Добірка наукової літератури з теми "Brownian motion processes"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Brownian motion processes".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Статті в журналах з теми "Brownian motion processes"
Suryawan, Herry P., and José L. da Silva. "Green Measures for a Class of Non-Markov Processes." Mathematics 12, no. 9 (April 27, 2024): 1334. http://dx.doi.org/10.3390/math12091334.
Повний текст джерелаTakenaka, Shigeo. "Integral-geometric construction of self-similar stable processes." Nagoya Mathematical Journal 123 (September 1991): 1–12. http://dx.doi.org/10.1017/s0027763000003627.
Повний текст джерелаRosen, Jay, and Jean-Dominique Deuschel. "motion, super-Brownian motion and related processes." Annals of Probability 26, no. 2 (April 1998): 602–43. http://dx.doi.org/10.1214/aop/1022855645.
Повний текст джерелаRao, Nan, Qidi Peng, and Ran Zhao. "Cluster Analysis on Locally Asymptotically Self-Similar Processes with Known Number of Clusters." Fractal and Fractional 6, no. 4 (April 14, 2022): 222. http://dx.doi.org/10.3390/fractalfract6040222.
Повний текст джерелаSOTTINEN, TOMMI, and LAURI VIITASAARI. "CONDITIONAL-MEAN HEDGING UNDER TRANSACTION COSTS IN GAUSSIAN MODELS." International Journal of Theoretical and Applied Finance 21, no. 02 (March 2018): 1850015. http://dx.doi.org/10.1142/s0219024918500152.
Повний текст джерелаAndres, Sebastian, and Lisa Hartung. "Diffusion processes on branching Brownian motion." Latin American Journal of Probability and Mathematical Statistics 15, no. 2 (2018): 1377. http://dx.doi.org/10.30757/alea.v15-51.
Повний текст джерелаOuknine, Y. "“Skew-Brownian Motion” and Derived Processes." Theory of Probability & Its Applications 35, no. 1 (January 1991): 163–69. http://dx.doi.org/10.1137/1135018.
Повний текст джерелаKatori, Makoto, and Hideki Tanemura. "Noncolliding Brownian Motion and Determinantal Processes." Journal of Statistical Physics 129, no. 5-6 (October 13, 2007): 1233–77. http://dx.doi.org/10.1007/s10955-007-9421-y.
Повний текст джерелаJedidi, Wissem, and Stavros Vakeroudis. "Windings of planar processes, exponential functionals and Asian options." Advances in Applied Probability 50, no. 3 (September 2018): 726–42. http://dx.doi.org/10.1017/apr.2018.33.
Повний текст джерелаAdler, Robert J., and Ron Pyke. "Scanning Brownian Processes." Advances in Applied Probability 29, no. 2 (June 1997): 295–326. http://dx.doi.org/10.2307/1428004.
Повний текст джерелаДисертації з теми "Brownian motion processes"
Dunkel, Jörn. "Relativistic Brownian motion and diffusion processes." kostenfrei, 2008. http://d-nb.info/991318757/34.
Повний текст джерелаTrefán, György. "Deterministic Brownian Motion." Thesis, University of North Texas, 1993. https://digital.library.unt.edu/ark:/67531/metadc279262/.
Повний текст джерелаKeprta, S. "Integral tests for Brownian motion and some related processes." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1997. http://www.collectionscanada.ca/obj/s4/f2/dsk2/ftp03/NQ26856.pdf.
Повний текст джерелаKeprta, Stanislav Carleton University Dissertation Mathematics and Statistics. "Integral tests for Brownian motion and some related processes." Ottawa, 1997.
Знайти повний текст джерелаCakir, Rasit Grigolini Paolo. "Fractional Brownian motion and dynamic approach to complexity." [Denton, Tex.] : University of North Texas, 2007. http://digital.library.unt.edu/permalink/meta-dc-3992.
Повний текст джерелаSimon, Matthieu. "Markov-modulated processes: Brownian motions, option pricing and epidemics." Doctoral thesis, Universite Libre de Bruxelles, 2017. http://hdl.handle.net/2013/ULB-DIPOT:oai:dipot.ulb.ac.be:2013/250010.
Повний текст джерелаDoctorat en Sciences
info:eu-repo/semantics/nonPublished
莊競誠 and King-sing Chong. "Explorations in Markov processes." Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 1997. http://hub.hku.hk/bib/B31235682.
Повний текст джерелаChong, King-sing. "Explorations in Markov processes /." Hong Kong : University of Hong Kong, 1997. http://sunzi.lib.hku.hk/hkuto/record.jsp?B18736105.
Повний текст джерелаDuncan, Thomas. "Brownian Motion: A Study of Its Theory and Applications." Thesis, Boston College, 2007. http://hdl.handle.net/2345/505.
Повний текст джерелаThe theory of Brownian motion is an integral part of statistics and probability, and it also has some of the most diverse applications found in any topic in mathematics. With extensions into fields as vast and different as economics, physics, and management science, Brownian motion has become one of the most studied mathematical phenomena of the late twentieth and early twenty-first centuries. Today, Brownian motion is mostly understood as a type of mathematical process called a stochastic process. The word "stochastic" actually stems from the Greek word for "I guess," implying that stochastic processes tend to produce uncertain results, and Brownian motion is no exception to this, though with the right models, probabilities can be assigned to certain outcomes and we can begin to understand these complicated processes. This work reaches to attain this goal with regard to Brownian motion, and in addition it explores several applications found in the aforementioned fields and beyond
Thesis (BA) — Boston College, 2007
Submitted to: Boston College. College of Arts and Sciences
Discipline: Mathematics
Discipline: College Honors Program
Hult, Henrik. "Topics on fractional Brownian motion and regular variation for stochastic processes." Doctoral thesis, KTH, Mathematics, 2003. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-3604.
Повний текст джерелаThe first part of this thesis studies tail probabilities forelliptical distributions and probabilities of extreme eventsfor multivariate stochastic processes. It is assumed that thetails of the probability distributions satisfy a regularvariation condition. This means, roughly speaking, that thereis a non-negligible probability for very large or extremeoutcomes to occur. Such models are useful in applicationsincluding insurance, finance and telecommunications networks.It is shown how regular variation of the marginals, or theincrements, of a stochastic process implies regular variationof functionals of the process. Moreover, the associated tailbehavior in terms of a limit measure is derived.
The second part of the thesis studies problems related toparameter estimation in stochastic models with long memory.Emphasis is on the estimation of the drift parameter in somestochastic differential equations driven by the fractionalBrownian motion or more generally Volterra-type processes.Observing the process continuously, the maximum likelihoodestimator is derived using a Girsanov transformation. In thecase of discrete observations the study is carried out for theparticular case of the fractional Ornstein-Uhlenbeck process.For this model Whittles approach is applied to derive anestimator for all unknown parameters.
Книги з теми "Brownian motion processes"
1972-, Dolgopyat Dmitry, ed. Brownian Brownian motion-I. Providence, R.I: American Mathematical Society, 2009.
Знайти повний текст джерелаWiersema, Ubbo F. Brownian motion calculus. Chichester: John Wiley & Sons, 2008.
Знайти повний текст джерелаWiersema, Ubbo F. Brownian Motion Calculus. New York: John Wiley & Sons, Ltd., 2008.
Знайти повний текст джерелаSchilling, René L. Brownian motion: An introduction to stochastic processes. Berlin: De Gruyter, 2012.
Знайти повний текст джерелаLindstrøm, Tom. Brownian motion on nested fractals. Providence, R.I., USA: American Mathematical Society, 1990.
Знайти повний текст джерелаEarnshaw, Robert C., and Elizabeth M. Riley. Brownian motion: Theory, modelling and applications. Hauppauge, N.Y: Nova Science Publishers, 2011.
Знайти повний текст джерелаBass, Richard F. Cutting Brownian paths. Providence, R.I: American Mathematical Society, 1999.
Знайти повний текст джерелаKaratzas, Ioannis. Brownian motion and stochastic calculus. 2nd ed. New York: Springer, 1996.
Знайти повний текст джерелаE, Shreve Steven, ed. Brownian motion and stochastic calculus. New York: Springer-Verlag, 1988.
Знайти повний текст джерелаE, Shreve Steven, ed. Brownian motion and stochastic calculus. 2nd ed. New York: Springer-Verlag, 1991.
Знайти повний текст джерелаЧастини книг з теми "Brownian motion processes"
Rozanov, Yuriĭ A. "Brownian Motion." In Introduction to Random Processes, 33–43. Berlin, Heidelberg: Springer Berlin Heidelberg, 1987. http://dx.doi.org/10.1007/978-3-642-72717-7_5.
Повний текст джерелаResnick, Sidney I. "Brownian Motion." In Adventures in Stochastic Processes, 482–557. Boston, MA: Birkhäuser Boston, 2002. http://dx.doi.org/10.1007/978-1-4612-0387-2_6.
Повний текст джерелаKorosteleva, Olga. "Brownian Motion." In Stochastic Processes with R, 153–82. Boca Raton: Chapman and Hall/CRC, 2022. http://dx.doi.org/10.1201/9781003244288-9.
Повний текст джерелаKoralov, Leonid, and Yakov G. Sinai. "Brownian Motion." In Theory of Probability and Random Processes, 253–72. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-540-68829-7_18.
Повний текст джерелаHainaut, Donatien. "Fractional Brownian Motion." In Continuous Time Processes for Finance, 143–78. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-06361-9_6.
Повний текст джерелаMadhira, Sivaprasad, and Shailaja Deshmukh. "Brownian Motion Process." In Introduction to Stochastic Processes Using R, 487–545. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-99-5601-2_9.
Повний текст джерелаItô, Kiyosi, and Henry P. McKean. "The standard Brownian motion." In Diffusion Processes and their Sample Paths, 5–40. Berlin, Heidelberg: Springer Berlin Heidelberg, 1996. http://dx.doi.org/10.1007/978-3-642-62025-6_2.
Повний текст джерелаBas, Esra. "Introduction to Brownian Motion." In Basics of Probability and Stochastic Processes, 253–63. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-32323-3_16.
Повний текст джерелаBosq, Denis, and Hung T. Nguyen. "Brownian Motion and Diffusion Processes." In A Course in Stochastic Processes, 233–53. Dordrecht: Springer Netherlands, 1996. http://dx.doi.org/10.1007/978-94-015-8769-3_12.
Повний текст джерелаKallenberg, Olav. "Gaussian Processes and Brownian Motion." In Probability and Its Applications, 249–69. New York, NY: Springer New York, 2002. http://dx.doi.org/10.1007/978-1-4757-4015-8_13.
Повний текст джерелаТези доповідей конференцій з теми "Brownian motion processes"
Bilokon, Paul, and Abbas Edalat. "A domain-theoretic approach to Brownian motion and general continuous stochastic processes." In CSL-LICS '14: JOINT MEETING OF the Twenty-Third EACSL Annual Conference on COMPUTER SCIENCE LOGIC. New York, NY, USA: ACM, 2014. http://dx.doi.org/10.1145/2603088.2603102.
Повний текст джерелаBorhani, Alireza, and Matthias Patzold. "Modelling of non-stationary mobile radio channels using two-dimensional brownian motion processes." In 2013 International Conference on Advanced Technologies for Communications (ATC 2013). IEEE, 2013. http://dx.doi.org/10.1109/atc.2013.6698114.
Повний текст джерелаCezayirli, Ahmet. "Simulation of online relative concentration measurements in chemical processes using Brownian motion and image processing." In 2020 4th International Symposium on Multidisciplinary Studies and Innovative Technologies (ISMSIT). IEEE, 2020. http://dx.doi.org/10.1109/ismsit50672.2020.9254637.
Повний текст джерелаBusnaina, Ahmed, Xiaoying Zhu, and Xiaowei Zheng. "Particle Transport in CVD and Diffusion Processes." In ASME 1992 International Computers in Engineering Conference and Exposition. American Society of Mechanical Engineers, 1992. http://dx.doi.org/10.1115/cie1992-0057.
Повний текст джерелаPerez Rey, Luis A., Vlado Menkovski, and Jim Portegies. "Diffusion Variational Autoencoders." In Twenty-Ninth International Joint Conference on Artificial Intelligence and Seventeenth Pacific Rim International Conference on Artificial Intelligence {IJCAI-PRICAI-20}. California: International Joint Conferences on Artificial Intelligence Organization, 2020. http://dx.doi.org/10.24963/ijcai.2020/375.
Повний текст джерелаTian, L., G. Ahmadi, and J. Y. Tu. "Multi-Scale Transport Modeling: Asbestos and Nano Fibers in Inhalation Risk Assessments." In ASME 2017 Fluids Engineering Division Summer Meeting. American Society of Mechanical Engineers, 2017. http://dx.doi.org/10.1115/fedsm2017-69083.
Повний текст джерелаZare, Azam, Omid Abouali, and Goodarz Ahmadi. "A Numerical Model for Brownian Motions of Nano-Particles in Supersonic and Hypersonic Impactors." In ASME 2006 2nd Joint U.S.-European Fluids Engineering Summer Meeting Collocated With the 14th International Conference on Nuclear Engineering. ASMEDC, 2006. http://dx.doi.org/10.1115/fedsm2006-98308.
Повний текст джерелаMacGibbon, Bruce S., and Ahmed A. Busnaina. "Mass Transport and Particle Transport in an LPCVD Process." In ASME 1993 International Computers in Engineering Conference and Exposition. American Society of Mechanical Engineers, 1993. http://dx.doi.org/10.1115/cie1993-0027.
Повний текст джерелаPerez, Dario G., and Luciano Zunino. "Inner- and outer-scales of turbulent wavefront phase defined through the lens of multi-scale Levy fractional Brownian motion processes." In SPIE Remote Sensing, edited by Anton Kohnle, Karin Stein, and John D. Gonglewski. SPIE, 2008. http://dx.doi.org/10.1117/12.800155.
Повний текст джерелаTakana, Hidemasa, Kazuhiro Ogawa, Tetsuo Shoji, and Hideya Nishiyama. "Optimization of Cold Gas Dynamic Spray Processes by Computational Simulation." In ASME/JSME 2007 5th Joint Fluids Engineering Conference. ASMEDC, 2007. http://dx.doi.org/10.1115/fedsm2007-37081.
Повний текст джерелаЗвіти організацій з теми "Brownian motion processes"
Adler, Robert J., and Gennady Samorodnitsky. Super Fractional Brownian Motion, Fractional Super Brownian Motion and Related Self-Similar (Super) Processes. Fort Belvoir, VA: Defense Technical Information Center, January 1991. http://dx.doi.org/10.21236/ada274696.
Повний текст джерелаAdler, Robert J., and Gennady Samorodnitsky. Super Fractional Brownian Motion, Fractional Super Brownian Motion and Related Self-Similar (Super) Processes. Fort Belvoir, VA: Defense Technical Information Center, January 1994. http://dx.doi.org/10.21236/ada275124.
Повний текст джерелаСоловйов, В. М., В. В. Соловйова та Д. М. Чабаненко. Динаміка параметрів α-стійкого процесу Леві для розподілів прибутковостей фінансових часових рядів. ФО-П Ткачук О. В., 2014. http://dx.doi.org/10.31812/0564/1336.
Повний текст джерела