Добірка наукової літератури з теми "Carotenoids Physiological effect"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Carotenoids Physiological effect".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Статті в журналах з теми "Carotenoids Physiological effect"
Edoh, Ngozi L., Joseph Ukpabi, and John O. Igoli. "Effect of Scopoletin and Carotenoids on Postharvest Physiological Deterioration (PPD) of Transgenic High Beta Carotene Cassava." Journal of Food Research 10, no. 4 (July 11, 2021): 9. http://dx.doi.org/10.5539/jfr.v10n4p9.
Повний текст джерелаNtanios, Fady Y., and Guus S. M. J. E. Duchateau. "A healthy Diet rich in Carotenoids is effective in Maintaining normal Blood Carotenoid Levels during the Daily use of Plant Sterol-enriched Spreads." International Journal for Vitamin and Nutrition Research 72, no. 1 (January 1, 2002): 32–39. http://dx.doi.org/10.1024/0300-9831.72.1.32.
Повний текст джерелаKowalczyk, Katarzyna, Leszek Sieczko, Wojciech Borucki, Marzena Sujkowska-Rybkowska, Małgorzata Mirgos, Monika Niedzińska, Magdalena Bederska-Błaszczyk, Waldemar Kowalczyk, Anna Geszprych, and Janina Gajc-Wolska. "The Effect of LED and HPS Assimilation Lighting on Leaf Anatomy, Chlorophyll and Carotenoid Autofluorescence Signals, and Some Physiological and Chemical Leaf Traits Related to the Productivity of Cucumber (Cucumis sativus L.) in High-Wire Cultivation." Agronomy 12, no. 9 (August 25, 2022): 2004. http://dx.doi.org/10.3390/agronomy12092004.
Повний текст джерелаReboul, Emmanuelle, Sinay Thap, Franck Tourniaire, Marc André, Christine Juhel, Sophie Morange, Marie-Josèphe Amiot, Denis Lairon, and Patrick Borel. "Differential effect of dietary antioxidant classes (carotenoids, polyphenols, vitamins C and E) on lutein absorption." British Journal of Nutrition 97, no. 3 (March 2007): 440–46. http://dx.doi.org/10.1017/s0007114507352604.
Повний текст джерелаRashidi Othman, Nur Alifah Md Amin, Ainaa Eliah Abu Bakar, Nurrulhidayah Ahmad Fadzillah, and Noraini Mahmad. "Carotenoid Pigments of Red, Green and Brown Macroalgae Species as Potential Active Pharmaceutical Ingredients." Journal of Pharmacy and Nutrition Sciences 9, no. 1 (January 5, 2019): 14–19. http://dx.doi.org/10.29169/1927-5951.2019.09.01.3.
Повний текст джерелаHORVÁTH, Kitti Z., Bulgan ANDRYEI, Lajos HELYES, Zoltán PÉK, András NEMÉNYI, and Eszter NEMESKÉRI. "Effect of mycorrhizal inoculations on physiological traits and bioactive compounds of tomato under water scarcity in field conditions." Notulae Botanicae Horti Agrobotanici Cluj-Napoca 48, no. 3 (August 25, 2020): 1233–47. http://dx.doi.org/10.15835/nbha48311963.
Повний текст джерелаLefevre, Carmen E., and David I. Perrett. "Fruit over sunbed: Carotenoid skin colouration is found more attractive than melanin colouration." Quarterly Journal of Experimental Psychology 68, no. 2 (February 2015): 284–93. http://dx.doi.org/10.1080/17470218.2014.944194.
Повний текст джерелаAgyemang Duah, Stella, Clarice Silva e. Souza, Zsuzsa Nagy, Zoltán Pék, András Neményi, Hussein G. Daood, Szergej Vinogradov, and Lajos Helyes. "Effect of Water Supply on Physiological Response and Phytonutrient Composition of Chili Peppers." Water 13, no. 9 (May 1, 2021): 1284. http://dx.doi.org/10.3390/w13091284.
Повний текст джерелаSaric-Krsmanovic, Marija, Dragana Bozic, Ljiljana Radivojevic, Jelena Gajic-Umiljendic, and Sava Vrbnicanin. "Impact of field dodder (Cuscuta campestris Yunk.) on physiological and anatomical changes in untreated and herbicide-treated alfalfa plants." Pesticidi i fitomedicina 31, no. 3-4 (2016): 115–20. http://dx.doi.org/10.2298/pif1604115s.
Повний текст джерелаKhanishova, M. A., K. R. Tagieva, and I. V. Azizov. "Evaluation of physiological, biochemical and yield indicators of wheat and maize genotypes exposed to sodium chloride." Faktori eksperimental'noi evolucii organizmiv 31 (September 1, 2022): 102–7. http://dx.doi.org/10.7124/feeo.v31.1494.
Повний текст джерелаДисертації з теми "Carotenoids Physiological effect"
Farmer, Bertrand. "The status of beta carotene and vitamin A in Quebec dairy herds and their effects on reproductive performance /." Thesis, McGill University, 1985. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=63167.
Повний текст джерелаKruk, Zbigniew Antoni. "Genetic and non-genetic factors affecting carotenoid concentration in cattle tissues : a thesis for the degree of Doctor of Philosophy at the University of Adelaide in the Department of Animal Science." Title page, table of contents and abstract only, 2001. http://web4.library.adelaide.edu.au/theses/09PH/09phk94.pdf.
Повний текст джерелаYoung, Philip Richard 1973. "Molecular analyses of candidate carotenoid biosynthetic genes in Vitis vinifera L." Thesis, Stellenbosch : Stellenbosch University, 2004. http://hdl.handle.net/10019.1/53752.
Повний текст джерелаENGLISH ABSTRACT: Plants cannot avoid stress and must therefore be capable of rapidly responding to extreme environmental changes. An inability to control and regulate the photosynthetic process during stress conditions will lead to the formation of highly reactive oxygen species that concomitantly causes photo-oxidative damage to the pigments and proteins of the photosynthetic apparatus. Since light is the primary source of energy for the photosynthetic process, it is clear that plants are continuously required to balance the light energy absorbed for the photochemical reactions against photoprotection in a dynamic way in order to survive. Carotenoids are precursors of abscisic acid, but more importantly structural components of the photosynthetic apparatus. During photosynthesis carotenoids function as accessory light-harvesting pigments, and also fulfil a photoprotective function by quenching the reactive molecules formed during conditions that saturate the photosynthetic process. Due to the importance of carotenoids to plant fitness and human health (as Vitamin A precursors) this study has attempted to isolate and characterise genes that are directly, or indirectly involved in carotenoid biosynthesis in Vitis vinifera. In total eleven full-Iength- and eight partial genes have been isolated, cloned and sequenced. These genes can be grouped into the following pathways: (i) the 1- deoxy-D-xylulose 5-phosphate (DOXP)/2-C-methyl-D-erythritol 4-phosphate (MEP) pathway (i.e. the plastidic isopentenyl diphosphate biosynthetic pathway); (ii) the mevalonate pathway (i.e. the cytosolic/mitochondrial IPP biosynthetic pathway); (iii) the carotenoid biosynthetic pathway; (iv) the abscisic acid biosynthetic pathway (as a degradation product of carotenoids); and general isoprenoid biosynthetic pathways (as precursors of carotenoids). The full-length genes (i.e. from the putative ATG to the STOP codon) of DOXP synthase (DXS), 4-hydroxy-3-methylbut-2-enyl diphosphate reductase (lytB), IPP isomerase (IPI), 3-hydroxy-3-methylglutaryl coenzyme A synthase (HMGS), phytoene synthase (PSY), Iycopene ~-cyclase (LBCY), ~-carotene hydroxylase (BCH), zeaxanthin epoxidase (lEP), 9-cis-epoxy carotenoid dioxygenase (NCED), farnesyl diphosphate synthase (FPS) and geranylgeranyl diphosphate synthase (GGPS) have been isolated from cDNA. In addition, the full-length genomic copy and putative promoters of DXS, PSY, LBCY, BCH, NCED and lEP have also been isolated from genomic DNA by the construction and screening of sub-genomic libraries. Alignments of the genomic copies of these genes to the corresponding cDNA sequences have provided useful information regarding the genomic organisation of these genes, including the intron-exon junction sites in V. vinifera. The copy number of the DXS, PSY, LBCY, BCH, NCED and lEP encoding genes in the Vitis genome have been determined. DXS, PSY, BCH and lEP are single copy genes, whereas LBCY and NCED have two and three copies, respectively. The transcriptional activity of the putative promoters of six of the isolated genes (i.e. DXS, PSY, LBCY, BCH, lEP and NCED) were tested with a transient reporter gene assay. None of the putative promoters tested showed any transcriptional activity of the reporter gene. The transcription of these genes, has however been shown using northern blot analysis and/or RT-PCR. Preliminary expression profiles for PSY, LBCY, BCH, and lEP were determined in different plant organs and the expression of these genes was generally higher in photosynthetically active tissues. The expression of these genes following different treatments (abscisic acid, NaCI and wounding) was also assayed. The functionality of five of the isolated full-length genes (IPI, GGPS, PSY, LBCY and BCH) has been shown in a bacterial colour complementation assay. In silica analysis of the predicted protein sequences of all eleven isolated genes revealed that they are conserved and share a high degree of homology to the corresponding proteins in other plant species. The sequences were further analysed for conserved domains in the protein sequences, and these proteins typically demonstrated similar domain profiles to homologues in other species (plant, bacteria and algae). The predicted protein sequences were further analysed for transit peptides, the presence of which would provide evidence for the sub-cellular localisation of the mature peptides. Since these genes are involved in biosynthetic pathways that are active in discrete organelles, the sub-cellular localisation of most of these proteins is known. The carotenoid biosynthetic genes (PSY, LBCY, BCH and ZEP), the abscisic acid biosynthetic gene, NCED, as well as the DOXP/MEP pathway genes (DXS, lytB and IPI) were all localised to the chloroplast. The mevalonate pathway gene, HMGS, was localised to both the cytosol and the mitochondria, and the general isoprenoid precursor genes, FPS and GGPS, were localised to the cytosol and the chloroplast, respectively. All these results are in agreement with the localisation of the respective pathways. In order to increase our understanding of carotenoid biosynthesis and functions in plants, we constitutively overexpressed one of the isolated genes (BCH) in the model plant, Nicotiana tabacum. Plants expressing the BCH gene in the sense orientation maintained a healthy photosynthetic rate under stress conditions that typically caused photoinhibition and photodamage in the untransformed control plants. This result was inferred using chlorophyll fluorescence and confirmed using CO2 assimilation rates and stomatal conductance. Chlorophyll fluorescence measurements indicated that the photo protective non-photochemical quenching ability of the BCH-expressing plants increased, enabling the plants to maintain photosynthesis under conditions that elicited a stress response in the untransformed control plants. An integral photosynthetic protein component, the D1 protein, was specifically protected by the additional zeaxanthin in the BCH sense plants. Plants expressing an antisense BCH proved the converse, i.e. lower levels of BCH resulted in decreased zeaxanthin levels and made the transgenic plants more susceptible to high-light induced stress. These results have shown the crucial role of carotenoids (specifically the xanthophylls) in the photoprotective mechanism in plants. The increased photoprotection provided by the BCH expressing plants suggests that the scenario in plants is not optimal and can be improved. Any improvement in the photoprotective ability of a plant will affect both the fitness and productivity of the plant as a whole and will therefore find application in a number of crop plants on a global scale. This study has resulted in the successful isolation and characterisation of genes involved in the direct, or indirect, carotenoid biosynthetic pathways. The further study and manipulation of these genes in model plants will provide useful insights into the physiological role of specific carotenoids in photosynthesis and in plants as a whole.
AFRIKAANSE OPSOMMING: Plante het nie die vermoë om stres te ontwyk nie en moet dus vinnig op veranderinge in hulomgewingstoestande kan reageer. Indien hulle nie die fotosinteseproses kan kontroleer en reguleer tydens streskondisies nie, sal dit tot die vorming van hoogs reaktiewe suurstofspesies lei, wat beide die pigmente en proteiene van die fotosintetiese apparaat sal beskadig. Lig is die primêre energiebron vir fotosintese en daarom is dit noodsaaklik dat plante deurgaans 'n dinamiese balans tussen fotosintese en fotobeskerming moet handhaaf. Karotenoiëde is voorlopers vir die vorming van absisiensuur, maar meer belangrik vir die plant, ook integrale komponente van die fotosintetiese apparaat. Tydens fotosintese word karotenoiëde vir die opneem van lig benodig, terwyl dit ook die fotosintetiese apparaat beskerm wanneer lig 'n versadigingspunt bereik vir fotosintese. Weens die belang van karotenoiëde vir plant- en menslike gesondheid (as Vitamiene A voorlopers), het hierdie studie beoog om gene te isoleer en karakteriseer wat direk of indirek 'n rol in karoteenbiosintese in Vitis vinifera speel. Elf vollengte- en agt gedeeltelike gene is geïsoleer, gekloneer, en gekarakteriseer. Hierdie gene kan in die volgende biosintetiese paaie gegroepeer word: (i) die 1- deoksi-D-xilulose 5-fosfaat (DOXP)/2-C-metiel-D-eritritol-4-fosfaat (MEP) pad (d.w.s. die plastiediese isopenteniel difosfaat biosintetiese pad); (ii) die mevalonaat pad (d.w.s. the sitosoliese/mitokondriale IPP biosintetiese pad); (iii) die karotenoiëd biosintetiese pad; (iv) die absisiensuur biosintetiese pad (as 'n afbraak produk van karotenoiëde) en die algemene isoprenoïed bisintetiese paaie (as voorlopers van karotenoiëde ). Die vollengte gene (d.w.s. vanaf die geskatte ATG tot die STOP kodon) van DOXP-sintase (DXS), 4-hidroksi-3-metielbut-2-eniel difosfaatreduktase (lytB), IPPisomerase (IPI), 3-hidroksi-3-metielglutariel koensiem A sintase (HMGS), fitoeën sintase (PSY), likopeen p-siklase (LBCY), p-karoteen hidroksilase (BCH), zeaxantien oksidase (ZEP), 9-cis-epoksi karotenoiëd dioksigenase (NCED), farnesiel difosfaat sintase (FPS)en geranielgeraniel difosfaat sintase (GGPS) is met behulp van. RTPKR vanaf eDNA geïsoleer. Die vollengte genomiese kopieë en die verwagte promotors van die DXS, PSY, LBCY, BCH, NCED and ZEP gene is ook geïsoleer d.m.v. die opstel en sifting van subgenomiese biblioteke. Vergelykende analises van die genoom- en eDNA kopieë het insiggewende data oor die genomiese rangskikking van die gene, insluitende die intron-ekson setels in V. vinifera gelewer. Die kopiegetalle van DXS, PSY, LBCY, BCH, NCED en ZEP is bepaal. DXS, PSY, BCH en ZEP is in die Vitis-genoom as enkel kopieë teenwoordig, terwyl LBCYen NCED twee en drie kopieë, repektiewelik, beslaan. Die transkipsionele aktiwiteit van die verwagte promotors van ses van die geïsoleerde gene (naamlik DXS, PSY, LBCY, BCH, ZEP en NCED) is d.m.v. 'n tydelike verklikkergeentoets ondersoek. Geeneen van die promotors het die transkripsie van die verklikkergeen bemiddel nie. Die transkripsie van die gene is egter wel bewys deur van northernhibridisasies en/of RT-PKR gebruik te maak. Die promotors van hierdie gene kan dus as transkipsioneel aktief beskou word. Voorlopige uitdrukkingsprofiele van PSY, LBCY, BCH, en ZEP is in verskillende plantorgane bepaal; die profiele was deurgaans hoër in fotosinteties aktiewe weefsels. Die uitdrukkingsprofiele van die gene is verder ook in reaksie op verskillende induktiewe behandelings (absisiensuur, NaCI en beskadiging) bepaal. Vyf van die vollengte gene (IPI, GGPS, PSY, LBCYen BCH) is funksioneel bewys in 'n bakteriese funksionele kleurkomplementasiesisteem. In silico analises van die afgeleide proteïene van al elf geïsoleerde gene het 'n hoë vlak van homologie met ooreenstemende proteiene van ander plantspesies getoon. Gekonserveerde domeine is ook in die proteïensekwense van die geïsoleerde gene teenwoordig. Hierdie proteïene het deurgaans dieselfde domeinprofiele vertoontoon as homoloë in ander spesies (bakterieë, alge en plante). Die sub-sellulêre teikening van die gene kon voorspel word deur die seinpeptiede in die proteiensekwense te eien. Aangesien hierdie gene betrokke is by biosintetiese paaie wat in diskrete kompartemente plaasvind; is die sub-selluiêre lokalisering van hierdie proteïene voorspelbaar. Die karotenoïed biosintetiese gene (PSY, LBCY, BCH en ZEP), die absisiensuur biosintetiese geen, NCED, sowel as die DOXP/MEP pad se gene (DXS, lytB en IPI) kom almal in die chloroplast voor. Die mevalonaatpadgeen, HMGS, word na beide die sitosol en die mitokondria geteiken, terwyl die algemene isoprenoïed voorlopergene, FPS en GGPS, onderskeidelik na die sitosol en die chloroplast geteiken word. Die verkreë voorspellings stem met die lokalisering van die biosintetiese paaie in die selooreen. Om ons kennis rakende karotenoïed biosintese en veral hulle funksie(s) in plante te verbreed, het ons een van die geïsoleerde gene, BCH, in die model plant, Nicotiana tabacum, konstitutief ooruitgedruk. Plante wat die BCH geen in die "sense" orientasie uitgedruk het, kon normale fotosintetiese aktiwiteit handhaaf onder kondisies wat foto-inhibisie en foto-osidatiewe skade in die ongetransformeerde kontrole plante veroorsaak het. Hierdie resultaat is met chlorofil fluoresensie analises aangetoon terwyl dit met CO2 assimilasie- en huidmondjie geleidingseksperimente bevestig is. Chlorofil fluoresensie metings het aangetoon dat die beskermingsvermoë van die transgeniese plante verhoog is, en dit dan die plante in staat stelom fotosintetese te handhaaf onder streskondisies van hoë lig. Proteïen analises het aangetoon dat 'n integrale fotosintetiese proteien, die 01 proteïen, word veral deur die verhoogde zeaxantien vlakke in die BCH transgeniese plante beskerm. Plante wat verminderde zeaxantien vlakke gehad het, weens die konstitutiewe ooruitdrukking van die BCH geen in die anti-"sense" orientasie, het die teenoorgestelde bewys. Met ander woorde. laer BCH vlakke (en dus laer zeaxantien vlakke) het tot plante wat meer vatbaar was vir hoë lig geïnduseerde stress gelei. Hierdie resultate het die essensiële beskermende rol wat karotenoiede tydens fotosintese speel, uitgelig. Die vermoë om hierdie beskermende meganisme te manipuleer in transgenies plante het aangetoon dat die sisteem in plante, alhoewel effektief, nie optimaal is nie. Enige verbetering in 'n plant se inherente vermoë om streskondisies te weerstaan sal die plant se algemene gesondheid en dus produktiwiteit beïnvloed. As sulks sal hierdie in meeste gewasspesies toepassing vind. Hierdie studie beskryf die isolering en karakterisering van gene wat direk, of indirek, by karotenoïedbiosintese betrokke is. Verdere studies, en veral die manipulering van hierdie gene in model plante, sal die fisiologiese rol van spesifieke karotenoïeede in fotosintese, en die plant as 'n geheel, ontrafel.
Schoen, David Jay 1962. "The effects of retinoids and carotenoids on the in vitro function of human monocytes treated with ultraviolet light." Thesis, The University of Arizona, 1987. http://hdl.handle.net/10150/276640.
Повний текст джерелаKovach, Matthew James. "Adaptive Advantages of Carotenoid Pigments in Alpine and Subalpine Copepod Responses to Polycyclic Aromatic Hydrocarbon Induced Phototoxicity." Thesis, University of North Texas, 2010. https://digital.library.unt.edu/ark:/67531/metadc28444/.
Повний текст джерелаCarcaise-Edinboro, Patricia. "The relationship of dietary beta-carotene intake and serum beta- carotene levels to the development of oral lesions in smokeless tobacco users." Thesis, Virginia Tech, 1990. http://hdl.handle.net/10919/42097.
Повний текст джерелаHuggins, Kristal Alissa Mendonça Mary T. "The physiological effects of bright plumage coloration." Auburn, Ala, 2008. http://repo.lib.auburn.edu/EtdRoot/2008/SUMMER/Biological_Sciences/Thesis/Huggins_Kristal_6.pdf.
Повний текст джерелаGeiss, Júlia Maria Tonin. "Efeito da luteína sobre o déficit de memória induzido por etanol em ratos." Universidade Tecnológica Federal do Paraná, 2016. http://repositorio.utfpr.edu.br/jspui/handle/1/2174.
Повний текст джерелаA exposição aguda, sub-crônica ou crônica ao etanol está envolvida com diversos problemas que afetam o cérebro e o sistema nervoso central, provocando déficits de aprendizagem e memória de curto ou longo prazo. Compostos bioativos como carotenoides, são novas opções terapêuticas capazes de reduzir os déficits de memória e atuar na redução do risco de doenças e manutenção da saúde. Neste sentido, a luteína, um carotenoide que contribui contra o estresse oxidativo, pode atuar como uma droga capaz de modificar ou atenuar os danos neuronais e os déficits de memória induzidos por etanol. Assim, no presente estudo foi avaliado o efeito da luteína sobre os déficits de memória induzidos por etanol em ratos na tarefa de reconhecimento de objetos. Os resultados encontrados demonstraram que a administração de luteína (100 mg/kg) melhorou a memória dos ratos na tarefa de reconhecimento de objetos [F(3,34) = 7,13; p < 0,05], enquanto as doses de 15 ou 50 mg/kg não apresentaram efeito; a administração sub-crônica de etanol (3 g/kg) causou déficit de memória em ratos na tarefa de reconhecimento de objetos [F(3,37) = 3.06; p < 0.05]; e a de luteína (50 mg/kg) preveniu o déficit de memória induzido pelo etanol [F(3,39) = 7.64; p < 0.05]. Além disso, a administração de luteína, etanol e a combinação luteína e etanol não alteraram os parâmetros de estresse oxidativo avaliados no córtex e hipocampo. Sugerindo que a prevenção do déficit de memória induzido por etanol não envolve estresse oxidativo no córtex e hipocampo. Assim, baseado nos resultados obtidos, a luteína pode ser considerada uma alternativa no tratamento dos déficits de memória induzidos por etanol, entretanto, mais estudos são necessários para avaliar o mecanismo envolvido neste efeito.
The acute exposure, sub-acute or chronic is involved with various problems affecting the brain and central nervous system, resulting in learning deficits and short or longterm memory. Bioactive compounds such as carotenoids, are new therapeutic options able to reduce memory deficits and act in reducing the risk of diseases and health maintenance. In this sense, lutein, a carotenoid that contributes against oxidative stress, can act as a drug able to modify or reduce neuronal damage and memory deficits induced by ethanol. Thus, this study evaluated the effect of lutein on memory deficits in rats induced by ethanol in the object recognition task. The results showed that lutein administration (100 mg/kg) improved the memory of rats in the recognition task objects [F(3,34) = 7.13; p < 0.05], while doses of 15 or 50 mg / kg showed no effect; the sub-chronic administration of ethanol (3 g/kg) caused memory deficit in rats recognition task objects [F(3,37) = 3.06; p < 0.05]; and lutein (50 mg/kg) prevents the memory deficit induced by ethanol [F(3,39) = 7.64; p < 0.05]. Furthermore, lutein administration, ethanol and combination lutein and ethanol did not change the parameters of oxidative stress evaluated in the cortex and hippocampus. This suggests that the prevention of memory deficits induced by ethanol does not involve oxidative stress in the cortex and hippocampus. Thus, based on the results obtained, lutein may be considered an alternative in the treatment of memory deficits induced by ethanol, however, more studies are needed to evaluate the mechanism involved in this effect.
Cuttriss, Abby Jane. "Carotenoids and plant developmemt." Phd thesis, 2005. http://hdl.handle.net/1885/151652.
Повний текст джерелаКниги з теми "Carotenoids Physiological effect"
Anders, Vahlquist, and Duvic Madeleine, eds. Retinoids and carotenoids in dermatology. New York: Informa Healthcare, 2007.
Знайти повний текст джерелаM, Canfield Louise, Krinsky Norman I, and Olson James A, eds. Carotenoids in human health. New York, N.Y: New York Academy of Sciences, 1993.
Знайти повний текст джерелаYamaguchi, Masayoshi. Carotenoids: Food Sources, Production and Health Benefits. Nova Science Publishers, Incorporated, 2013.
Знайти повний текст джерелаSies, Helmut, Norman I. Krinsky, and Susan T. Mayne. Carotenoids in Health and Disease. Taylor & Francis Group, 2004.
Знайти повний текст джерелаSies, Helmut, Norman I. Krinsky, and Susan T. Mayne. Carotenoids in Health and Disease. Taylor & Francis Group, 2019.
Знайти повний текст джерелаI, Krinsky Norman, Mayne Susan T, and Sies H. 1942-, eds. Carotenoids in health and disease. New York: Marcel Dekker, 2004.
Знайти повний текст джерелаSies, Helmut, Norman I. Krinsky, and Susan T. Mayne. Carotenoids in Health and Disease. Taylor & Francis Group, 2004.
Знайти повний текст джерелаSies, Helmut, Norman I. Krinsky, and Susan T. Mayne. Carotenoids in Health and Disease. Taylor & Francis Group, 2004.
Знайти повний текст джерелаSies, Helmut, Norman I. Krinsky, and Susan T. Mayne. Carotenoids in Health and Disease. Taylor & Francis Group, 2004.
Знайти повний текст джерелаSies, Helmut, Norman I. Krinsky, and Susan T. Mayne. Carotenoids in Health and Disease. Taylor & Francis Group, 2004.
Знайти повний текст джерелаЧастини книг з теми "Carotenoids Physiological effect"
Apea-Bah, Franklin Brian, and Trust Beta. "Advances in understanding the nutritional value of antioxidants in wheat." In Improving the nutritional and nutraceutical properties of wheat and other cereals, 29–72. Burleigh Dodds Science Publishing, 2021. http://dx.doi.org/10.19103/as.2021.0087.04.
Повний текст джерелаKrishnaswamy, V. K. D., Phaniendra Alugoju, and Latha Periyasamy. "Physiological effects of carotenoids on hyperglycemia and associated events." In Bioactive Natural Products, 303–20. Elsevier, 2020. http://dx.doi.org/10.1016/b978-0-12-817903-1.00010-3.
Повний текст джерела