Добірка наукової літератури з теми "Catalysis"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Catalysis".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Статті в журналах з теми "Catalysis":

1

Zhao, Xiaodan, and Lihao Liao. "Modern Organoselenium Catalysis: Opportunities and Challenges." Synlett 32, no. 13 (May 11, 2021): 1262–68. http://dx.doi.org/10.1055/a-1506-5532.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
AbstractOrganoselenium catalysis has attracted increasing interest in recent years. This Cluster highlights recent key advances in this area regarding the functionalization of alkenes, alkynes, and arenes by electrophilic selenium catalysis, selenonium salt catalysis, selenium-based chalcogen-bonding catalysis, and Lewis basic selenium catalysis. These achievements might inspire and help future research.1 Introduction2 Electrophilic Selenium Catalysis3 Selenonium Salt Catalysis4 Selenium-Based Chalcogen-Bond Catalysis5 Lewis Basic Selenide Catalysis6 Conclusion
2

Zhou, Wen-Jun, Da-Gang Yu, Yi-Han Zhang, Yong-Yuan Gui, and Liang Sun. "Merging Transition-Metal Catalysis with Photoredox Catalysis: An Environmentally Friendly Strategy for C–H Functionalization." Synthesis 50, no. 17 (August 8, 2018): 3359–78. http://dx.doi.org/10.1055/s-0037-1610222.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Transition-metal-catalyzed C–H functionalization is already a useful tool in organic synthesis, whilst the rapid development of photoredox catalysis provides new pathways for C–H functionalization with high selectivity and efficiency under mild reaction conditions. In this review, recent advances in C–H functionalization through merging transition­-metal catalysis with photoredox catalysis are discussed.1 Introduction2 Merging Nickel Catalysis with Photoredox Catalysis3 Merging Palladium Catalysis with Photoredox Catalysis4 Merging Cobalt Catalysis with Photoredox Catalysis5 Merging Photoredox Catalysis with Other Transition-Metal Catalysis­6 Conclusions
3

Dagorne, Samuel. "Recent Developments on N-Heterocyclic Carbene Supported Zinc Complexes: Synthesis and Use in Catalysis." Synthesis 50, no. 18 (June 28, 2018): 3662–70. http://dx.doi.org/10.1055/s-0037-1610088.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
The present contribution reviews the synthesis, reactivity, and use in catalysis of NHC–Zn complexes reported since 2013. NHC-stabilized Zn(II) species typically display enhanced stability relative to common organozinc species (such as Zn dialkyls), a feature of interest for the mediation of various chemical processes and the stabilization of reactive Zn-based species. Their use in catalysis is essentially dominated by reduction reactions of various unsaturated small molecules (including CO2), thus primarily involving Zn–H and Zn–alkyl derivatives as catalysts. Simple NHC adducts of Zn(II) dihalides also appear as effective catalysts for the reduction amination of CO2 and borylation of alkyl/aryl halides. Stable and well-defined Zn alkoxides have also been prepared and behave as effective catalysts in the polymerization of cyclic esters/carbonates for the production of well-defined biodegradable materials. Overall, the attractive features of NHC-based Zn(II) species include ready access, a reasonable stability/reactivity balance, and steric/electronic tunability (through the NHC source), which should promote their further development.1 Introduction2 NHC-Supported Zinc Alkyl/Aryl Species2.1 Synthesis2.2 Reactivity and Use in Catalysis3 NHC-Supported Zinc Hydride Species3.1 Synthesis3.2 Reactivity and Use in Catalysis4 NHC-Supported Zinc Amido/Alkoxide Species4.1 Synthesis4.2 Use in Catalysis5 NHC-Supported Zinc Dihalide Species5.1 Synthesis5.2 Use in Catalysis6 Other NHC-Stabilized Zn Species7 Conclusion
4

Fañanás-Mastral, Martín, Eva Rivera-Chao, and Laura Fra. "Synergistic Bimetallic Catalysis for Carboboration of Unsaturated Hydrocarbons." Synthesis 50, no. 19 (July 9, 2018): 3825–32. http://dx.doi.org/10.1055/s-0037-1610434.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Synergistic bimetallic catalysis has become a very efficient tool for the selective carboboration of unsaturated hydrocarbons. This synthetic approach is based on the use of a catalytically generated boron-substituted organocopper nucleophile in a cross-coupling reaction catalyzed by a second transition metal. This way, hydrocarbons can be used as pro-nucleophiles in this type of transformations thus rendering a clean and operationally simple alternative to the traditional cross-coupling methodologies. This review provides a summary of the developments on this topic and discusses both the synthetic utility and mechanisms of these reactions.1 Introduction2 Carboboration of Alkenes via Synergistic Catalysis3 Carboboration of 1,3-Dienes via Synergistic Catalysis4 Carboboration of Alkynes via Synergistic Catalysis5 Conclusions
5

Ding, Bo, Qilin Xue, Hong-Gang Cheng, Qianghui Zhou, and Shihu Jia. "Recent Advances in Catalytic Nonenzymatic Kinetic Resolution of Tertiary Alcohols." Synthesis 54, no. 07 (December 2, 2021): 1721–32. http://dx.doi.org/10.1055/a-1712-0912.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
AbstractThe kinetic resolution (KR) of racemates is one of the most widely used approaches to access enantiomerically pure compounds. Over the past two decades, catalytic nonenzymatic KR has gained popularity in the field of asymmetric synthesis due to the rapid development of chiral catalysts and ligands in asymmetric catalysis. Chiral tertiary alcohols are prevalent in a variety of natural products, pharmaceuticals, and biologically active chiral compounds. The catalytic nonenzymatic KR of racemic tertiary alcohols is a straightforward strategy to access enantioenriched tertiary alcohols. This short review describes recent advances in catalytic nonenzymatic KR of tertiary alcohols, including organocatalysis and metal catalysis.1 Introduction2 Organocatalysis2.1 Peptide Catalyst2.2 Chiral Phosphoric Acid Catalyst2.3 Chiral Lewis Base Catalyst2.4 Chiral Quaternary Ammonium Salt Catalyst3 Metal Catalysis3.1 Mixed La-Li Heterobimetallic Catalyst3.2 Rh Catalyst3.3 Hf Catalyst3.4 Pd Catalyst3.5 Cu Catalyst3.6 Ag Catalyst4 Conclusion and Outlook
6

Kaplunenko, Volodymyr, and Mykola Kosinov. "Electric field - induced catalysis. Laws of field catalysis." InterConf, no. 26(129) (October 18, 2022): 332–51. http://dx.doi.org/10.51582/interconf.19-20.10.2022.037.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Abstract.The article explores a new type of catalysis - electric field catalysis. The laws of field catalysis are given. The characteristics of the electric field are determined, which set the values of the characteristics of the field catalysis. Field catalysis and field catalyst do not fit into the traditional definition of catalysis and catalyst, which may require a revision of the terminology of catalysis. The field is a more versatile catalyst compared to material catalysts, both in terms of its application to a wider range of chemical reactions, and in the ability to control the rate and selectivity. It is shown that a common donor-acceptor mechanism of catalysis is realized in heterogeneous and field catalysis. Generalized formulas are obtained, from which, as partial results, the laws of heterogeneous and field catalysis follow. New definitions of catalyst and field catalysis are given. The class of material catalysts has been expanded and supplemented with field catalysts.
7

Khan, Mohammad Niyaz, and Ibrahim Isah Fagge. "Kinetics and Mechanism of Cationic Micelle/Flexible Nanoparticle Catalysis: A Review." Progress in Reaction Kinetics and Mechanism 43, no. 1 (March 2018): 1–20. http://dx.doi.org/10.3184/146867818x15066862094905.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
The aqueous surfactant (Surf) solution at [Surf] > cmc (critical micelle concentration) contains flexible micelles/nanoparticles. These particles form a pseudophase of different shapes and sizes where the medium polarity decreases as the distance increases from the exterior region of the interface of the Surf/H2O particle towards its furthest interior region. Flexible nanoparticles (FNs) catalyse a variety of chemical and biochemical reactions. FN catalysis involves both positive catalysis ( i.e. rate increase) and negative catalysis ( i.e. rate decrease). This article describes the mechanistic details of these catalyses at the molecular level, which reveals the molecular origin of these catalyses. Effects of inert counterionic salts (MX) on the rates of bimolecular reactions (with one of the reactants as reactive counterion) in the presence of ionic FNs/micelles may result in either positive or negative catalysis. The kinetics of cationic FN (Surf/MX/H2O)-catalysed bimolecular reactions (with nonionic and anionic reactants) provide kinetic parameters which can be used to determine an ion exchange constant or the ratio of the binding constants of counterions.
8

Williams, Ian H. "Catalysis: transition-state molecular recognition?" Beilstein Journal of Organic Chemistry 6 (November 3, 2010): 1026–34. http://dx.doi.org/10.3762/bjoc.6.117.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
The key to understanding the fundamental processes of catalysis is the transition state (TS): indeed, catalysis is a transition-state molecular recognition event. Practical objectives, such as the design of TS analogues as potential drugs, or the design of synthetic catalysts (including catalytic antibodies), require prior knowledge of the TS structure to be mimicked. Examples, both old and new, of computational modelling studies are discussed, which illustrate this fundamental concept. It is shown that reactant binding is intrinsically inhibitory, and that attempts to design catalysts that focus simply upon attractive interactions in a binding site may fail. Free-energy changes along the reaction coordinate for SN2 methyl transfer catalysed by the enzyme catechol-O-methyl transferase are described and compared with those for a model reaction in water, as computed by hybrid quantum-mechanical/molecular-mechanical molecular dynamics simulations. The case is discussed of molecular recognition in a xylanase enzyme that stabilises its sugar substrate in a (normally unfavourable) boat conformation and in which a single-atom mutation affects the free-energy of activation dramatically.
9

Shubina, Tatyana E., and Timothy Clark. "Catalysis of the Quadricyclane to Norbornadiene Rearrangement by SnCl2 and CuSO4." Zeitschrift für Naturforschung B 65, no. 3 (March 1, 2010): 347—r369. http://dx.doi.org/10.1515/znb-2010-0319.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Ab initio and density-functional theory (DFT) calculations have been used to investigate the model rearrangements of quadricyclane to norbornadiene catalysed by single CuSO4 and SnCl2 molecules. The isolated reactions with the two molecular catalysts proceed via electron-transfer catalysis in which the hydrocarbon is oxidised, in contrast to systems investigated previously in which the substrate was reduced. The even-electron SnCl2-catalysed reaction shows singlet-triplet two-state reactivity. Solvation by a single methanol molecule changes the mechanism of the rearrangement to a classical Lewis acid-base process.
10

Hidayati, Nur, Rahmah Puspita Sari, and Herry Purnama. "Catalysis of glycerol acetylation on solid acid catalyst: a review." Jurnal Kimia Sains dan Aplikasi 23, no. 12 (January 14, 2021): 414–23. http://dx.doi.org/10.14710/jksa.23.12.414-423.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Biodiesel is a substitute fuel that is environmentally friendly, biodegradable, and sustainable. The need for biodiesel continues to increase. Biodiesel is made through the process of transesterification of triglycerides and alcohol. Glycerol is a side-effect of biodiesel products with a capacity of 10% of the total weight of its production. Glycerol is the simplest glyceride compound and has several functions as a primary ingredient in chemical production. Through acetylation, glycerol is converted to a material that has a higher sale value. Both homogeneous and heterogeneous catalysts are the acetylation approach to achieve the desired product, namely acetyl glycerol esters (mono-, di- and triacetin). However, in the process, the catalyst’s type and characteristics significantly affect the yield and conversion of the product and the deactivation or reusability of the catalyst, which can inhibit the catalyst’s utilization and effectiveness; therefore, it must be studied further. Besides, the parameters that affect the reaction will also be assessed.

Дисертації з теми "Catalysis":

1

Liu, Hongying. "Syntheses, structures, and catalysis of polynuclear metal complexes." Diss., Georgia Institute of Technology, 1989. http://hdl.handle.net/1853/30561.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Cunje, Alwin. "Noble gases and catalysis." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 2000. http://www.collectionscanada.ca/obj/s4/f2/dsk1/tape3/PQDD_0012/NQ59125.pdf.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Clarke, Richard John. "Mesopore immobilised bis(oxazoline) catalysts for enantioselective catalysis." Thesis, University of Birmingham, 2003. http://etheses.bham.ac.uk//id/eprint/3578/.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Mesoporous silica materials have the potential to replace many conventional silicas for uses such as supports for heterogeneous catalysis and absorbents. The large pore size and high surface area make them ideal for supporting bulky organometallic catalysts for enantioselective reactions. We have immobilised chiral bis(oxazoline) metal complexes onto the surfaces of some of these versatile supports (MCM-41 and MCM-48) via different tethering strategies. The resulting heterogeneous catalysts were shown to be highly active in the enantioselective cyclopropanation of styrene with ethyl diazoacetate.
4

Rosenthal, Daniel Jay. "Estimating the acid site density of silica-alumina by infrared spectroscopy using a selective reactant poison." Thesis, Georgia Institute of Technology, 1985. http://hdl.handle.net/1853/10222.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Richardson, John Michael. "Distinguishing between surface and solution catalysis for palladium catalyzed C-C coupling reactions: use of selective poisons." Diss., Georgia Institute of Technology, 2008. http://hdl.handle.net/1853/22704.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
This work focuses on understanding the heterogeneous/homogeneous nature of the catalytic species for a variety of immobilized metal precatalysts used for C-C coupling reactions. These precatalysts include: (i) tethered organometallic palladium pincer complexes, (ii) an encapsulated small molecule palladium complex in a polymer matrix, (iii) mercapto-modified mesoporous silica metalated with palladium acetate, and (iv) amino-functionalized mesoporous silicas metalated with Ni(II). As part of this investigation, the use of metal scavengers as selective poisons of homogeneous catalysis is introduced and investigated as a test for distinguishing heterogeneous from homogeneous catalysis. The premise of this test is that insoluble materials functionalized with metal binding sites can be used to selectively remove soluble metal, but will not interfere with catalysis from immobilized metal. In this way the test can definitely distinguish between surface and solution catalysis of immobilized metal precatalysts. This work investigates three different C-C coupling reactions catalyzed by the immobilized metal precatalysts mentioned above. These reactions include the Heck, Suzuki, and Kumada reactions. In all cases it is found that catalysis is solely from leached metal. Three different metal scavenging materials are presented as selective poisons that can be used to determine solution vs. surface catalysis. These selective poisons include poly(vinylpyridine), QuadrapureTM TU, and thiol-functionalized mesoporous silica. The results are contrasted against the current understanding of this field of research and subtleties of tests for distinguishing homogeneous from heterogeneous catalysis are presented and discussed.
6

Reddy, P. K. "Exploration of catalysts and catalysis under near working conditions." Thesis(Ph.D.), CSIR-National Chemical Laboratory, Pune, 2018. http://dspace.ncl.res.in:8080/xmlui/handle/20.500.12252/4577.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Beckler, Robert Kendall. "Polynuclear metal complexes as model mixed oxide catalysts." Diss., Georgia Institute of Technology, 1987. http://hdl.handle.net/1853/11897.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Damian, Karen Serena. "Pd catalysed synthesis of phosphines for homogeneous catalysis." Thesis, St Andrews, 2009. http://hdl.handle.net/10023/907.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Jenkins, Patrick L. "Electrochemical and catalytic investigation of catalysis by gold." Thesis, Cardiff University, 2005. http://orca.cf.ac.uk/56012/.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
The performance of gold/graphite as an oxidation catalyst has been investigated in an electrochemical cell (electrooxidation at ambient temperature and pressure) and in a high pressure reactor (conventional catalytic oxidation typically at 3 bar and 333 K). A range of gold/graphite catalysts having various metal loadings were prepared and characterised by cyclic voltammetry (CV), X-ray photoelectron spectroscopy (XPS), and transmission electron microscopy (TEM). The technique of lead underpotential deposition (Pdupd) was used to reveal the presence of {111}, {100}, and {110} facets in the surfaces of the gold microcrystals. Oxidation of 1-propanol to propionic acid, of 2-propanol to acetone, and of glycerol to wide range of products was investigated both in electrooxidation and in conventional catalytic oxidation. Variation of the surface morphology of the gold active phase was achieved by (i) thermal annealing and sintering of the catalysts under air and under hydrogen, (ii) deposition of bismuth onto the gold surface, and (iii) preparation of further catalysts in which Au was deposited onto Pt/graphite. Conventional catalytic oxidation of the 1-propanol, 2-propanol, and glycerol over the full range of gold-containing catalysts is reported. Variations in catalyst structure were accompanied by changes in activity and selectivity, indicating that these reactions were indeed structure sensitive. However, few correlations of these experimental outcomes with the surface states identified by the voltammetric techniques were evident.
10

Xu, Jiahui. "Catalytic properties of nano ceria in heterogeneous catalysis." Thesis, University of Oxford, 2010. http://ora.ox.ac.uk/objects/uuid:02e68ff9-ce28-475a-bd08-6b60bcda64e7.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
There have been many applications of cerium oxide in oxidation catalysis but the understanding of its role in catalysis is rather limited. This research is concerned with the use of nano-size cerium oxide in methane steam reforming reaction. It is found that addition of cerium oxide to the commercial supported Ni catalysts can dramatically reduce the undesirable carbon deposition (through surface oxidation), which is thermodynamically favorable under low steam conditions. In order to understanding the fundamental role of oxidation activity of the cerium oxide, different sizes of nano-crystallined cerium oxides have been carefully prepared by micro-emulsion technique. Their reactivity is clearly shown to be size dependent. We found that ceria particle sizes of lower than 5.1 nm are able to activate molecular oxygen, which accounts for the unprecedentedly reported critical size effect on oxidation. Characterizations by EPR, XPS, TPR suggest that a substantially large quantity of adsorbed oxygen species (O2 -) is preferentially formed in the small size ceria from air. Also, it is found that the oxygen vacancies are formed in the interface of metal and oxide, and the strength of the metal oxide interaction may influence the formation of the efficient oxygen vacancies, which are responsible for the adsorbed surface oxygen.

Книги з теми "Catalysis":

1

Anderson, James A., and Marcos Fernández Garcia. Supported metals in catalysis. 2nd ed. London : Imperial College Press: Distributed by World Scientific, 2012.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

1937-, Anderson James A., and Fernández Garcia Marcos, eds. Supported metals in catalysis. London: Imperial College Press, 2005.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

1962-, Anderson James A., and Fernández Garcia Marcos, eds. Supported metals in catalysis. Hackensack, NJ: World Scientific, 2005.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Ma, Zhen, and Sheng Dai, eds. Heterogeneous Gold Catalysts and Catalysis. Cambridge: Royal Society of Chemistry, 2014. http://dx.doi.org/10.1039/9781782621645.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

A, Stevenson Scott, ed. Metal-support interactions in catalysis, sintering, and redispersion. New York: Van Nostrand Reinhold Co., 1987.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

International Symposium on Catalyst Deactivation (9th 2001 Lexington, Ky, USA). Catalyst deactivation 2001: Proceedings of the 9th International Symposium, Lexington, KY, USA, 7-10 October 2001. Amsterdam: Elsevier, 2001.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

International Symposium on Catalyst Deactivation (8th 1999 Brugge, Belgium). Catalyst deactivation 1999: Proceedings of the 8th International Symposium, Brugge, Belgium, October 10-13, 1999. Amsterdam: Elsevier, 1999.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Wijngaarden, R. J. Industrial catalysis: Optimizing catalysts and processes. Weinheim: Wiley-VCH, 1998.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

1934-, Davis Burtron H., and Occelli Mario L. 1942-, eds. Fischer-Tropsch synthesis, catalysts and catalysis. Boston: Elsevier, 2007.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Pellissier, Hélène. Enantioselective titanium-catalysed transformations. New Jersey: Imperial College Press, 2015.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Частини книг з теми "Catalysis":

1

Pennington, John. "Catalysts and Catalysis." In An Introduction to Industrial Chemistry, 309–49. Dordrecht: Springer Netherlands, 1996. http://dx.doi.org/10.1007/978-94-011-0613-9_12.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Pennington, J. "Catalysts and Catalysis." In an introduction to Industrial Chemistry, 304–47. Boston, MA: Springer US, 1991. http://dx.doi.org/10.1007/978-1-4615-6438-6_11.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Gao, Yuanfeng, Hong Lv, Yongwen Sun, Han Yao, Ding Hu, and Cunman Zhang. "Enhancement of Acidic HER by Fe Doped CoP with Bimetallic Synergy." In Proceedings of the 10th Hydrogen Technology Convention, Volume 1, 465–74. Singapore: Springer Nature Singapore, 2024. http://dx.doi.org/10.1007/978-981-99-8631-6_45.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
AbstractCompared to single metal site catalysis, the bimetallic synergistic strategy can exploit the complementary ability of different active sites for active species uptake and desorption to develop excellent catalysts. Pure phase metal phosphides are a disadvantage as a promising electrocatalyst for platinum-free hydrogen precipitation with either too strong or too weak adsorption of hydrogen. Here, synthetic Fe-doped CoP particles anchored with MWCNTs, which exhibited excellent catalytic performance for HER, required an overpotential of 123 mV to reach 10 mA cm−2, with a Tafel slope of 58.8 mV dec−1. It was found experimentally that Fe doping improved the conductivity of the catalyst regulated the electronic structure of CoP, and optimized the overall hydrogen adsorption energy of the catalyst. The difference in hydrogen adsorption strength of Fe, Co is used to break the symmetry constraint of single active center and improve the intrinsic activity of the catalyst, a strategy that can be used to guide the preparation of inexpensive and high performance catalysts.
4

Hofmann, Andreas. "Catalysis." In Physical Chemistry Essentials, 229–52. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-74167-3_7.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Teh, Swe Jyan, Tong Ling Tan, Chin Wei Lai, and Kian Mun Lee. "Catalysis." In Carbon Nanostructures, 107–25. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-95603-9_5.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Jobic, Hervé. "Catalysis." In Neutron Scattering Applications and Techniques, 17–31. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-06656-1_2.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Pavlidis, Ioannis V. "Catalysis." In Graphene Oxide, 382–409. Chichester, UK: John Wiley & Sons, Ltd, 2016. http://dx.doi.org/10.1002/9781119069447.ch12.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Schmiermund, Torsten. "Catalysis." In The Chemistry Knowledge for Firefighters, 437–45. Berlin, Heidelberg: Springer Berlin Heidelberg, 2022. http://dx.doi.org/10.1007/978-3-662-64423-2_36.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Urdă, Adriana, and Ioan-Cezar Marcu. "Catalysis." In New Frontiers in Nanochemistry, 41–61. Includes bibliographical references and indexes. | Contents: Volume 1. Structural nanochemistry – Volume 2. Topological nanochemistry – Volume 3. Sustainable nanochemistry.: Apple Academic Press, 2020. http://dx.doi.org/10.1201/9780429022944-4.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Job, Georg, and Regina Rüffler. "Catalysis." In Physical Chemistry from a Different Angle, 455–70. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-15666-8_19.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Тези доповідей конференцій з теми "Catalysis":

1

Zhang, Aihua. "EXPERIMENTAL STUDY ON THE APPLICATION OF MACHINE LEARNING METHOD IN CATALYTIC MATERIALS." In Topics In Chemical & Material Engineering (TCME). Volkson Press, 2023. http://dx.doi.org/10.26480/smmp.01.2023.24.27.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Machine learning has emerged as a powerful tool for analyzing complex data sets and making predictions in a wide range of applications, including catalysis. Bycombining statistical methods, algorithms, and computational power, machine learning can help identify patterns and relationships in catalytic systems that are difficult or impossible to discern using traditional approaches. This can lead to more efficient and effective catalyst design, optimization, and prediction of catalytic activity. Machine learning has already been successfully applied to various aspects of catalysis, including catalyst discovery, reaction mechanism identification, and kinetic modeling. The continued integration of machine learning with catalysis research holds great promise for advancing our understanding of catalytic systems and developing new and improved catalysts for important industrial processes.
2

MOISEEV, ILYA I. "METAL COMPLEX CATALYSIS OF OXIDATION REACTIONS: CATALYSIS WITH PALLADIUM COMPLEXES." In Proceedings of the NIOK (Netherlands Institute for Catalysis Research) Course on Catalytic Oxidation. WORLD SCIENTIFIC, 1995. http://dx.doi.org/10.1142/9789814503884_0010.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

GRUBBS, ROBERT H. "HOMOGENEOUS CATALYSIS: ORGANOMETALLIC CATALYSIS AND ORGANOCATALYSIS." In 24th International Solvay Conference on Chemistry. WORLD SCIENTIFIC, 2018. http://dx.doi.org/10.1142/9789813237179_0001.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Karakurkchi, A., N. Sakhnenko, M. Ved, I. Parsadanov, and S. Menshov. "Nanostructured Oxide-Metal Catalysts for Intra-Cylinder Catalysis." In 2018 IEEE 8th International Conference Nanomaterials: Application & Properties (NAP). IEEE, 2018. http://dx.doi.org/10.1109/nap.2018.8914840.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

THOMAS, JOHN MEURIG. "HETEROGENOUS CATALYSIS AND CHARACTERIZATION OF CATALYST SURFACES." In 24th International Solvay Conference on Chemistry. WORLD SCIENTIFIC, 2018. http://dx.doi.org/10.1142/9789813237179_0019.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Wüthrich, Kurt, R. H. Grubbs, T. Visart de Bocarmé, and Anne De Wit. "Heterogeneous Catalysis and Characterization of Catalyst Surfaces." In 24th International Solvay Conference on Chemistry. WORLD SCIENTIFIC, 2018. http://dx.doi.org/10.1142/9789813237179_others02.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

VEDRINE, JACQUES C. "HETEROGENEOUS OXIDATION CATALYSIS ON METALLIC OXIDES." In Proceedings of the NIOK (Netherlands Institute for Catalysis Research) Course on Catalytic Oxidation. WORLD SCIENTIFIC, 1995. http://dx.doi.org/10.1142/9789814503884_0003.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

SHELDON, R. A. "HETEROGENEOUS CATALYSIS OF LIQUID PHASE OXIDATIONS." In Proceedings of the NIOK (Netherlands Institute for Catalysis Research) Course on Catalytic Oxidation. WORLD SCIENTIFIC, 1995. http://dx.doi.org/10.1142/9789814503884_0009.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Parks, James E., H. Douglas Ferguson, Aaron M. Williams, and John M. E. Storey. "Lean NOx Trap Catalysis for NOx Reduction in Natural Gas Engine Applications." In ASME 2004 Internal Combustion Engine Division Fall Technical Conference. ASMEDC, 2004. http://dx.doi.org/10.1115/icef2004-0871.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Reliable power generation and distribution is a critical infrastructure for the public and industry. Large-bore spark-ignited natural gas reciprocating engines are a reliable source of power generation. Lean operation enables efficient operation, and engines can conveniently be placed wherever natural gas resources are located. However, stricter emission regulations may limit the installation and use of more natural gas reciprocating engines if emissions cannot be reduced. Natural gas engine emissions of concern are generally methane, carbon monoxide, and oxides of nitrogen (NOx). Methane and carbon monoxide can be controlled by oxidation catalysts; however NOx emissions are difficult to control in lean exhaust conditions. One method of reducing NOx in lean exhaust conditions is lean NOx trap catalysis. Lean NOx trap technologies (also known as NOx adsorber catalysts, NOx storage and reduction catalysts, etc.) have demonstrated >90% NOx reduction for diesel reciprocating engines and natural gas turbines. In the work presented here, the feasibility of a lean NOx trap catalyst for lean burn natural gas reciprocating engines will be studied. Tests were conducted on a Cummins 8.3-liter engine on a dynamometer. The lean Nox trap catalyst was controlled in a valved exhaust system that utilized natural gas as the catalyst reductant. Oxidation and reformer catalysts were used to enhance utilization of methane for catalyst regeneration. The feasibility of this approach will be discussed based on the observed NOx reduction and associated fuel penalties.
10

Parks, James E., and Jim Tassitano. "Natural Gas Partial Oxidation and Reforming for Lean NOx Trap Catalysis Regeneration." In ASME 2005 Internal Combustion Engine Division Fall Technical Conference. ASMEDC, 2005. http://dx.doi.org/10.1115/icef2005-1287.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Program goals for the Advanced Reciprocating Engine Systems (ARES) program of the Department of Energy include efficiency and environmental goals. Lean-burn natural gas engines offer higher efficiency than engines that operate with Stoichiometric air-to-fuel mixtures; however, the excess oxygen in the exhaust of lean engines makes NOx reduction with catalytic aftertreatment difficult. Thus, advancing efficiency via lean combustion results in challenges to meet environmental goals. The lean NOx trap catalyst technology is capable of reducing NOx in lean exhaust and, thereby, enables the potential for lean combustion to meet both efficiency and environmental goals. During lean NOx trap catalysis, NOx in oxygen-rich exhaust is trapped on the catalyst by alkali or alkaline earth-based sorbate materials; then, upon exposure to oxygen-depleted exhaust, the NOx is released and reduced to nitrogen in a process called regeneration. The regeneration process renews the catalyst for more NOx trapping; the cyclic process repeats at periods on the order of a minute. Oxygen depletion during regeneration is accomplished by temporarily operating the catalyst at rich air-to-fuel ratios; traditionally, a variety of methods have been utilized to achieve rich conditions for the catalyst. In this presentation, research of a lean NOx trap on a lean natural gas engine will be presented. Natural gas from the engine supply was used to provide the reductant for the lean NOx trap regeneration process. The natural gas is injected into the exhaust system where oxidation and reforming catalysts partially oxidize and/or reform the natural gas into reductants suitable for lean NOx trap regeneration. Studies of the natural gas oxidation and reforming processes and their relation to NOx reduction performance will be presented.

Звіти організацій з теми "Catalysis":

1

Ravindra Datta, Ajeet Singh, Manuela Serban, and Istvan Halasz. Supported Molten Metal Catalysis. A New Class of Catalysts. Office of Scientific and Technical Information (OSTI), June 2006. http://dx.doi.org/10.2172/889459.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Delgass, William Nicholas, Mahdi Abu-Omar, James Caruthers, Fabio Ribeiro, Kendall Thomson, and William Schneider. Catalysis Science Initiative: Catalyst Design by Discovery Informatics. Office of Scientific and Technical Information (OSTI), July 2016. http://dx.doi.org/10.2172/1260972.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Campbell, Charles T., Abhaya K. Datye, Graeme A. Henkelman, Raul F. Lobo, William F. Schneider, Leonard D. Spicer, Wilfred T. Tysoe, et al. EMSL and Institute for Integrated Catalysis (IIC) Catalysis Workshop. Office of Scientific and Technical Information (OSTI), May 2011. http://dx.doi.org/10.2172/1016448.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Smith, K. J., and E. C. Sanford. Progress in catalysis. Natural Resources Canada/ESS/Scientific and Technical Publishing Services, 1992. http://dx.doi.org/10.4095/304511.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

George A. Kraus. Center for Catalysis. Office of Scientific and Technical Information (OSTI), April 2005. http://dx.doi.org/10.2172/838426.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Alivisatos, A. P., Gabor A. Somorjai, and Peidong Yang. Plasmonic-Enhanced Catalysis. Fort Belvoir, VA: Defense Technical Information Center, May 2012. http://dx.doi.org/10.21236/ada576759.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Chen, Jingguang, Anatoly Frenkel, Jose Rodriguez, Radoslav Adzic, Simon R. Bare, Steve L. Hulbert, Ayman Karim, David R. Mullins, and Steve Overbury. Dedicated Beamline Facilities for Catalytic Research. Synchrotron Catalysis Consortium (SCC). Office of Scientific and Technical Information (OSTI), March 2015. http://dx.doi.org/10.2172/1171708.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Rioux, Robert M. Dynamic Chemical and Structural Changes of Heterogeneous Catalysts Observed in Real Time: From Catalysis-Induced Fluxionality to Catalytic Cycles. Fort Belvoir, VA: Defense Technical Information Center, November 2014. http://dx.doi.org/10.21236/ada613847.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Betty, Rita G., Mark D. Tucker, Gretchen Taggart, Mark K. Kinnan, Crystal Chanea Glen, Danielle Rivera, Andres Sanchez, and Todd Michael Alam. Enhanced Micellar Catalysis LDRD. Office of Scientific and Technical Information (OSTI), December 2012. http://dx.doi.org/10.2172/1096958.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Kung, Harold H. Nanoconfinement Effects in Catalysis. Office of Scientific and Technical Information (OSTI), September 2016. http://dx.doi.org/10.2172/1325204.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

До бібліографії