at Catalytic Cracking Main Fractionator." In 2019 International Conference on Machine Learning, Big Data and Business Intelligence (MLBDBI). IEEE, 2019. http://dx.doi.org/10.1109/mlbdbi48998.2019.00052.
Повний текст джерелаTang, Guangwu, Armin Silaen, Bin Wu, Chenn Q. Zhou, Dwight Agnello-Dean, Joseph Wilson, Qingjun Meng, and Samir Khanna. "Numerical Simulation of an Industrial Fluid Catalytic Cracking Regenerator." In ASME 2013 Heat Transfer Summer Conference collocated with the ASME 2013 7th International Conference on Energy Sustainability and the ASME 2013 11th International Conference on Fuel Cell Science, Engineering and Technology. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/ht2013-17527.
Повний текст джерелаCody, G. D., R. J. Bellows, D. J. Goldfarb, H. A. Wolf, and G. V. Storch. "A Novel Non-Intrusive Probe of Particle Motion and Gas Generation in the Feed Injection Zone of the Feed Riser of a Fluidized Bed Catalytic Cracking Unit." In ASME 2000 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2000. http://dx.doi.org/10.1115/imece2000-2047.
Повний текст джерелаdi Bella, A., L. Fortuna, S. Graziani, G. Napoli, and M. G. Xibilia. "Development of a Soft Sensor for a Thermal Cracking Unit using a small experimental data set." In 2007 IEEE International Symposium on Intelligent Signal Processing. IEEE, 2007. http://dx.doi.org/10.1109/wisp.2007.4447584.
Повний текст джерелаChang, S. L., C. Q. Zhou, S. A. Lottes, B. Golchert, and M. Petrick. "A Numerical Investigation of the Scaled-up Effects on Flow, Heat Transfer, and Kinetics Processes of FCC Units." In ASME 1998 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 1998. http://dx.doi.org/10.1115/imece1998-0621.
Повний текст джерелаZhang, Bo, Pengfei He, and Chao Zhu. "Modeling on Hydrodynamic Coupled FCC Reaction in Gas-Solid Riser Reactor." In ASME 2014 4th Joint US-European Fluids Engineering Division Summer Meeting collocated with the ASME 2014 12th International Conference on Nanochannels, Microchannels, and Minichannels. American Society of Mechanical Engineers, 2014. http://dx.doi.org/10.1115/fedsm2014-21368.
Повний текст джерелаHuang, He, Xia Tang, and Martin Haas. "In-Situ Continuous Coke Deposit Removal by Catalytic Steam Gasification for Fuel-Cooled Thermal Management." In ASME Turbo Expo 2012: Turbine Technical Conference and Exposition. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/gt2012-68012.
Повний текст джерелаFikry, M. J. Mohammad, Shinji Ogihara, and Vladimir Vinogradov. "Measurement of Residual Strains As a Parameter of Matrix Cracking in CFRP Laminates." In JSME 2020 Conference on Leading Edge Manufacturing/Materials and Processing. American Society of Mechanical Engineers, 2020. http://dx.doi.org/10.1115/lemp2020-8512.
Повний текст джерелаYe, Yufeng, and Li Xia. "Experimental Research on High-Temperature Pipe Corrosion On-Line Monitoring." In ASME 2012 Pressure Vessels and Piping Conference. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/pvp2012-78325.
Повний текст джерела