Добірка наукової літератури з теми "Broadbnad dielectric spectroscopy"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Broadbnad dielectric spectroscopy".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Статті в журналах з теми "Broadbnad dielectric spectroscopy"

1

Labardi, M., M. Lucchesi, D. Prevosto, and S. Capaccioli. "Broadband local dielectric spectroscopy." Applied Physics Letters 108, no. 18 (May 2, 2016): 182906. http://dx.doi.org/10.1063/1.4948767.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Badot, J. C. "Broadband Dielectric Spectroscopy of Inorganic Solids." Materials Science Forum 518 (July 2006): 439–46. http://dx.doi.org/10.4028/www.scientific.net/msf.518.439.

Повний текст джерела
Анотація:
This paper deals with the fundamental aspect of dielectric relaxations in conducting inorganic solids. It has been shown that it is possible to evidence dielectric relaxations due to charge carriers such as electrons (small-polarons) and ions, dipole reorientations (e.g. water molecules in hydrates) and to interfacial polarization phenomena (e.g. grain boundaries) in polycrystalline compounds. The importance of all these phenomena is discussed in relation to their possible interventions in dielectric spectra.
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Jayabal, Ezhilan, Rajesh Rajendiran, and Venkatesan Rengarajan. "Study of Electronic and Magnetic Properties of Nitrogen Doped Graphene Oxide." Advanced Materials Research 938 (June 2014): 97–102. http://dx.doi.org/10.4028/www.scientific.net/amr.938.97.

Повний текст джерела
Анотація:
The Nitrogen doped graphene oxide (NGO) was synthesized by doping N-atoms on graphene oxide (GO) sheet by using melamine which serves as the nitrogen source, through hydrothermal approach. The insertion of nitrogen atoms into the graphene oxide sheet was confirmed by FT-IR, EDS and Raman spectroscopic techniques. We also probed into the tuned dielectric and magnetic properties of NGO due to the decomposition of oxy functional groups of GO and the insertion of pyridinic, pyrrolic and graphitic type nitrogen atoms into the graphitic structure. The dielectric properties were measured by Broadband Dielectric Spectroscopy (BDS). The magnetic behaviour of the sample was demonstrated by Vibrational Scanning Magnetometer (VSM).
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Erdem, Özlen F., André Pampel, and Dieter Michel. "Slow Motion of Confined Molecules: NMR and Broadband Dielectric Spectroscopy Investigations." Journal of Nanoscience and Nanotechnology 8, no. 2 (February 1, 2008): 887–93. http://dx.doi.org/10.1166/jnn.2008.d003.

Повний текст джерела
Анотація:
Nuclear magnetic resonance (NMR) and broadband dielectric spectroscopy are used to investigate the dynamics of small glass-forming molecules confined to restricted geometries. Ethylene glycol molecules are embedded in the supercages of NaX zeolites. The combined application of NMR and broadband dielectric spectroscopy advances the understanding of the slowing down of the motion near the glass transition temperature of these confined molecules. In combination with nuclear spin relaxation and nuclear magnetic resonance spectroscopy, dielectric relaxation studies on glass forming molecules allow conclusions on the character of the motion. High resolution 1H magic angle spinning (MAS) NMR measurements not only enable a characterisation of the state of the adsorbed molecules via a chemical shift analysis. By means of an analysis of MAS spinning sidebands we may also estimate a correlation time the meaning of which will be discussed in comparison to the results of longitudinal proton spin relaxation measurements. In addition to broadband dielectric spectroscopy slow molecular motions of partially deuterated ethylene glycol adsorbed in NaX are studied by means of 2H NMR line-shape analysis.
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Bogolitsyn, K. G., S. S. Khviyuzov, A. S. Volkov, G. D. Koposov, and M. A. Gusakova. "Broadband Dielectric Spectroscopy of Lignin." Russian Journal of Physical Chemistry A 93, no. 2 (February 2019): 353–58. http://dx.doi.org/10.1134/s0036024419020055.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Volkov, A. A., and A. S. Prokhorov. "Broadband Dielectric Spectroscopy of Solids." Radiophysics and Quantum Electronics 46, no. 8/9 (August 2003): 657–65. http://dx.doi.org/10.1023/b:raqe.0000024994.15881.c9.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Mukherjee, S., P. Watson, and R. J. Prance. "Microscopic resolution broadband dielectric spectroscopy." Journal of Physics: Conference Series 310 (August 12, 2011): 012003. http://dx.doi.org/10.1088/1742-6596/310/1/012003.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Schreiner, Thomas Gabriel, and Maricel Adam. "Broadband Dielectric Spectroscopy and Its Role in the Characterization of Biological Cells." Bulletin of the Polytechnic Institute of Iași. Electrical Engineering, Power Engineering, Electronics Section 67, no. 1 (March 1, 2021): 9–20. http://dx.doi.org/10.2478/bipie-2021-0001.

Повний текст джерела
Анотація:
Abstract Broadband dielectric spectroscopy (BDS) is a method of characterizing matter from the perspective of its dielectric parameters, which varies depending on the frequency of the applied electromagnetic field. During recent years, along with its many uses, there has been an increase in interest in the use of the method in biomedical fields, especially for the characterization of normal and tumor cells. In this context, this review aims to address in the first part the theoretical bases and mathematical models that explain the principle of operation of the broadband spectroscope. Subsequently, the advantages and limitations of the method are detailed, including the difficulties that the researcher may encounter in the case of working with living cells. Finally, the most important scientific results obtained on normal and pathological cell cultures are presented, possible future research directions being suggested.
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Pan, Hailong, Jiangshui Luo, Bing Li, and Michael Wübbenhorst. "Phase-dependent dielectric properties and proton conduction of neopentyl glycol." RSC Advances 11, no. 38 (2021): 23228–34. http://dx.doi.org/10.1039/d1ra03366b.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Rajab, Khalid Z., Mira Naftaly, Edmund H. Linfield, Juan C. Nino, Daniel Arenas, David Tanner, Raj Mittra, and Michael Lanagan. "Broadband Dielectric Characterization of Aluminum Oxide (Al2O3)." Journal of Microelectronics and Electronic Packaging 5, no. 1 (January 1, 2008): 2–7. http://dx.doi.org/10.4071/1551-4897-5.1.1.

Повний текст джерела
Анотація:
Applications for low-temperature cofired ceramics (LTCC) and high-temperature cofired ceramics (HTCC) are advancing to higher frequencies. In order to design ceramic microsystems and electronic packages, the electrical properties of materials must be well characterized over a broad frequency range. In this study, the dielectric properties of commercial aluminum oxide (Al2O3) with different glass loadings are characterized using three different measurement techniques: the split-post cavity, terahertz (THz) time-domain spectroscopy, and Fourier transform IR spectroscopy (FTIR). Specifically, the dielectric properties will be characterized from 10 GHz to IR frequencies. A split-post cavity was employed for determination of dielectric properties in the 10 GHz range. A broadband THz spectroscopy technique was used to characterize the specimens using measured time-domain transmission data. The dielectric constant and loss were extracted from the sample's frequency-domain transmission characteristics, providing data between 100 GHz and 2 THz. Additionally, FTIR was used to characterize the samples from ~33 to 3300 cm−1 (~1–100 THz). The measurements from the three techniques are compared, and dielectric constant and loss data will be presented for commercial and experimental ceramic systems from 10 GHz to IR frequencies.
Стилі APA, Harvard, Vancouver, ISO та ін.

Дисертації з теми "Broadbnad dielectric spectroscopy"

1

Trubert, Jules. "Appοrt de la spectrοscοpie à relaxatiοn diélectrique sοus pressiοn pοur investiguer la mοbilité mοléculaire dans les pοlymères thermοplastiques amοrphes". Electronic Thesis or Diss., Normandie, 2024. http://www.theses.fr/2024NORMR048.

Повний текст джерела
Анотація:
La relation entre la température de transition vitreuse, la fragilité isobare et la taille caractéristique des régions de réarrangement coopératif (CRR) pour les liquides vitreux est clarifiée en tenant compte des contributions volumétriques et thermiques de la relaxation structurelle. Ces contributions sont habituellement estimées en considérant certaines hypothèses à la pression atmosphérique, alors qu'elles nécessitent de mesurer des variations de grandeurs physiques sous pression. L'utilisation de la spectroscopie à relaxation diélectrique sous pression offre une nouvelle perspective pour déterminer expérimentalement les contributions de la fragilité isobare.D'une part, ces mesures sont effectuées pour trois polymères thermoplastiques amorphes : le polylactide (PLA), le polyéthylène glycol téréphtalate (PETg) et le polyvinyle acétate (PVAc). Ces polymères présentent une forte corrélation entre le volume d'activation, qui conduit à la contribution volumétrique de la fragilité isobare, et le volume CRR. La contribution thermique est déterminée par deux méthodes et évolue de manière opposée à la contribution volumétrique en fonction de la pression. Les contributions expliquent le comportement de fragilité isobare à la pression atmosphérique. D'autre part, la série de copolymères poly(éthylène-co-vinyle acétate) (EVA), présente un rapport différent de groupes latéraux polaires avec une chaîne principale inchangée, est analysée en termes d'interactions intermoléculaires à partir de la forme de relaxation diélectrique. Dans cette série, les groupes latéraux polaires jouent un rôle crucial dans les contributions volumétriques et thermiques de la fragilité isobare, qui sont également liées aux interactions inter et intramoléculaires.En combinant ces différents résultats, il est possible d'établir une relation entre la structure chimique et l'influence de la pression/température sur la mobilité moléculaire. Les effets des paramètres structurels, tels que la rigidité de la chaine principale et des groupes latéraux ou la packing efficiency, sont mis en évidence et expliquent comment ils affectent la fragilité isobare
The ambiguity surrounding the relationship between the glass transition temperature, isobaric fragility, and the characteristic size of the Cooperative Rearranging Regions (CRR) for glass-forming liquids has been resolved by considering the volumetric and thermal contributions of the structural relaxation. These contributions have traditionally been estimated by considering assumptions at atmospheric pressure, whereas they require pressure variations to be measured. The use of broadband dielectric spectroscopy under pressure offers a new perspective to experimentally determine the contributions of isobaric fragility. On the one hand, the measurement is performed for three amorphous thermoplastic polymers: Polylactic acid (PLA), polyethylene glycol terephthalate (PETg) and polyvinyl acetate (PVAc). These polymers show a strong correlation between the activation volume, which leads to the volumetric contribution of isobaric fragility, and the CRR volume. The thermal contribution is determined by two methods and evolves in an opposite manner to the volumetric contribution as function of pressure. The contributions explain the isobaric fragility behavior at atmospheric pressure. On the other hand, the poly(ethylene-co-vinyl acetate) (EVA) copolymer series, which presents a different ratio of polar side groups with an unchanged backbone chain, is analyzed in terms of intermolecular interactions from the dielectric relaxation shape. In this series, the polar side groups play a crucial role in the volumetric and thermal contributions of the isobaric fragility, which are also related to inter and intramolecular interactions. By combining these different results, a relationship between chemical structure and the influence of pressure/temperature on molecular mobility can be established. The effects of structural parameters, such as backbone and side group stiffness or packing efficiency, are highlighted and explain how isobaric fragility is affected
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Xiao, Zhang. "PROBING POLYMER DYNAMICS USING HIGH THROUGHPUT BROADBAND DIELECTRIC SPECTROSCOPY." University of Akron / OhioLINK, 2018. http://rave.ohiolink.edu/etdc/view?acc_num=akron1533127319642101.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Bakhshiani, Mehran. "A SELF-SUSTAINED MINIATURIZED MICROFLUIDIC-CMOS PLATFORM FORBROADBAND DIELECTRIC SPECTROSCOPY." Case Western Reserve University School of Graduate Studies / OhioLINK, 2015. http://rave.ohiolink.edu/etdc/view?acc_num=case1436266857.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Cheng, Jialu. "Broadband Dieletric Properties of Impregnated Transformer Paper Insulation at Various Moisture Contents." Thesis, KTH, Elektroteknisk teori och konstruktion, 2011. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-91922.

Повний текст джерела
Анотація:
The actual life of a transformer is determined by ageing of the cellulosic insulation such as transformer paper. The presence of moisture in the insulation system decreases the electrical strength of paper and accelerates the aging. It is an efficient way to monitor the moisture content in paper insulation by measuring the dielectric constant of the paper. The moisture dependent permittivity of impregnated transformer paper below 1 MHz has been widely investigated. High frequency (> 1 MHz) dielectric spectroscopy is under requirement since the loss peak information is missing. The impregnated paper is kept in desiccators with saturated salt solutions to get the samples with moisture content from 1 % to 5.5 %. Then they are placed in a coaxial line and the scattering parameters are obtained by modern Vector Network Analyzer. Full wave analysis is utilized to calculate the permittivity from the obtained S-parameters due to its high accuracy. The magnitude of the dielectric spectroscopy below 100 Hz is very dependent on the moisture content while there is a horizontal shift of curves towards higher frequencies depending on the water content over a wide frequency range. The loss peaks appear between 1 MHz and 1 GHz for the impregnated paper with moisture level less than 5.5 %. Due to the limited system accuracy, there is a blank frequency band from 1 MHz to 100 MHz.
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Sangoro, Joshua Rume, Ciprian Iacob, Sergej Naumov, Jörg Kärger, and Friedrich Kremer. "Broadband dielectric spectroscopy as a tool to study diffusion coefficients in conducting glass-forming systems." Universitätsbibliothek Leipzig, 2015. http://nbn-resolving.de/urn:nbn:de:bsz:15-qucosa-191093.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Sangoro, Joshua Rume, Ciprian Iacob, Sergej Naumov, Jörg Kärger, and Friedrich Kremer. "Broadband dielectric spectroscopy as a tool to study diffusion coefficients in conducting glass-forming systems." Diffusion fundamentals 11 (2009) 87, S. 1-2, 2009. https://ul.qucosa.de/id/qucosa%3A14058.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Agrawal, Anshuman. "Multiscale characterisation of NMC 532 hierarchical electrodes in a lithium-ion battery using Broadband Dielectric Spectroscopy." Electronic Thesis or Diss., université Paris-Saclay, 2022. http://www.theses.fr/2022UPASF094.

Повний текст джерела
Анотація:
La spectroscopie diélectrique large bande (BDS) est utilisée pour étudier les mélanges de différentes compositions afin de caractériser leurs propriétés électriques, principalement la permittivité, et les conductivités effectives correspondantes, et cela sur une large gamme de fréquences (du Hz au GHz). Cela permet d'améliorer la compréhension sur les limitations liées au transport à travers les diverses interfaces dans les électrodes de batteries lithium-ion dont l'architecture est multi-hiérachique. Une plus grande importance est donnée au matériau actif NMC 532 à différents états (sec et humide avec soit un solvant, soit avec un électrolyte correspondant). Une étude distincte sur l'effet du noir de carbone sur les électrodes est également mise en évidence. Cela a permis de mieux comprendre et commenter les mesures globales des spectres BDS des électrodes NMC 532 fabriquées industriellement contenant du noir de carbone, à la fois sec et humide (solvant ou électrolyte)
Broadband dielectric spectroscopy (BDS) is used to study mixtures of varying composition, to characterize their electrical properties, namely permittivity, and its corresponding effective conductivity/resistivity over a broad range of frequencies (Hz to GHz regime). This permits a better understanding of transport limitations across the various interfaces of the multi-hierachical lithium-ion battery electrode. Emphasis is first placed on studying the active material NMC 532 at different states (dry and wet with either a solvent or with a corresponding electrolyte). A separate study on the effect of carbon black on electrodes is also evidenced. This allowed to better understand and comment on the global BDS spectra measurements of industrially made NMC 532 electrodes containing carbon black, both dry and wet (solvent or electrolyte)
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Comer, Anthony C. "DYNAMIC RELAXATION PROPERTIES OF AROMATIC POLYIMIDES AND POLYMER NANOCOMPOSITES." UKnowledge, 2011. http://uknowledge.uky.edu/cme_etds/1.

Повний текст джерела
Анотація:
The dynamic relaxation characteristics of Matrimid® (BTDA-DAPI) polyimide and several functionalized aromatic polyimides have been investigated using dynamic mechanical and dielectric methods. The functionalized polyimides were thermally rearranged to generate polybenzoxazole membranes with controlled free volume characteristics. All polyimides have application in membrane separations and exhibit three motional processes with increasing temperature: two sub-glass relaxations (ƴ and β transitions), and the glass-rubber (α) transition. For Matrimid, the low-temperature ƴ transition is purely non-cooperative, while the β sub-glass transition shows a more cooperative character as assessed via the Starkweather method. For the thermally rearranged polyimides, the ƴ transition is a function of the polymer synthesis method, thermal history, and ambient moisture. The β relaxation shows a dual character with increasing thermal rearrangement, the emerging lower-temperature component reflecting motions encompassing a more compact backbone contour. For the glass-rubber (α) transition, dynamic mechanical studies reveal a strong shift in Tα to higher temperatures and a progressive reduction in relaxation intensity with increasing degree of thermal rearrangement. The dynamic relaxation characteristics of poly(ether imide) and poly(methyl methacrylate) nanocomposites were investigated by dynamic mechanical analysis and dielectric spectroscopy. The nanoparticles used were native and surface-modified fumed silicas. The nanocomposites display a dual glass transition behavior encompassing a bulk polymer glass transition, and a second, higher-temperature transition reflecting relaxation of polymer chain segments constrained owing to their proximity to the particle surface. The position and intensity of the higher-temperature transition varies with particle loading and surface chemistry, and reflects the relative populations of segments constrained or immobilized at the particle-polymer interface. Dielectric measurements, which were used to probe the time-temperature response across the local sub-glass relaxations, indicate no variation in relaxation characteristics with particle loading. Nanocomposite studies were also conducted on rubbery poly(ethylene oxide) networks crosslinked in the presence of MgO or SiO2 nanoparticles. The inclusion of nanoparticles led to a systematic increase in rubbery modulus and a modest positive offset in the measured glass transition temperature (Tα) for both systems. The sizeable increases in gas transport with particle loading reported for certain other rubbery nanocomposite systems were not realized in these crosslinked networks.
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Tseng, Jung-Kai. "Enhanced Dielectric Properties of Multilayer Capacitor Film via Interfacial Polarization." Case Western Reserve University School of Graduate Studies / OhioLINK, 2016. http://rave.ohiolink.edu/etdc/view?acc_num=case1449137228.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Kalakkunnath, Sumod. "VISCOELASTIC RELAXATION CHARACTERISTICS OF RUBBERY POLYMER NETWORKS AND ENGINEERING POLYESTERS." UKnowledge, 2007. http://uknowledge.uky.edu/gradschool_diss/486.

Повний текст джерела
Анотація:
The relaxation characteristics of rubbery poly(ethylene oxide) [PEO] networks have been investigated as a function of network composition and architecture via dynamic mechanical analysis and broadband dielectric spectroscopy. A series of model networks were prepared via UV photopolymerization using poly(ethylene glycol) diacrylate [PEGDA] as crosslinker: variations in crosslink density were achieved either by the introduction of water in the prepolymerization reaction mixture, or by the inclusion of mono-functional acrylate such as poly(ethylene glycol) methyl ether acrylate [PEGMEA] or poly(ethylene glycol) acrylate [PEGA]. Copolymerization with mono-functional acrylate led to the insertion of flexible branches along the network backbone, and the corresponding glass-rubber relaxation properties of the copolymers (i.e., Tg, relaxation breadth, fragility) were a sensitive function of network architecture and corresponding fractional free volume. Relatively subtle variations in network structure led to significant differences in relaxation characteristics, and a systematic series of studies was undertaken to examine the influence of branch length, branch end-group, and crosslinker flexibility on viscoelastic response. Dielectric spectroscopy was especially useful for the elucidation of localized, sub-glass relaxations in the polymer networks: the imposition of local constraint in the vicinity of the crosslink junctions led to the detection of a distinctive fast relaxation process in the networks that was similar to a comparable sub-glass relaxation observed in crystalline PEO and in the confined regions of PEO nanocomposites. Gas permeation studies on the model PEGDA networks confirmed their utility as highly-permeable, reverse-selective membrane materials, and strategic control of the network architecture could be used to optimize gas separation performance. Dynamic mechanical and dielectric measurements have also been performed on a semicrystalline polyester, poly(trimethylene terephthalate) [PTT], in order to assess the influence of processing history on the resultant morphology and corresponding viscoelastic relaxation characteristics. Studies on both quenched and annealed PTT revealed the presence of a substantial fraction of rigid amorphous phase (RAP) material in the crystalline samples: dielectric measurements showed a strong increase in relaxation intensity above the glass transition indicating a progressive mobilization of the rigid amorphous phase with increasing temperature prior to crystalline melting.
Стилі APA, Harvard, Vancouver, ISO та ін.

Книги з теми "Broadbnad dielectric spectroscopy"

1

Kremer, Friedrich, and Andreas Schönhals, eds. Broadband Dielectric Spectroscopy. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003. http://dx.doi.org/10.1007/978-3-642-56120-7.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Kremer, Friedrich. Broadband Dielectric Spectroscopy. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Kalmykov, Yuri P. Recent Advances in Broadband Dielectric Spectroscopy. Dordrecht: Springer Netherlands, 2013.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Kalmykov, Yuri P., ed. Recent Advances in Broadband Dielectric Spectroscopy. Dordrecht: Springer Netherlands, 2013. http://dx.doi.org/10.1007/978-94-007-5012-8.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

V, Kozlov G., ed. Submillimetrovai͡a︡ diėlektricheskai͡a︡ spektroskopii͡a︡ tverdogo tela. Moskva: "Nauka", 1990.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Ezquerra, Tiberio A., and Aurora Nogales, eds. Crystallization as Studied by Broadband Dielectric Spectroscopy. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-56186-4.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Woodward, William Henry Hunter, ed. Broadband Dielectric Spectroscopy: A Modern Analytical Technique. Washington, DC: American Chemical Society, 2021. http://dx.doi.org/10.1021/bk-2021-1375.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Grigas, J. Microwave dielectric spectroscopy of ferroelectrics and related materials. Amsterdam, the Netherlands: Gordon and Breach, 1996.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Otowski, Wojciech. Dynamika molekuł termotropowych ciekłych kryształów w świetle badań relaksacji dielektrycznej. Kraków: Wydawn. Politechniki Krakowskiej, 2008.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Usmanov, S. M. Numerical methods of solving ill-posed problems of dielectric spectrometry. Hauppauge, N.Y: Nova Science Publishers, 2002.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Частини книг з теми "Broadbnad dielectric spectroscopy"

1

Schönhals, A., and F. Kremer. "Theory of Dielectric Relaxation." In Broadband Dielectric Spectroscopy, 1–33. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003. http://dx.doi.org/10.1007/978-3-642-56120-7_1.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Kremer, F., and A. Schönhals. "Molecular and Collective Dynamics of (Polymeric) Liquid Crystals." In Broadband Dielectric Spectroscopy, 385–432. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003. http://dx.doi.org/10.1007/978-3-642-56120-7_10.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Hartmann, L., K. Fukao, and F. Kremer. "Molecular Dynamics in Thin Polymer Films." In Broadband Dielectric Spectroscopy, 433–73. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003. http://dx.doi.org/10.1007/978-3-642-56120-7_11.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Kremer, F., and S. A. Różański. "The Dielectric Properties of Semiconducting Disordered Materials." In Broadband Dielectric Spectroscopy, 475–94. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003. http://dx.doi.org/10.1007/978-3-642-56120-7_12.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Steeman, P. A. M., and J. van Turnhout. "Dielectric Properties of Inhomogeneous Media." In Broadband Dielectric Spectroscopy, 495–522. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003. http://dx.doi.org/10.1007/978-3-642-56120-7_13.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Böhmer, R., and G. Diezemann. "Principles and Applications of Pulsed Dielectric Spectroscopy and Nonresonant Dielectric Hole Burning." In Broadband Dielectric Spectroscopy, 523–69. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003. http://dx.doi.org/10.1007/978-3-642-56120-7_14.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Richert, R. "Local Dielectric Relaxation by Solvation Dynamics." In Broadband Dielectric Spectroscopy, 571–95. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003. http://dx.doi.org/10.1007/978-3-642-56120-7_15.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Pakula, T. "Dielectric and Mechanical Spectroscopy — a Comparison." In Broadband Dielectric Spectroscopy, 597–623. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003. http://dx.doi.org/10.1007/978-3-642-56120-7_16.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Böhmer, R., and F. Kremer. "Dielectric Spectroscopy and Multidimensional NMR — a Comparison." In Broadband Dielectric Spectroscopy, 625–84. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003. http://dx.doi.org/10.1007/978-3-642-56120-7_17.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Arbe, A., J. Colmenero, and D. Richter. "Polymer Dynamics by Dielectric Spectroscopy and Neutron Scattering — a Comparison." In Broadband Dielectric Spectroscopy, 685–718. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003. http://dx.doi.org/10.1007/978-3-642-56120-7_18.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Тези доповідей конференцій з теми "Broadbnad dielectric spectroscopy"

1

Ohki, Yoshimichi. "Research on Dielectric Behavior by Broadband Dielectric Spectroscopy and Electric Modulus." In 2024 IEEE 14th International Conference on the Properties and Applications of Dielectric Materials (ICPADM), 1–4. IEEE, 2024. http://dx.doi.org/10.1109/icpadm61663.2024.10750575.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Li, Yanqing, Wenhao Li, Yufei Yao, Qiang Li, and Tao Han. "Cable Defects Location Method Based on M-sequence with Broadband Impedance Spectroscopy." In 2024 IEEE 5th International Conference on Dielectrics (ICD), 1–4. IEEE, 2024. http://dx.doi.org/10.1109/icd59037.2024.10613176.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Candelaresi, S., and R. Hilfer. "Excess wings in broadband dielectric spectroscopy." In 10TH INTERNATIONAL CONFERENCE ON MATHEMATICAL PROBLEMS IN ENGINEERING, AEROSPACE AND SCIENCES: ICNPAA 2014. AIP Publishing LLC, 2014. http://dx.doi.org/10.1063/1.4907293.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Kremer, F., A. Serghei, J. R. Sangoro, M. Tres, and E. U. Mapesa. "Broadband Dielectric Spectroscopy in nano-(bio)-physics." In 2009 IEEE Annual Conference on Electrical Insulation and Dielectric Phenomena (CEIDP 2009). IEEE, 2009. http://dx.doi.org/10.1109/ceidp.2009.5377717.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Zhang, M., X. Bao, T. Markovic, J. Bao, M. Chehelcheraghi, I. Ocket, and B. Nauwelaers. "Broadband interferometric dielectric spectroscopy for aqueous solutions." In 2017 IEEE MTT-S International Microwave Workshop Series on Advanced Materials and Processes for RF and THz Applications (IMWS-AMP). IEEE, 2017. http://dx.doi.org/10.1109/imws-amp.2017.8247422.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Otowski, Wojciech. "Broadband dielectric spectroscopy of thermotropic liquid crystals." In Liquid Crystals, edited by Jolanta Rutkowska, Stanislaw J. Klosowicz, Jerzy Zielinski, and Jozef Zmija. SPIE, 1998. http://dx.doi.org/10.1117/12.299978.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Orton, B. A., N. M. Chalashkanov, and S. J. Dodd. "Investigating Properties of a Composite Dielectric using Broadband Dielectric Spectroscopy." In 2023 IEEE Conference on Electrical Insulation and Dielectric Phenomena (CEIDP). IEEE, 2023. http://dx.doi.org/10.1109/ceidp51414.2023.10410571.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Robertson, W. M., G. Arjavalingam, G. V. Kopcsay, and J. M. Halbout. "Broadband Microwave Reflection Experiments with Picosecond Transient Radiation." In International Conference on Ultrafast Phenomena. Washington, D.C.: Optica Publishing Group, 1990. http://dx.doi.org/10.1364/up.1990.pdp16.

Повний текст джерела
Анотація:
Recently there has been much interest in broadband spectroscopy techniques based on optically generated ultrashort electromagnetic pulses.1-3 Auston et. al. used Cherenkov-like radiation produced by optical rectification in non-linear crystals to perform contact reflection measurements.1 We have demonstrated the Coherent Microwave Transient Spectroscopy (COMITS) technique to measure the complex dielectric properties of materials in the 15-130 GHz range.2 More recently this technique has been extended to higher frequencies by Grischkowsky et. al.3 Here we present results of broadband microwave reflection spectroscopy with optoelectronically generated, freely propagating, picosecond transient radiation. The technique is illustrated with the measured complex reflection function of Fabry-Perot interferometers, the dispersion from amplitude gratings, and reflection from materials. The experimental results are compared with theory and in all cases very good agreement is found.
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Yu, Ting, Peihong Zhang, and Qi Shao. "Broadband dielectric spectroscopy of silicone rubber nano-composites." In 2015 IEEE 11th International Conference on the Properties and Applications of Dielectric Materials (ICPADM). IEEE, 2015. http://dx.doi.org/10.1109/icpadm.2015.7295392.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Diaham, S., Z. Valdez-Nava, F. Saysouk, D. Fabiani, J. Castellon, and M. Frechette. "Broadband dielectric spectroscopy of multilayer graphene/epoxy nanocomposites." In 2013 IEEE Conference on Electrical Insulation and Dielectric Phenomena - (CEIDP 2013). IEEE, 2013. http://dx.doi.org/10.1109/ceidp.2013.6748218.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії