Добірка наукової літератури з теми "Capteurs de force/torque"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Capteurs de force/torque".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Статті в журналах з теми "Capteurs de force/torque"

1

Bailly, Sean. "Les microtubules, des capteurs de force." Pour la Science N° 551 – septembre, no. 9 (September 1, 2023): 10–11. http://dx.doi.org/10.3917/pls.551.0010.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Kulakov, F. M. "Active force-torque robot control without using wrist force-torque sensors." Journal of Computer and Systems Sciences International 51, no. 1 (February 2012): 147–68. http://dx.doi.org/10.1134/s1064230711060141.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Snell-Massie, S., M. Barber, M. Pazderka, G. Wilhelm, and M. S. Hallbeck. "Interaction of Static Pinch and Forearm Torque." Proceedings of the Human Factors and Ergonomics Society Annual Meeting 41, no. 1 (October 1997): 688–91. http://dx.doi.org/10.1177/1071181397041001151.

Повний текст джерела
Анотація:
A study was undertaken to evaluate the effects gender, torque direction, forearm position and pinch type on pinch and torque. The study was a mixed factor design with subjects nested within gender. The study demonstrated that wrist torque for three-jaw chuck pinch was 72% of wrist torque for the lateral (key) pinch; that average female wrist torque was 69% of males. The three-jaw chuck pinch force was 86% of lateral (key) pinch; that average female pinch force was 59% of males. Wrist torque and pinch force did not change significantly by forearm position. Pinch force was highest when no torque was applied; supinating torque was 64% of the no-torque pinch force, pronating torque was 69% of the no-torque pinch force. When examined by torque direction, wrist torque showed that pronating torque was 90% that of supinating torque.
Стилі APA, Harvard, Vancouver, ISO та ін.
4

SATO, Katsuki, and Takahiro INOUE. "Torque Sensorless External Force Estimation." Proceedings of JSME annual Conference on Robotics and Mechatronics (Robomec) 2016 (2016): 2P2–04b2. http://dx.doi.org/10.1299/jsmermd.2016.2p2-04b2.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

UNTEN, Hikaru, Sho SAKAINO, and Toshiaki TSUJI. "Detection of Small Variation on Force/Torque Information Using 6-Axis Force/Torque Sensor." Proceedings of JSME annual Conference on Robotics and Mechatronics (Robomec) 2020 (2020): 2A2—N03. http://dx.doi.org/10.1299/jsmermd.2020.2a2-n03.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Pal Singh, Amrinder, Manu Sharma, and Inderdeep Singh. "Optimal control during drilling in GFRP composite laminates." Multidiscipline Modeling in Materials and Structures 10, no. 4 (November 4, 2014): 611–30. http://dx.doi.org/10.1108/mmms-04-2014-0019.

Повний текст джерела
Анотація:
Purpose – Damage due to delamination is an important issue during drilling in polymer-matrix composites (PMCs). It depends on thrust force and torque which are functions of feed rate. Transfer function of thrust force with feed rate and torque with feed rate is constructed through experiments. These transfer functions are then combined in state-space to formulate a sixth-order model. Then thrust force and torque are controlled by using optimal controller. The paper aims to discuss these issues. Design/methodology/approach – A glass fiber reinforced plastic composite is drilled at constant feed rate during experimentation. The corresponding time response of thrust force and torque is recorded. Third-order transfer functions of thrust force with feed rate and torque with feed rate are identified using system identification toolbox of Matlab®. These transfer functions are then converted into sixth-order combined state-space model. Optimal controller is then designed to track given reference trajectories of thrust force/torque during drilling in composite laminate. Findings – Optimal control is used to simultaneously control thrust force as well as torque during drilling. There is a critical thrust force during drilling below which no delamination occurs. Therefore, critical thrust force profile is used as reference for delamination free drilling. Present controller precisely tracks the critical thrust force profile. Using critical thrust force as reference, high-speed drilling can be done. The controller is capable of precisely tracking arbitrary thrust force and torque profile simultaneously. Findings suggest that the control mechanism is efficient and can be effective in minimizing drilling induced damage in composite laminates. Originality/value – Simultaneous optimal control of thrust force and torque during drilling in composites is not available in literature. Feed rate corresponding to critical thrust force trajectory which can prevent delamination at fast speed also not available has been presented.
Стилі APA, Harvard, Vancouver, ISO та ін.
7

GINDY, SHERIF S. "Force and Torque Measurement, A Technology Overview Part II-Torque." Experimental Techniques 9, no. 7 (July 1985): 9–14. http://dx.doi.org/10.1111/j.1747-1567.1985.tb02279.x.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

ABE, Koyu, Toshio MIWA, and Masaru UCHIYAMA. "Development of a 3-Axis Planer Force/Torque Sensor for Very Small Force/Torque Measurement." JSME International Journal Series C 42, no. 2 (1999): 376–82. http://dx.doi.org/10.1299/jsmec.42.376.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

ABE, Koyu, Toshio MIWA, and Masaru UCHIYAMA. "Developement of a 3-axis planer force/torque sensor for very small force/torque measurement." Transactions of the Japan Society of Mechanical Engineers Series C 64, no. 621 (1998): 1648–53. http://dx.doi.org/10.1299/kikaic.64.1648.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Liu, Xinxing, Hao Kou, Xudong Ma, and Mingming He. "Investigation of the Rock-Breaking Mechanism of Drilling under Different Conditions Using Numerical Simulation." Applied Sciences 13, no. 20 (October 17, 2023): 11389. http://dx.doi.org/10.3390/app132011389.

Повний текст джерела
Анотація:
The interaction between the drill bit and rock is a complex dynamic problem in the process of drilling and breaking rock. In this paper, the dynamic process of drilling and breaking rock is analyzed using ABAQUS software. The rock-breaking mechanism of drilling is revealed according to the stress–strain state of the rock and the force of the drill bit. The effect of the size of the drill bit and the characteristics of the rock mass on the drilling parameters is studied during the drilling process. The results show that both thrust force and torque show a linear increase with the increasing drilling speed under each fixed rotational speed. The drill bit size has minimal impact on the correlation coefficient of the relationship curves between thrust force, torque, and rotation speed. The drilling results in a soft–hard interlayered rock formation show that there are significant differences in thrust force and torque during the drilling process of different rock types. Whether transitioning from a soft rock layer to a hard rock layer or vice versa, the relationship between thrust force and torque is distinctly manifested whenever there is a change in rock quality. The thrust force and torque increase correspondingly with the increase in confining pressure. When subjected to lateral pressure, thrust force and torque gradually increase with the rising confining pressure. Vertical drilling exhibits a larger increase in thrust force and torque compared to horizontal drilling. The thrust force and torque increase more significantly with the rise in confining pressure compared to lateral pressure.
Стилі APA, Harvard, Vancouver, ISO та ін.

Дисертації з теми "Capteurs de force/torque"

1

Castano, Cano Davinson. "Design of Multi-Axis Resonant Force/Torque Sensor for Robotics." Thesis, Besançon, 2016. http://www.theses.fr/2016BESA2089.

Повний текст джерела
Анотація:
Les capteurs de force / couple au poignet utilisés dans les applications robotiques augmentent les performances et la flexibilité des tâches automatisées. Ils offrent également de nouvelles possibilités dans le processus de fabrication, où un contact physique entre la pièce et l'environnement est requis. La large diffusion de ces capteurs est pour le moment limitée par leurs caractéristiques. En guise d'alternative aux capteurs de force existants dans le jeu de contraintes, notre travail présente une structure composite résonante, sensible aux multiples composantes de la force prises en compte via l'effet de précontrainte. Des patchs piézoélectriques liés structurellement sont utilisés pour amener la structure à sa résonance, qui est décalée en fonction des forces appliquées. La relation entre la force et le décalage de fréquence est modélisée en tenant compte de la multi-physique de cette structure intelligente. Un prototype a été testé et validé
Wrist force/torque sensors used in robotic applications increase the performances and flexibility of the automated tasks. They also offer new possibilities in the manufacturing process, where physical contact between the work-piece and environment is required. The wide spreading of these sensors is for now restricted by their features. As an alternative to the existing strain­gauges force sensors, our work presents a resonant composite structure, which is sensitive to multiple components of force that are considered via the pre-stress effect. Structurally bonded piezoelectric patches are used to bring the structure to its resonance, which is shifted according to applied forces. The relationship between force and frequency shift is modelled considering the multi-physics of this smart structure. A prototype was tested and validated
Стилі APA, Harvard, Vancouver, ISO та ін.
2

ANDRADE, CHAVEZ FRANCISCO JAVIER. "Force-Torque Sensing in Robotics." Doctoral thesis, Università degli studi di Genova, 2019. http://hdl.handle.net/11567/942466.

Повний текст джерела
Анотація:
Being able to perform dynamic motions repeatably and reliably is an active research topic. The present thesis aims to contribute to this by improving the accuracy of force-torque sensing in robots. It focuses primarily on six axis force-torque sensors, although other sources of force-torque sensing are explored. Force sensing technologies, calibration procedures of these sensors and the use of force-torque sensing in robotics are described with the aim to familiarize the reader with the problem to solve. The problem is tackled in two ways: improving the accuracy of six axis force-torque sensors and exploring the use of tactile sensor arrays as force-torque sensors. The contributions of this thesis are : the development of the Model Based In situ calibration method for improving measurements of sensors already mounted on robots and the improvement in performance of the robot as a consequence; the design of a calibration device to improve the reliability and speed of calibration; and the improvement of force sensing information of a capacitive tactile array and its use on a robot as force-torque information source. The developed algorithms were tested on the humanoid robotic platform iCub.
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Gunzel, Charles A. "FSR based force torque transducer design." Thesis, Monterey, Calif. : Springfield, Va. : Naval Postgraduate School ; Available from National Technical Information Service, 1993. http://handle.dtic.mil/100.2/ADA271337.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Mohy, El Dine Kamal. "Control of robotic mobile manipulators : application to civil engineering." Thesis, Université Clermont Auvergne‎ (2017-2020), 2019. http://www.theses.fr/2019CLFAC015/document.

Повний текст джерела
Анотація:
Malgré le progrès de l'automatisation industrielle, les solutions robotiques ne sont pas encore couramment utilisées dans le secteur du génie civil. Plus spécifiquement, les tâches de ponçage, telles que le désamiantage, sont toujours effectuées par des opérateurs humains utilisant des outils électriques et hydrauliques classiques. Cependant, avec la diminution du coût relatif des machines par rapport au travail humain et les réglementations sanitaires strictes applicables à des travaux aussi risqués, les robots deviennent progressivement des alternatives crédibles pour automatiser ces tâches et remplacer les humains.Dans cette thèse, des nouvelles approches de contrôle de ponçage de surface sont élaborées. Le premier contrôleur est un contrôleur hybride position-force avec poignet conforme. Il est composé de 3 boucles de commande, force, position et admittance. La commutation entre les commandes pourrait créer des discontinuités, ce qui a été résolu en proposant une commande de transition. Dans ce contrôleur, la force de choc est réduite par la commande de transition proposée entre les modes espace libre et contact. Le second contrôleur est basé sur un modèle de ponçage développé et un contrôleur hybride adaptatif position-vitesse-force. Les contrôleurs sont validés expérimentalement sur un bras robotique à 7 degrés de liberté équipé d'une caméra et d'un capteur de force-couple. Les résultats expérimentaux montrent de bonnes performances et les contrôleurs sont prometteurs. De plus, une nouvelle approche pour contrôler la stabilité des manipulateurs mobiles en temps réel est présentée. Le contrôleur est basé sur le « zero moment point », il a été testé dans des simulations et il a été capable de maintenir activement la stabilité de basculement du manipulateur mobile tout en se déplaçant. En outre, les incertitudes liées à la modélisation et aux capteurs sont prises en compte dans les contrôleurs mentionnés où des observateurs sont proposés.Les détails du développement et de l'évaluation des différents contrôleurs proposés sont présentés, leurs mérites et leurs limites sont discutés et des travaux futurs sont suggérés
Despite the advancements in industrial automation, robotic solutions are not yet commonly used in the civil engineering sector. More specifically, grinding tasks such as asbestos removal, are still performed by human operators using conventional electrical and hydraulic tools. However, with the decrease in the relative cost of machinery with respect to human labor and with the strict health regulations on such risky jobs, robots are progressively becoming credible alternatives to automate these tasks and replace humans.In this thesis, novel surface grinding control approaches are elaborated. The first controller is based on hybrid position-force controller with compliant wrist and a smooth switching strategy. In this controller, the impact force is reduced by the proposed smooth switching between free space and contact modes. The second controller is based on a developed grinding model and an adaptive hybrid position-velocity-force controller. The controllers are validated experimentally on a 7-degrees-of-freedom robotic arm equipped with a camera and a force-torque sensor. The experimental results show good performances and the controllers are promising. Additionally, a new approach for controlling the stability of mobile manipulators in real time is presented. The controller is based on zero moment point, it is tested in simulations and it was able to actively maintain the tip-over stability of the mobile manipulator while moving. Moreover, the modeling and sensors uncertainties are taken into account in the mentioned controllers where observers are proposed. The details of the development and evaluation of the several proposed controllers are presented, their merits and limitations are discussed and future works are suggested
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Mahadevan, Arjun. "Force and Torque Sensing with Galfenol Alloys." The Ohio State University, 2009. http://rave.ohiolink.edu/etdc/view?acc_num=osu1259727083.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

West, Jerry. "Orthoplanar Spring Based Compliant Force/Torque Sensor for Robot Force Control." Scholar Commons, 2017. http://scholarcommons.usf.edu/etd/6637.

Повний текст джерела
Анотація:
A compliant force/torque sensor for robot force control has been developed. This thesis presents methods of designing, testing, and implementing the sensor on a robotic system. The sensor uses an orthoplanar spring equipped with Hall-effect sensors to measure one component of force and two moment components. Its unique design allows for simple and cost effective manufacturing, high reliability, and compactness. The device may be used in applications where a robot must control contact forces with its environment, such as in surface cleaning tasks, manipulating doors, and removing threaded fasteners. The compliant design of the sensor improves force control performance and reduces impact forces. Sensor design considerations are discussed, followed by a discussion of the proposed design concept. Theoretical compliance and stress analysis of the orthoplanar spring is presented that allows for rapid design calculations; these calculations are validated via finite element analysis. A mechanical design method is given which uses the results of the compliance and stress analysis. Transducer design is then addressed by developing a model of the sensor. The design methods are used to design a prototype sensor which is tested to determine its instrument uncertainty. Finally, the sensor is implemented on a robotic platform to test its performance in force control.
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Islam, Mohammed Rakibul. "Cogging Torque, Torque Ripple and Radial Force Analysis of Permanent Magnet Synchronous Machines." University of Akron / OhioLINK, 2009. http://rave.ohiolink.edu/etdc/view?acc_num=akron1239038005.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Li, Feng Frank. "Design and analysis of fingertip Stewart Platform force/torque sensor." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1998. http://www.collectionscanada.ca/obj/s4/f2/dsk2/tape17/PQDD_0020/MQ37577.pdf.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Iagnemma, Karl David. "Manipulator identification and control using a base-mounted force/torque sensor." Thesis, Massachusetts Institute of Technology, 1997. http://hdl.handle.net/1721.1/42678.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Yuan, Yi. "Torque ripple reduction in a permanent magnet synchronous machine using repetitive control techniques (Drift)." Nantes, 2014. http://archive.bu.univ-nantes.fr/pollux/show.action?id=d81a622d-ce54-4be1-8bed-491ba10fa201.

Повний текст джерела
Анотація:
Les machines synchrones à aimants permanents (MSAP) sont de plus en plus utilisées dans de nombreuses applications grâce à leur efficacité, fiabilité et performances. Cependant, les oscillations de couple peuvent provoquer des oscillations de la vitesse qui sont considérées comme un problème majeur dans certaines applications à faible vitesse. Par conséquent, la commande répétitive (CR) est choisie pour sa forte capacité à réduire ces perturbations périodiques et réduire les oscillations de couple. Il existe deux problèmes principaux lors de l’application de la CR à une MSAP. D’abord, la CR ne peut réaliser la réduction souhaitée que dans le cas d’une vitesse constante. Grâce à la relation fixe entre ces oscillations et la position du rotor, nous proposons de prendre l’angle mécanique comme la nouvelle variable du fonctionnement de la CR. Ce nouveau régulateur est appelé régulateur répétitif basé sur la position angulaire. L’avantage de ce contrôleur est sa capacité de réduction même dans le cas d’une vitesse variable. Le deuxième inconvénient de l’application de la CR est sa difficulté d’implantation dans les systèmes industriels. Ainsi, nous proposons d’ajouter le contrôleur répétitif dans un capteur de vitesse et de développer une nouvelle technique appelée capteur répétitif intelligent. Avec ce capteur, l’application de la technique de CR ne requiert aucune modification du contrôleur, mais il est nécessaire de remplacer le capteur normal par le capteur répétitif intelligent. Finalement, ces deux nouvelles techniques sont réalisées ensemble sur un banc d’essais et leur efficacité est validée par des résultats expérimentaux
Permanent magnet synchronous machines (PMSMs), due to their attractive efficiency, reliability and performance, are rapidly gaining popularity in many applications. However, torque ripples of PMSM generally cause speed ripples, which are considered as an important hindrance in some low speed applications. The repetitive control (RC), which is particularly suitable for the reduction of periodic disturbance, is chosen to achieve the torque ripple reduction, because torque ripples of PMSM can be considered as periodic disturbances. The use of the RC for machine torque ripple reduction is not new. However, the reduction is always achieved at a given speed. This is due to the nature of the RC. So as to extend the use of the RC to varying speeds, the angle-based RC technique, which takes the mechanical angle as the running variable, is considered in this work. Thanks to the fixed relationships between the torque ripples and the mechanical angle, the angle-based repetitive controller can keep its rejection capability, whether the speed is constant or not. Besides, applying the RC in a PMSM drive requires to implement a new controller, which is hardly achievable for commercial systems. In order to apply the RC for PMSM drives, this paper proposes to include the RC into a speed sensor, forming a particular speed sensor called repetitive smart sensor. Accordingly, the torque ripple reduction can simply be accomplished by changing a conventional speed sensor for a repetitive smart one. Finally, the efficiency of the proposed angle-based repetitive smart sensor is verified through experimental results
Стилі APA, Harvard, Vancouver, ISO та ін.

Книги з теми "Capteurs de force/torque"

1

Gunzel, Charles A. FSR based force torque transducer design. Monterey, Calif: Naval Postgraduate School, 1993.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

R, Grahn A., and Langley Research Center, eds. Six component robotic force-torque sensor. Hampton, Va: National Aeronautics and Space Administration, Langley Research Center, 1987.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

J, Scott Michael. The load monitoring handbook (force, strain, pressure & torque). Oxford: Coxmoor Publishing Co., 2003.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Sun, Andy Kwan-Leung. Design and analysis of an electro-optical force/torque sensor. Ottawa: National Library of Canada = Bibliothèque nationale du Canada, 1992.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Fumagalli, Matteo. Increasing Perceptual Skills of Robots Through Proximal Force/Torque Sensors. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-01122-6.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

S, Antrazi Sami, and United States. National Aeronautics and Space Administration., eds. Analysis and experimental evaluation of a Stewart platform-based force/torque sensor. [Washington, DC]: Catholic University of America, Dept. of Electrical Engineering, 1992.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

United States. National Aeronautics and Space Administration., ed. Active vibration control of a large flexible manipulator by intertial force and joint torque. [Washington, DC: National Aeronautics and Space Administration, 1989.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Lee, Soo Han. Active vibration control of a large flexible manipulator by inertial force and joint torque. Atlanta, Georgia: Georgia Institute of Technology, 1988.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Center, Langley Research, ed. Expanded equations for torque and force on a cylindrical permanent magnet core in a large-gap magnetic suspension system. Hampton, Va: National Aeronautics and Space Administration, Langley Research Center, 1997.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Groom, Nelson J. Expanded equations for torque and force on a cyclindrical permanent magnet core in a large-gap magnetic suspension system. Washington, D.C: National Aeronautics and Space Administration, 1997.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Частини книг з теми "Capteurs de force/torque"

1

Ostović, Vlado. "Force and Torque." In The Art and Science of Rotating Field Machines Design: A Practical Approach, 317–75. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-39081-9_6.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Gautschi, Gustav. "Force and Torque Sensors." In Piezoelectric Sensorics, 93–126. Berlin, Heidelberg: Springer Berlin Heidelberg, 2002. http://dx.doi.org/10.1007/978-3-662-04732-3_6.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Salon, S. J. "Calculation of Force and Torque." In Power Electronics and Power Systems, 97–123. New York, NY: Springer US, 1995. http://dx.doi.org/10.1007/978-1-4615-2349-9_6.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Venkateshan, S. P. "Force/Acceleration, Torque and Power." In Mechanical Measurements, 429–61. Chichester, UK: John Wiley & Sons, Ltd, 2015. http://dx.doi.org/10.1002/9781119115571.ch14.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Kim, Jung-Hoon. "Multi-Axis Force-Torque Sensor." In Humanoid Robotics: A Reference, 1–14. Dordrecht: Springer Netherlands, 2017. http://dx.doi.org/10.1007/978-94-007-7194-9_104-1.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Gooch, Jan W. "Moment of Force or Torque." In Encyclopedic Dictionary of Polymers, 472. New York, NY: Springer New York, 2011. http://dx.doi.org/10.1007/978-1-4419-6247-8_7663.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Kim, Jung-Hoon. "Multi-Axis Force-Torque Sensor." In Humanoid Robotics: A Reference, 2483–96. Dordrecht: Springer Netherlands, 2018. http://dx.doi.org/10.1007/978-94-007-6046-2_104.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Venkateshan, S. P. "Force/Acceleration, Torque, and Power." In Mechanical Measurements, 467–502. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-73620-0_14.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Hebra, Alexius J. "Force, mass, weight, and torque." In The Physics of Metrology, 93–113. Vienna: Springer Vienna, 2010. http://dx.doi.org/10.1007/978-3-211-78381-8_5.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Polak, T. A., and C. Pande. "Force, Torque, Stress, and Pressure Measurement." In Engineering Measurements, 35–52. Chichester, UK: John Wiley & Sons, Ltd, 2014. http://dx.doi.org/10.1002/9781118903148.ch4.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Тези доповідей конференцій з теми "Capteurs de force/torque"

1

Verner, Lawton N., and Allison M. Okamura. "Force & torque feedback vs force only feedback." In World Haptics 2009 - Third Joint EuroHaptics conference and Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems. IEEE, 2009. http://dx.doi.org/10.1109/whc.2009.4810880.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Lin, Chih-Che, Chung-Yuan Su, Shih-Ting Lin, Chih-Yuan Chen, Chien-Nan Yeh, Chih-Hsiou Lin, Ling-Wen Wang, Shiou-Yi Kuo, and Laing-Ju Chien. "6-DoF Force/Torque Sensor." In 2019 14th International Microsystems, Packaging, Assembly and Circuits Technology Conference (IMPACT). IEEE, 2019. http://dx.doi.org/10.1109/impact47228.2019.9024986.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Sultan, Cornel, and Robert T. Skelton. "Force and torque smart tensegrity sensor." In 5th Annual International Symposium on Smart Structures and Materials, edited by Vasundara V. Varadan. SPIE, 1998. http://dx.doi.org/10.1117/12.316316.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Chang, Soo, and Sang-Soo Lee. "Near-field optics: force and torque." In OPTIKA '98: Fifth Congress on Modern Optics, edited by Gyorgy Akos, Gabor Lupkovics, and Andras Podmaniczky. SPIE, 1998. http://dx.doi.org/10.1117/12.324568.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Ritsch-Marte, Monika, and Gregor Thalhammer-Thurner. "Holographic optical force and torque measurement." In Optical Trapping and Optical Micromanipulation XX, edited by Kishan Dholakia and Gabriel C. Spalding. SPIE, 2023. http://dx.doi.org/10.1117/12.2681574.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Sariyildiz, Emre, and Kouhei Ohnishi. "Adaptive reaction torque/force observer design II." In 2014 IEEE 23rd International Symposium on Industrial Electronics (ISIE). IEEE, 2014. http://dx.doi.org/10.1109/isie.2014.6864779.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Sariyildiz, Emre, and Kouhei Ohnishi. "Adaptive reaction torque/force observer design I." In 2014 IEEE 13th International Workshop on Advanced Motion Control (AMC). IEEE, 2014. http://dx.doi.org/10.1109/amc.2014.6823343.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Teck, Fong Wee. "Force and torque simulation in virtual tennis." In the Workshop at SIGGRAPH Asia. New York, New York, USA: ACM Press, 2012. http://dx.doi.org/10.1145/2425296.2425321.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Del Prete, A., S. Denei, L. Natale, F. Mastrogiovanni, F. Nori, G. Cannata, and G. Metta. "Skin spatial calibration using force/torque measurements." In 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2011). IEEE, 2011. http://dx.doi.org/10.1109/iros.2011.6048537.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Del Prete, Andrea, Simone Denei, Lorenzo Natale, Fulvio Mastrogiovanni, Francesco Nori, Giorgio Cannata, and Giorgio Metta. "Skin spatial calibration using force/torque measurements." In 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2011). IEEE, 2011. http://dx.doi.org/10.1109/iros.2011.6094896.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Звіти організацій з теми "Capteurs de force/torque"

1

Renshaw, Greg, Imad Al-Qadi, and Erwin Kohler. Enhanced Capabilities of the Illinois Accelerated Pavement Tester. Illinois Center for Transportation, August 2024. http://dx.doi.org/10.36501/0197-9191/24-020.

Повний текст джерела
Анотація:
After being in service for nearly 20 years, the Illinois Accelerated Pavement Tester (I-APT) was upgraded to provide enhanced capabilities for accelerated pavement testing. In addition to a new control system, the improvement included a newly designed load carriage, which allows for testing with a tandem half-axle, axle yaw, and shear loading (breaking and accelerating). The new I-APT design could be fitted with various tire configurations (e.g., single, dual, wide-base, and aircraft). In addition, a tandem axle can be used that has the ability to vary axle spacing between 37 and 68 in. and wander tracking up to 18 in. Loading at a yaw angle of up to 6 degrees will now be possible, simulating lateral force, along shear force simulating skidding on pavement, which requires torque variations. Other improvements include the following: i) replacing the original electrically activated winch with a hydraulic power system, which will minimize electrical noise interferences with sensor signals; ii) advanced computing system file management using LabView codes; and iii) a new control trailer to operate the device.
Стилі APA, Harvard, Vancouver, ISO та ін.
2

EXPERIMENTS ON BOLTED CONNECTIONS IN COLD-ROLLED ALUMINIUM PORTAL FRAMES. The Hong Kong Institute of Steel Construction, August 2022. http://dx.doi.org/10.18057/icass2020.p.241.

Повний текст джерела
Анотація:
The use of portal frame systems composed of cold-rolled aluminium profiles is likely to be a new structural solution in corrosive environments. In such structural systems, stainless steel bolts are commonly used as connectors to fasten various aluminium components in the full-scale systems. In these connections, the point fasteners may experience either shear force, torque and/or a combination of both, leading to complex behaviours of the connections. While the failure may occur at a bolt, the other structural components are still in the elastic state. Hence, investigation into the load-deformation responses of bolt connectors is essential to further understand the complexity of bolted connections in the portal frame systems. In this study, experiments on different configurations of bolted connections subjected to shear force and/or torque were carried out at the University of Sydney to investigate the behaviour and to provide the load-deformation characteristics of the bolted connections
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії