Добірка наукової літератури з теми "Carrier phases"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Carrier phases".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Статті в журналах з теми "Carrier phases":

1

Wu, Joz, and Shiou-Gwo Lin. "Leveling by GPS Relative Positioning with Carrier Phases." Journal of Surveying Engineering 122, no. 4 (November 1996): 145–57. http://dx.doi.org/10.1061/(asce)0733-9453(1996)122:4(145).

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Xiu-feng, He, and Ling Keck-voon. "Micro-Satellite Attitude Determination Using GPS Carrier Phases." Wuhan University Journal of Natural Sciences 8, no. 2 (June 2003): 693–96. http://dx.doi.org/10.1007/bf02899836.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

HE Xiufeng and LIU Jianye. "MICRO-SATELLITE ATTITUDE DETERMINATION USING GPS CARRIER PHASES." Chinese Journal of Space Science 23, no. 1 (2003): 55. http://dx.doi.org/10.11728/cjss2003.01.055.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Lin, Dabin, Lin Ma, Wenjun Ni, Cheng Wang, Fangteng Zhang, Huafeng Dong, Gagik G. Gurzadyan, and Zhaogang Nie. "Unveiling hot carrier relaxation and carrier transport mechanisms in quasi-two-dimensional layered perovskites." Journal of Materials Chemistry A 8, no. 47 (2020): 25402–10. http://dx.doi.org/10.1039/d0ta09530c.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Vodyanitskii, Yu N., and A. T. Savichev. "The Affinity of Lanthanides to Carrier Phases in Soils." Moscow University Soil Science Bulletin 77, no. 3 (September 2022): 169–77. http://dx.doi.org/10.3103/s0147687422030127.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Wu, Joz, and Fong-Gee Yiu. "Cosine Functions of GPS Carrier Phases for Parameter Estimation." Journal of Surveying Engineering 123, no. 3 (August 1997): 113–25. http://dx.doi.org/10.1061/(asce)0733-9453(1997)123:3(113).

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Peng, H. M., E. R. Chang, and L. S. Wang. "Rotation method for direction finding via GPS carrier phases." IEEE Transactions on Aerospace and Electronic Systems 36, no. 1 (2000): 72–84. http://dx.doi.org/10.1109/7.826313.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Sherratt, R. S. "Deterministic IIR video deghoster for all ghost carrier phases." Electronics Letters 32, no. 10 (1996): 868. http://dx.doi.org/10.1049/el:19960580.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Wu, Xiaojie, Fanzhi Meng, Deliang Chu, Mingcai Yao, Kai Guan, Dongdong Zhang, and Jian Meng. "Carrier Tuning in ZnSnN2 by Forming Amorphous and Microcrystalline Phases." Inorganic Chemistry 58, no. 13 (June 20, 2019): 8480–85. http://dx.doi.org/10.1021/acs.inorgchem.9b00649.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Freda, Pierluigi, Antonio Angrisano, Salvatore Gaglione, and Salvatore Troisi. "Time-differenced carrier phases technique for precise GNSS velocity estimation." GPS Solutions 19, no. 2 (December 31, 2014): 335–41. http://dx.doi.org/10.1007/s10291-014-0425-1.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Дисертації з теми "Carrier phases":

1

Cheng, Yuan-Chung Ph D. Massachusetts Institute of Technology. "Quantum dynamics in condensed phases : charge carrier mobility, decoherence, and excitation energy transfer." Thesis, Massachusetts Institute of Technology, 2006. http://hdl.handle.net/1721.1/34496.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Chemistry, 2006.
Vita.
Includes bibliographical references.
In this thesis, we develop analytical models for quantum systems and perform theoretical investigations on several dynamical processes in condensed phases. First, we study charge-carrier mobilities in organic molecular crystals, and develop a microscopic theory that describes both the coherent band-like and incoherent hopping transport observed in organic crystals. We investigate the structures of polaron states using a variational scheme, and calculate both band-like and hopping mobilities at a broad range of parameters. Our mobility calculations in 1-D nearest-neighbor systems predict universal band-like to hopping transitions, in agreement with experiments. Second, motivated by recent developments in quantum computing with solid-state systems, we propose an effective Hamiltonian approach to describe quantum dissipation and decoherence. We then applied this method to study the effect of noise in a number of quantum algorithms and calculate noise threshold for fault-tolerant quantum error corrections (QEC). In addition, we perform a systematic investigation on several variables that can affect the efficiency of the fault-tolerant QEC scheme, aiming to generate a generic picture on how to search for optimal circuit design for real physical implementations.
(cont.) Third, we investigate the quantum coherence in the B800 ring of' of the purple bacterium Rps. acidophila and how it affects the dynamics of excitation energy transfer in a single LH2 complex. Our calculations suggest that the coherence in the B800 ring plays a significant role in both spectral and dynamical properties. Finally, we discussed the validity of Markovian master equations, and propose a concatenation scheme for applying Markovian master equations that absorbs the non-Markovian effects at short times in a natural manner. Applications of the concatenation scheme on the spin-boson problem show excellent agreements with the results obtained from the non-Markovian master equation at all parameter range studied.
by Yuan-Chung Cheng.
Ph.D.
2

Henkel, Patrick [Verfasser]. "Reliable Carrier Phase Positioning / Patrick Henkel." München : Verlag Dr. Hut, 2010. http://d-nb.info/1009972383/34.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Li, Kuangmin. "Enhanced Distance Measuring Equipment Carrier Phase." Ohio University / OhioLINK, 2014. http://rave.ohiolink.edu/etdc/view?acc_num=ohiou1416581585.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Bruggemann, Troy S. "GPS L1 Carrier Phase Navigation Processing." Thesis, Queensland University of Technology, 2005. https://eprints.qut.edu.au/16122/1/Troy_Bruggermann_Thesis.pdf.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
In early 2002, Queensland University of Technology (QUT) commenced to develop its own low-cost Global Positioning System (GPS) receiver with the capability for space applications such as satellites in Low Earth Orbits, and sounding rockets. This is named the SPace Applications Receiver (SPARx). This receiver development is based on the Zarlink (formerly known as Mitel) GP2000 Chip set and is a modification of the Mitel Orion 12 channel receiver design. Commercially available GPS receivers for space applications are few and expensive. The QUT SPARx based on the Mitel Orion GPS receiver design is cost effective for space applications. At QUT its use is being maximized for space applications and carrier phase processing in a cost-effective and specific way. To build upon previous SPARx software developments made from 2002 to 2003, the receiver is required to be modified to have L1 carrier phase navigation capability. Such an improvement is necessary for the receiver to be used in 3-axis attitude determination and relative navigation using carrier phase. The focus of this research is on the implementation of the L1 carrier phase measurement capability with SPARx. This is to enable the use of improved navigation algorithms. Specific emphasis is given to the areas of time synchronization, the carrier phase implementation and carrier phase differential GPS with SPARx. Test results conducted in the area of time synchronization and comparisons with other carrier phase capable GPS receivers are given, as well as an investigation of the use of SPARx in carrier phase differential GPS. Following these, conclusions and recommendations are given for further improvements to SPARx.
5

Bruggemann, Troy S. "GPS L1 Carrier Phase Navigation Processing." Queensland University of Technology, 2005. http://eprints.qut.edu.au/16122/.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
In early 2002, Queensland University of Technology (QUT) commenced to develop its own low-cost Global Positioning System (GPS) receiver with the capability for space applications such as satellites in Low Earth Orbits, and sounding rockets. This is named the SPace Applications Receiver (SPARx). This receiver development is based on the Zarlink (formerly known as Mitel) GP2000 Chip set and is a modification of the Mitel Orion 12 channel receiver design. Commercially available GPS receivers for space applications are few and expensive. The QUT SPARx based on the Mitel Orion GPS receiver design is cost effective for space applications. At QUT its use is being maximized for space applications and carrier phase processing in a cost-effective and specific way. To build upon previous SPARx software developments made from 2002 to 2003, the receiver is required to be modified to have L1 carrier phase navigation capability. Such an improvement is necessary for the receiver to be used in 3-axis attitude determination and relative navigation using carrier phase. The focus of this research is on the implementation of the L1 carrier phase measurement capability with SPARx. This is to enable the use of improved navigation algorithms. Specific emphasis is given to the areas of time synchronization, the carrier phase implementation and carrier phase differential GPS with SPARx. Test results conducted in the area of time synchronization and comparisons with other carrier phase capable GPS receivers are given, as well as an investigation of the use of SPARx in carrier phase differential GPS. Following these, conclusions and recommendations are given for further improvements to SPARx.
6

Ilunga, Ngoy Serge. "Impact des termites sur les cycles biogéochimiques du cuivre et du cobalt dans le Katanga (RDC) - Application à la prospection minière." Electronic Thesis or Diss., Université de Lorraine, 2022. https://docnum.univ-lorraine.fr/ulprive/DDOC_T_2022_0207_ILUNGA_NGOY.pdf.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
La compréhension de l'apport du rôle des termites sur le transport des métaux d'intérêt économique au sein de l'ensemble lithosphère - pédosphère - termitières, se révèle d'un grand intérêt pour une caractérisation géochimique et géologique d'anomalies en prospection minière. En effet, les termites jouent un rôle fonctionnel remarquable dans la structuration des sols, entrainant des enrichissements chimiques liés au transport vertical de minéraux, échangés entre les horizons situés en profondeur et les termitières érigées en surface. Cette thèse a pour objectif de mettre en lumière l'impact des termites sur les cycles biogéochimiques du Cu et du Co dans une région potentiellement riche en ressources minérales (Katanga, RDC), dans un objectif d'utilisation optimisée des termitières en prospection minière. Cette objectif requiert une caractérisation des phases minérales et organiques à diverses échelles. Pour y parvenir, il a été question en premier lieu, de faire une cartographie géochimique des termitières de deux genres dominants de la région, Macrotermes et Cubitermes, à l'échelle paysagère sur une zone ayant fait l'objet d'une cartographie géologique et géochimique sur sols et roches. Cette cartographie a permis de mettre en évidence à l'échelle régionale des faciès lithogéochimiques traduisant la géologie des formations sous-jacentes et ce en fonction des habitudes alimentaires de chaque genre de termite. La distribution spatiale des termitières a également permis de suivre l'évolution des teneurs en Cu et Co au sein des termitières en fonction de la géologie de la zone d'étude. La combinaison des données acquises sur la constitution minéralogique et géochimique des matériaux constituant les termitières de Macrotermes falciger et la caractérisation morphologique et chimique de leurs principaux constituants à l'échelle microscopique a permis l'identification des phases porteuses des métaux d'intérêts dans les matériaux de ces termitières. De même la comparaison de la signature géochimique des termitières de M. falciger et de leurs matériels parentaux a permis d'établir un lien lithogéochimique, identifiant ainsi la source d'approvisionnement en profondeur utilisée par les individus de M. falciger. Enfin, la conjugaison de résultats d'une part sur la caractérisation géochimique de quatre fractions granulométriques (0-20 µm ; 20-63 µm ; 63-200 µm ; 200-2000 µm) des termitières et d'autre part sur l'évaluation de l'impact des termites sur la constitution d'agrégats dans les termitières et/ou sols, a permis de préciser les fractions granulométriques les plus informatives sur la présence et la minéralisation des phases porteuses des métaux d'intérêt du Katanga dans les matériaux de termitières. L'application de toutes ces méthodes et tous les éléments recueillis ont permis de proposer un schéma des cycles biogéochimiques de Cu et Co dans ce système soulignant l'utilisation des termitières en prospection minière efficace et efficiente
Knowledge of the influence of termites on transport of metals of economic interest within the complex of lithosphere, pedosphere and termite mounds is of great interest for geochemical and geological characterization of anomalies in mining prospection. Termites have an important functional role in the structuring of soils, causing chemical enrichment through the vertical transport of minerals exchanged between the deeper horizons and the termite mounds built at the surface. Our objective in this thesis is to evaluate the influence of termites on Cu and Co biogeochemical cycles in a mineral-rich region (Katanga, DRC), with the aim to optimize the utilization of termite mounds in mining prospection. This objective requires a characterization of mineral and organic phases at various scales. To achieve this, firstly, a geochemical mapping of termite mounds of two dominant genera of the region, Macrotermes and Cubitermes, was carried out at the landscape scale in an area that received a geological and soil and rock geochemical mapping. The utilization of termite mounds allowed the identification of lithogeochemical facies reflecting the subjacent geology on a regional scale according to the feeding habits of each termite genus. The spatial distribution of termite mounds also allowed us to follow Cu and Co content evolution according to study area geology. The combination of mineralogical and geochemical data acquired on Macrotermes falciger termite mounds and morphological and chemical characterization of their main constituents at microscopic scale allowed to identify carrier phases of interest metals in termite mounds materials. Similarly, the comparison of geochemical signatures of M. falciger termite mounds and their parent materials allowed to establish a lithogeochemical relationship, identifying the source of provisioning at depth by M. falciger. Finally, the association of geochemical characterization results of termite mounds for four granulometric fractions (0-20 µm; 20-63 µm; 63-200 µm; 200-2000 µm) and results on evaluation of the impact of termites on the constitution of aggregates in termite mounds and/or soils, allowed to specify the most informative granulometric fractions on the presence and mineralization of carrier phases of interest metals in Katanga in termite mound materials. The application of all these methods and all elements collected allowed us to propose a Cu and Co biogeochemical cycle scheme in this system, underlying the use of termite mounds in effective and efficient mining prospection
7

Wan, Yinhua. "Fractional biological macromolecules using carrier phase ultrafiltration." Thesis, University of Oxford, 2004. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.409749.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Hunzinger, Jason F. "Robust precision navigation using carrier-phase differential GPS." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1997. http://www.collectionscanada.ca/obj/s4/f2/dsk2/ftp01/MQ29600.pdf.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Varner, Christopher Champion. "DGPS carrier phase networks and partial derivative algorithms." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 2000. http://www.collectionscanada.ca/obj/s4/f2/dsk1/tape3/PQDD_0027/NQ49546.pdf.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Burmeister, William J. "The analysis and design of a costas phase locked loop for the acquisition of carrier phase of suppressed carrier communication systems." Honors in the Major Thesis, University of Central Florida, 1991. http://digital.library.ucf.edu/cdm/ref/collection/ETH/id/1.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
This item is only available in print in the UCF Libraries. If this is your Honors Thesis, you can help us make it available online for use by researchers around the world by following the instructions on the distribution consent form at http://library.ucf.edu/Systems/DigitalInitiatives/DigitalCollections/InternetDistributionConsentAgreementForm.pdf You may also contact the project coordinator, Kerri Bottorff, at kerri.bottorff@ucf.edu for more information.
Bachelors
Engineering
Electrial Engineering

Книги з теми "Carrier phases":

1

Remondi, Benjamin W. Global positioning system carrier phase: Description and use. Rockville, MD: U.S. Dept. of Commerce, National Oceanic and Atmospheric Administration, National Ocean Service, Charting and Geodetic Services, 1985.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Han, Shaowei. Carrier phase-based long-range GPS kinematic positioning. Sydney, NSW, Australia: University of New South Wales, 1997.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

R, Kumar. Optimum filters and smoothers design for carrier phase and frequency tracking. Pasadena, Calif: National Aeronautics and Space Administration, Jet Propulsion Laboratory, California Institute of Technology, 1987.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Remondi, Benjamin W. Performing centimeter-level surveys in seconds with GPS carrier phase: Initial results. Rockville, MD: National Oceanic and Atmospheric Administration, National Ocean Service, Charting and Geodetic Services, 1985.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Remondi, Benjamin W. Performing centimeter-level surveys in seconds with GPS carrier phase: Initial results. Rockville, MD: National Oceanic and Atmospheric Administration, National Ocean Service, Charting and Geodetic Services, 1985.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Remondi, Benjamin W. Performing centimeter-level surveys in seconds with GPS carrier phase: Initial results. Rockville, MD: National Oceanic and Atmospheric Administration, National Ocean Service, Charting and Geodetic Services, 1985.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Remondi, Benjamin W. Performing centimeter-level surveys in seconds with GPS carrier phase: Initial results. Rockville, MD: National Oceanic and Atmospheric Administration, National Ocean Service, Charting and Geodetic Services, 1985.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Remondi, Benjamin W. Performing centimeter-level surveys in seconds with GPS carrier phase: Initial results. Rockville, MD: National Oceanic and Atmospheric Administration, National Ocean Service, Charting and Geodetic Services, 1985.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

E, Wells David, and University of New Brunswick. Department of Surveying Engineering., eds. GPS design: Undifferenced carrier beat phase observations and the fundamental differencing theorem. Fredericton, N.B: Dept. of Surveying Engineering, University of New Brunswick, 1987.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

United States. National Aeronautics and Space Administration., ed. Quartz/fused silica chip carriers: Final report, NASA SBIR phase II, contract no. NAS3-25870. [Washington, DC: National Aeronautics and Space Administration, 1992.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Частини книг з теми "Carrier phases":

1

Leick, Alfred. "GLONASS Carrier Phases." In Geodesy-The Challenge of the 3rd Millennium, 97–101. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003. http://dx.doi.org/10.1007/978-3-662-05296-9_8.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Lindlohr, Wolfgang. "Alternative Modeling of GPS Carrier Phases for Geodetic Network Analysis." In High Precision Navigation, 205–17. Berlin, Heidelberg: Springer Berlin Heidelberg, 1989. http://dx.doi.org/10.1007/978-3-642-74585-0_14.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Liu, Jianbao, Xinxin Qin, and Zhonglin Yang. "Analysis of Zero-Sequence Circulating Current in Parallel PWM Inverter System with Difference of Carrier Wave Phases." In Informatics in Control, Automation and Robotics, 453–63. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-25899-2_62.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Steinmeyer, Günter, Bastian Borchers, and Fabian Lücking. "Carrier-Envelope Phase Stabilization." In Springer Series in Chemical Physics, 89–110. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-35052-8_6.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Crozatier, Vincent. "Carrier Envelope Phase Stabilization." In Attosecond and XUV Physics, 95–134. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2014. http://dx.doi.org/10.1002/9783527677689.ch4.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Steendam, Heidi, and Marc Moeneclaey. "Sensitivity of OFDM/CDMA to Carrier Phase Jitter." In Multi-Carrier Spread-Spectrum, 145–52. Boston, MA: Springer US, 1997. http://dx.doi.org/10.1007/978-1-4615-6231-3_17.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Suyama, S., K. Tochihara, H. Suzuki, and K. Fukawa. "A MIMO-OFDM Transmission Scheme Employing Subcarrier Phase Hopping." In Multi-Carrier Spread-Spectrum, 275–82. Dordrecht: Springer Netherlands, 2006. http://dx.doi.org/10.1007/1-4020-4437-2_29.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Tubbax, Jan, Boris Côme, Liesbet Van Der Perre, Stéphane Donnay, and Marc Engels. "Joint Compensation of IQ Imbalance, Frequency Offset and Phase Noise." In Multi-Carrier Spread-Spectrum, 473–80. Dordrecht: Springer Netherlands, 2004. http://dx.doi.org/10.1007/978-94-017-0502-8_53.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Teunissen, Peter J. G. "Carrier Phase Integer Ambiguity Resolution." In Springer Handbook of Global Navigation Satellite Systems, 661–85. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-42928-1_23.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Houen, Gunnar, and Dorthe T. Olsen. "Solid-Phase Peptide-Carrier Conjugation." In Methods in Molecular Biology, 59–64. New York, NY: Springer New York, 2015. http://dx.doi.org/10.1007/978-1-4939-2999-3_7.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Тези доповідей конференцій з теми "Carrier phases":

1

Fujieda, Miho, Ryo Tabuchi, and Tadahiro Gotoh. "A New TWSTFT Modem with Code and Carrier Phases." In 2019 Joint Conference of the IEEE International Frequency Control Symposium anEuropean Frequency and Time Forum (EFTF/IFC). IEEE, 2019. http://dx.doi.org/10.1109/fcs.2019.8856010.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Murata, Masaya, Isao Kawano, and Koichi Inoue. "Simulation Evaluation of Moon Transfer Orbit Navigation Using GPS Carrier Phases." In 34th International Technical Meeting of the Satellite Division of The Institute of Navigation (ION GNSS+ 2021). Institute of Navigation, 2021. http://dx.doi.org/10.33012/2021.18035.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Han, T., W. Wang, J. M. Lin, H. Wu, H. Wang, and Y. Shui. "P2H-2 Phases of Carrier Wave in a SAW Identification Tags." In 2007 IEEE Ultrasonics Symposium Proceedings. IEEE, 2007. http://dx.doi.org/10.1109/ultsym.2007.420.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Hu, B. B., E. A. de Souza, W. H. Knox, J. E. Cunningham, and M. C. Nuss. "Identifying the Distinct Phases of Carrier Transport in Semiconductors with 10 fs Resolution." In Ultrafast Electronics and Optoelectronics. Washington, D.C.: OSA, 1995. http://dx.doi.org/10.1364/ueo.1995.umb1.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Koeberl, Christian, Toni Schulz, Toni Schulz, Oliver Heldwein, and Oliver Heldwein. "SPATIAL DISTRIBUTION OF METEORITIC CARRIER PHASES IN PALEOARCHEAN SPHERULE LAYERS FROM SOUTH AFRICA." In GSA Annual Meeting in Phoenix, Arizona, USA - 2019. Geological Society of America, 2019. http://dx.doi.org/10.1130/abs/2019am-338601.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Le Scornec, Julien, Miguel Ortiz, and Valerie Renaudin. "Foot-mounted pedestrian navigation reference with tightly coupled GNSS carrier phases, inertial and magnetic data." In 2017 International Conference on Indoor Positioning and Indoor Navigation (IPIN). IEEE, 2017. http://dx.doi.org/10.1109/ipin.2017.8115882.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Kawakami, Takashi, Tomiaki Furuya, Yukio Sasaki, Toshiyuki Yoshine, Yutaka Furuse, and Mitsunobu Hoshino. "Feasibility Study on Honeycomb Ceramics for Catalytic Combustor." In ASME 1989 International Gas Turbine and Aeroengine Congress and Exposition. American Society of Mechanical Engineers, 1989. http://dx.doi.org/10.1115/89-gt-41.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
This paper contains results of a structural feasibility study on honeycomb ceramic materials used for catalytic combustors in power gas turbines. Extruded cordierite honeycomb substrates are widely used as catalyst carriers in automotive exhaust systems, because of their excellent thermal shock resistance. For gas turbines, however, the ceramic catalyst carriers should retain the reliability at high temperature. In a hybrid catalytic combustor, which handles both catalysis and gas phases combustion, cordierite honeycomb structures (melt at 1445°C) can be adopted as the catalyst carrier, because the auxiliary gas phase combustion makes catalyst temperature lower than the conventional catalytic combustor. During this study, cordierite honeycomb (200 square cells/in2) tensile tests were carried out at high temperatures up to 1000°C. Using the finite element method, stresses in a cell wall were analyzed. The honeycomb cell wall mechanical strength was derived by comparing the experimental and analytical results. Also, combustor honeycomb cell stresses were calculated under typical oprerating conditions. Consequently, it was shown that it is sufficiently feasible to use the cordierite honeycomb structure as a catalyst carrier for hybrid catalytic combustors.
8

Yap, Y. F., J. C. Chai, N. T. Nguyen, T. N. Wong, and L. Yobas. "A Procedure for Encapsulation in Microchannel." In ASME/JSME 2007 Thermal Engineering Heat Transfer Summer Conference collocated with the ASME 2007 InterPACK Conference. ASMEDC, 2007. http://dx.doi.org/10.1115/ht2007-32522.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
A fixed-grid approach for modeling the motion of a particle-encapsulated droplet carried by a pressure driven immiscible carrier fluid in a microchannel is presented. Three phases (the carrier fluid, the droplet and the particle), and two different moving boundaries (the droplet-carrier fluid and droplet-particle interfaces), are involved. This is a moving boundaries problem with the motion of the three phases strongly coupled. In the present article, the particle is assumed to be a fluid of high viscosity and constrained to move with rigid body motion. A combined formulation using one set of governing equations to treat the three phases is employed. The droplet-carrier fluid interface is represented and evolved using a level-set method with a mass correction scheme. Surface tension is modeled using the Continuum Surface Force model. An additional signed distance function is employed to define the droplet-particle interface. Its evolution is determined from the particle motion governed by the Newton-Euler equations. The governing equations are solved numerically using a Finite Volume method on a fixed Cartesian grid. For demonstration purpose, the flows of particle-encapsulated droplets through a constricted microchannel and through a microchannel system are presented.
9

Xu, Hailong, Xiaowei Cui, Jiannan Shen, and Mingquan Lu. "A Two-Step Beam-Forming Method Based on Carrier Phases for GNSS Adaptive Array Anti-Jamming." In 2016 International Technical Meeting of The Institute of Navigation. Institute of Navigation, 2016. http://dx.doi.org/10.33012/2016.13488.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Lebedeva, Natalia, Alexander Osiptsov, and Sergei Sazhin. "Fully Lagrangian Modeling of Two-Phase Impulse Microjets." In ASME 2013 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/imece2013-64111.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
A new fully Lagrangian approach to numerical simulation of 2D transient flows of viscous gas with inertial microparticles is proposed. The method is applicable to simulation of unsteady viscous flows with a dilute admixture of non-colliding particles which do not affect the carrier phase. The novel approach is based on a modification and combination of the full Lagrangian method for the dispersed phase, proposed by Osiptsov [1], and a Lagrangian mesh-free vortex-blob method for Navier-Stokes equations describing the carrier phase in the format suggested by Dynnikova [2]. In the combined numerical algorithm, both these approaches have been implemented and used at each time step. In the first stage, the vortex-blob approach is used to calculate the fields of velocity and spatial derivatives of the carrier-phase flow. In the second stage, using Osiptsov’s approach, particle velocities and number density are calculated along chosen particle trajectories. In this case, the problem of calculation of all parameters of both phases (including particle concentration) is reduced to the solution of a high-order system of ordinary differential equations, describing transient processes in both carrier and dispersed phases. The combined method is applied to simulate the development of vortex ring-like structures in an impulse two-phase microjet. This flow involves the formation of local zones of particle accumulation, regions of multiple intersections of particle trajectories, and multi-valued particle velocity and concentration fields. The proposed mesh-free approach enables one to reproduce with controlled accuracy these flow features without excessive computational costs.

Звіти організацій з теми "Carrier phases":

1

Ray, Jim, Felicitas Arias, Gerard Petit, Tim Springer, and Thomas Schildknecht. Progress in Carrier Phase Time Transfer. Fort Belvoir, VA: Defense Technical Information Center, May 2001. http://dx.doi.org/10.21236/ada389941.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Rudowsky, Thomas, Marshall Hynes, Melvin Luter, Robert Niewoehner, and Page Senn. Review of the Carrier Approach Criteria for Carrier-Based Aircraft - Phase I: Final Report. Fort Belvoir, VA: Defense Technical Information Center, October 2002. http://dx.doi.org/10.21236/ada411068.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Matsakis, Demetrios, Mark Lee, Rolf Dach, Urs Hugentobler, and Z. Jiang. GPS Carrier Phase Analysis Noise on the USNO-PTB Baselines. Fort Belvoir, VA: Defense Technical Information Center, January 2006. http://dx.doi.org/10.21236/ada457454.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Hirokawa, Rui, Naoyuki Kajiwara, and Junichi Takiguchi. Carrier-Phase GPS/DR/LS Hybrid Navigation for an Autonomous Ground Vehicle. Warrendale, PA: SAE International, May 2005. http://dx.doi.org/10.4271/2005-08-0283.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Lozev. L52029 Ultrasonic Inspection of Hot Tap Branch and Repair Sleeve-Fillet Welds Using Phased Arrays. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), August 2003. http://dx.doi.org/10.55274/r0011116.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
The objective of this project was to develop an ultrasonic phased-array (PA) technology for reliable detection of weld discontinuities, especially hydrogen-induced cracking, in branch-to-carrier pipe welds for hot taps and sleeve-to-carrier pipe welds for welded repair sleeves.
6

Chen, Qishi. PR-244-9827-R04 Finite Element Parametric Analysis of Pipe Collapse. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), July 2008. http://dx.doi.org/10.55274/r0011034.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Thompson. L52208 Coating and Backfill System Optimisation. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), May 2004. http://dx.doi.org/10.55274/r0010964.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
This project focuses specifically on the mechanical properties of a pipeline coating in relation to the need to use imported or site-processed bedding and padding materials to create the pipelines habitat. This project assesses whether mainline and field joint coatings, typically utilized for pipeline protection, possessed sufficient mechanical resistance to withstand backfilling, commissioning and service with bedding and padding materials that had undergone minimal processing. The project was carried out in two phases, the first involved a series of large-scale tests to assess the impact, penetration and abrasion resistance of three mainline and two field joint coatings. The second phase involved a series of small-scale laboratory tests to assess the same three mechanical properties. Includes a spreadhseet to help cost optimize backfilling pipelines.
8

Tatarchuk, Bruce J. High Contacting Efficience Carrier Structures & Porcesses for Liquid Phase Regenerable Desulfurization of Logistic Fuels. Fort Belvoir, VA: Defense Technical Information Center, February 2011. http://dx.doi.org/10.21236/ada537309.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Neuert, Mark, and Smitha Koduru. PR-244-173856-R01 In-line Inspection Crack Tool Reliability and Performance Evaluation. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), June 2019. http://dx.doi.org/10.55274/r0011599.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
The ability for operators to make operational and maintenance decisions based on in-line inspection (ILI) data depends on the performance of ILI tools with respect to sizing and detection of crack and stress corrosion cracking (SCC) features. A series of previous Pipeline Research Council International, Inc. (PRCI) projects created a database of ILI tool and pipe excavation data that can be used to evaluate the detection and sizing capabilities of ultrasonic (UT) (NDE-4-E Phase 1, PR-244-133731) and electromagnetic acoustic (EMAT) (NDE-4-E Phase 2, PR-244-153719) ILI technologies. This current project, NDE-4-7 (PR-244-173856), was carried out by C-FER Technologies (1999) Inc. (C-FER) for PRCI. It is Phase 3 of an ongoing industry-wide effort to understand and characterize ILI tool performance. In addition to adding a new data set to the database developed in Phases 1 and 2, estimates of ILI tool performance with respect to rate of detection (ROD), probability of identification (POI), false discovery rate (FDR), and sizing accuracy (SA) were calculated. Two further analyses were performed, namely an investigation of the effect of crack profile data on tool performance and burst pressure estimation, and an evaluation of the reduction in sizing uncertainty attained through multiple measurements of crack features. This document has a related webinar.
10

Lai, Ying-Cheng. Time-Frequency Filtering and Carrier-Phase Ambiguity Resolution for GPS-Based TSPI Systems in Jamming Environment. Fort Belvoir, VA: Defense Technical Information Center, August 2007. http://dx.doi.org/10.21236/ada476563.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

До бібліографії