Добірка наукової літератури з теми "Brain wiring"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Brain wiring".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Статті в журналах з теми "Brain wiring"

1

Goulas, A., R. F. Betzel, and C. C. Hilgetag. "Spatiotemporal ontogeny of brain wiring." Science Advances 5, no. 6 (June 2019): eaav9694. http://dx.doi.org/10.1126/sciadv.aav9694.

Повний текст джерела
Анотація:
The wiring of vertebrate and invertebrate brains provides the anatomical skeleton for cognition and behavior. Connections among brain regions are characterized by heterogeneous strength that is parsimoniously described by the wiring cost and homophily principles. Moreover, brains exhibit a characteristic global network topology, including modules and hubs. However, the mechanisms resulting in the observed interregional wiring principles and network topology of brains are unknown. Here, with the aid of computational modeling, we demonstrate that a mechanism based on heterochronous and spatially ordered neurodevelopmental gradients, without the involvement of activity-dependent plasticity or axonal guidance cues, can reconstruct a large part of the wiring principles (on average, 83%) and global network topology (on average, 80%) of diverse adult brain connectomes, including fly and human connectomes. In sum, space and time are key components of a parsimonious, plausible neurodevelopmental mechanism of brain wiring with a potential universal scope, encompassing vertebrate and invertebrate brains.
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Gluth, S., and L. Fontanesi. "Wiring the altruistic brain." Science 351, no. 6277 (March 3, 2016): 1028–29. http://dx.doi.org/10.1126/science.aaf4688.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Umemori, Hisashi. "Wiring the functional brain." Neuroscience Research 68 (January 2010): e34. http://dx.doi.org/10.1016/j.neures.2010.07.394.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Gordon, Neil. "Wiring of the brain." European Journal of Paediatric Neurology 12, no. 1 (January 2008): 1–3. http://dx.doi.org/10.1016/j.ejpn.2007.10.007.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Peters, Michael A. "Wiring the Global Brain." Educational Philosophy and Theory 52, no. 4 (June 16, 2019): 327–31. http://dx.doi.org/10.1080/00131857.2019.1622413.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Hilgetag, Claus C. "Principles of brain connectivity organization." Behavioral and Brain Sciences 29, no. 1 (February 2006): 18–19. http://dx.doi.org/10.1017/s0140525x06289015.

Повний текст джерела
Анотація:
Increases of absolute brain size during evolution reinforced stronger structuring of brain connectivity. One consequence is the hierarchical cluster structure of neural systems that combines predominantly short, but not strictly minimal, wiring with short processing pathways. Principles of “large equals well-connected” and “minimal wiring” do not completely account for observed patterns of brain connectivity. A structural model promises better predictions.
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Cheng, Shouqiang, Yeonwoo Park, Justyna D. Kurleto, Mili Jeon, Kai Zinn, Joseph W. Thornton, and Engin Özkan. "Family of neural wiring receptors in bilaterians defined by phylogenetic, biochemical, and structural evidence." Proceedings of the National Academy of Sciences 116, no. 20 (May 1, 2019): 9837–42. http://dx.doi.org/10.1073/pnas.1818631116.

Повний текст джерела
Анотація:
The evolution of complex nervous systems was accompanied by the expansion of numerous protein families, including cell-adhesion molecules, surface receptors, and their ligands. These proteins mediate axonal guidance, synapse targeting, and other neuronal wiring-related functions. Recently, 32 interacting cell surface proteins belonging to two newly defined families of the Ig superfamily (IgSF) in fruit flies were discovered to label different subsets of neurons in the brain and ventral nerve cord. They have been shown to be involved in synaptic targeting and morphogenesis, retrograde signaling, and neuronal survival. Here, we show that these proteins, Dprs and DIPs, are members of a widely distributed family of two- and three-Ig domain molecules with neuronal wiring functions, which we refer to as Wirins. Beginning from a single ancestral Wirin gene in the last common ancestor of Bilateria, numerous gene duplications produced the heterophilic Dprs and DIPs in protostomes, along with two other subfamilies that diversified independently across protostome phyla. In deuterostomes, the ancestral Wirin evolved into the IgLON subfamily of neuronal receptors. We show that IgLONs interact with each other and that their complexes can be broken by mutations designed using homology models based on Dpr and DIP structures. The nematode orthologs ZIG-8 and RIG-5 also form heterophilic and homophilic complexes, and crystal structures reveal numerous apparently ancestral features shared with Dpr-DIP complexes. The evolutionary, biochemical, and structural relationships we demonstrate here provide insights into neural development and the rise of the metazoan nervous system.
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Rubinov, Mikail, Rolf J. F. Ypma, Charles Watson, and Edward T. Bullmore. "Wiring cost and topological participation of the mouse brain connectome." Proceedings of the National Academy of Sciences 112, no. 32 (July 27, 2015): 10032–37. http://dx.doi.org/10.1073/pnas.1420315112.

Повний текст джерела
Анотація:
Brain connectomes are topologically complex systems, anatomically embedded in 3D space. Anatomical conservation of “wiring cost” explains many but not all aspects of these networks. Here, we examined the relationship between topology and wiring cost in the mouse connectome by using data from 461 systematically acquired anterograde-tracer injections into the right cortical and subcortical regions of the mouse brain. We estimated brain-wide weights, distances, and wiring costs of axonal projections and performed a multiscale topological and spatial analysis of the resulting weighted and directed mouse brain connectome. Our analysis showed that the mouse connectome has small-world properties, a hierarchical modular structure, and greater-than-minimal wiring costs. High-participation hubs of this connectome mediated communication between functionally specialized and anatomically localized modules, had especially high wiring costs, and closely corresponded to regions of the default mode network. Analyses of independently acquired histological and gene-expression data showed that nodal participation colocalized with low neuronal density and high expression of genes enriched for cognition, learning and memory, and behavior. The mouse connectome contains high-participation hubs, which are not explained by wiring-cost minimization but instead reflect competitive selection pressures for integrated network topology as a basis for higher cognitive and behavioral functions.
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Purnell, B. A. "Wiring the developing insect brain." Science 344, no. 6188 (June 5, 2014): 1128. http://dx.doi.org/10.1126/science.344.6188.1128-o.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Richards, Linda J. "ISDN2012_0275: Wiring the developing brain." International Journal of Developmental Neuroscience 30, no. 8 (December 2012): 637. http://dx.doi.org/10.1016/j.ijdevneu.2012.10.097.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Дисертації з теми "Brain wiring"

1

Murphy, Alexander James. "RNA and Protein Networks That Locally Control Brain Wiring During Development." Thesis, Harvard University, 2015. http://nrs.harvard.edu/urn-3:HUL.InstRepos:17467385.

Повний текст джерела
Анотація:
The molecular machineries of growth cones control the formation of neural circuits in the developing brain. Although great progress has been made in elucidating axon guidance cues and their growth cone receptors, we still lack an understanding of the projection-specific RNA and protein networks in growth cones that likely control the wiring of specific circuits in vivo. To understand how specific projection neurons make wiring decisions, I focus on callosal projection neurons (CPN), which connect the two cerebral hemispheres through the corpus callosum. I developed an approach to profile and quantify the full-depth transcriptomes and proteomes of CPN growth cones and their parent cell bodies isolated in vivo. Using this comparative approach, I uncover general patterns of RNA and protein subcellular localization, with several previously unrecognized features, that might control the wiring of specific brain circuits. First, while most transcripts are expressed at similar levels in cell bodies and growth cones, a select subset are more than 10-fold enriched in growth cones compared to cell bodies, indicating active localization of those transcripts to the growth cone. By then correlating transcriptomic and proteomic data, I characterize the spatial relationship between coding transcripts and their encoded proteins. Intriguingly, many of the growth cone-enriched transcripts are noncoding RNA with unknown function. Further, growth cones appear to have distinct ribosomes. These ribosomes lack several large subunit proteins, raising the intriguing possibility of growth cone-specific translational mechanisms for selective mRNA expression. This approach is readily adaptable to other projection types in the brain, enabling high-throughput, quantitative investigation of RNA and protein controls over circuit development and, potentially, the regeneration of damaged circuitry. In addition, the approach is scalable to include epigenetic profiling, enabling full investigation of DNA, RNA, and protein networks that collectively coordinate brain wiring during development. The insights derived from this approach exemplify its capacity to quantify and characterize the molecular and translational mechanisms that control specific brain wiring at the subcellular level in vivo.
Medical Sciences
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Espinosa, Juan Sebastian. "Genetic mosaic analysis of lineage and activity in wiring the mouse brain /." May be available electronically:, 2009. http://proquest.umi.com/login?COPT=REJTPTU1MTUmSU5UPTAmVkVSPTI=&clientId=12498.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Khandelwal, Avinash 1987. "The wiring diagram of antennal lobe and mapping a brain circuit that controls chemotaxis behavior in the Drosophila larva." Doctoral thesis, Universitat Pompeu Fabra, 2017. http://hdl.handle.net/10803/663806.

Повний текст джерела
Анотація:
Drosophila larvae present unique opportunity for anatomical and functional mapping of their nervous system because of features such as numerical simplicity of neurons its nervous system is composed of, and ability to exhibit quantifiable behaviors such as chemotaxis. Here, we mapped entire antennal lobe of larval Drosophila with one of its circuits responsible for controlling sensorimotor transformation in lateral horn (LH) (higher brain) through a single brain descending neuron using electron microscopic 3D reconstruction. In antennal lobe, we reported a canonical circuit with uniglomerular projection neurons (uPNs), working to relay gain-controlled ORN activity to higher brain centers like Mushroom body and lateral horn. We also found a parallel circuit with multiglomerular projection neurons (mPNs) and hierarchically organized local neurons (LNs) selectively integrating signal from multiple ORNs at the first synapse with LN-LN connectivity putatively implementing gain control mechanism that can potentially switch from computing distinguished odor signals through panglomerular inhibition to allowing system to respond to faint aversive odor in an environment rich with strong appetitive odors. We also reconstructed and studied one of the olfactory connected circuits in the LH that was found to be influencing chemotaxis behavior in larva through a single brain descending neuron, PVM027. We found that this neuron was responsible in controlling stop response of chemotaxis behavior. EM reconstruction revealed its connection with variety of motor systems and SEZ descending neurons in the VNC. Connections were revealed with the peristaltic wave propagation circuit of larva, and PVM027 was found to be implementing stop by terminating and ceasing the origin of forward peristaltic waves.
Las larvas de Drosophila ofrecen una oportunidad única para el mapeo anatómico y funcional de su sistema nervioso debido a propiedades como la simplicidad numérica de neuronas que componen su sistema nervioso y su habilidad de exhibir comportamientos cuantificables como la quimiotaxis. En este estudio hemos mapeado el lóbulo antenal de la larva de Drosophila con uno de sus circuitos responsable de controlar la transformación sensorial-motora en el asta lateral (LH) (cerebro superior) a través de una sola neurona descendiente usando la reconstrucción 3D para microscopia electrónica. Hemos presentado, en el lóbulo antenal, un circuito canónico con proyecciones neuronales uniglomerulares (uPNs) responsables de transmitir aumentos controlados de actividad desde sus ORN* hasta centros superiores del cerebro como el cuerpo fungiforme y el asta lateral del protocerebro. Hemos descubierto también un circuito paralelo formado por neuronas con proyecciones multiglomerulares (mPNs) y neuronas locales (Lns), organizadas jerárquicamente, que integran selectivamente señales desde múltiples ORNs a nivel de primera sinapsis con conectividad LN-LN implementando aparentemente un mecanismo de aumento de control que potencialmente puede intercambiar señales olfativas distintas computacionalmente a través de inhibición panglomerular permitiendo al sistema responder a olores vagamente aversivos en un ambiente rico en fuertes olores apetitosos. También hemos reconstruido y estudiado uno de los circuitos olfativos que conectan con el LH conocido por influenciar la quimiotaxis de la larva a través de un sola neurona cerebral descendiente, la PVM027. Hemos descubierto que dicha neurona es la responsable de controlar la respuesta stop en el comportamiento de quimiotaxis. La reconstrucción por EM revela su conexión con una variedad de sistemas motores así como neuronas descendientes SEZ en el VNC. Observamos dichas conexiones gracias al circuito de propagación de onda peristáltica de la larva, y descubrimos que la PVM027 implementa la señal de stop terminando e interrumpiendo el origen de la onda peristáltica.
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Eichler, Katharina [Verfasser]. "Mnemonic architecture of a mini-brain : determining the wiring diagram of the larval mushroom body of Drosophila melanogaster using EM reconstruction / Katharina Eichler." Konstanz : Bibliothek der Universität Konstanz, 2017. http://d-nb.info/1142788571/34.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Hasche, Anja. "Bindung von ATP an die Neurotrophine NGF und BDNF als Voraussetzung für ihre neuroprotektive Wirkung." Münster Schüling, 2008. http://d-nb.info/989241386/04.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Pruskil, Susanne. "Die neurotoxische Wirkung der Zytostatika Cyclophosphamid und Thiotepa im infantilen Gehirn der Ratte." Doctoral thesis, Humboldt-Universität zu Berlin, Medizinische Fakultät - Universitätsklinikum Charité, 2006. http://dx.doi.org/10.18452/15439.

Повний текст джерела
Анотація:
Die Entwicklung neuer Medikamente und Therapieverfahren wie die Hochdosischemotherapie und die Möglichkeit der Stammzelletransplantation haben die Heilungschance krebskranker Kinder in den letzen Jahrzehnten enorm verbessert. Aus diesem Grund erlangt die Berücksichtigung der Spätfolgen der Therapie eine größere Bedeutung. Es wurden die Zytostatika Cyclophosphamid und Thiotepa auf ihre Neurotoxizität im infantilen Rattengehirn untersucht. Dazu wurde Ratten im Alter von 7, 14, 21 oder 28 Tagen Cyclophosphamid (200-600mg/kg) oder Thiotepa (15-45 mg/kg) intraperitoneal injiziert. Nach einer Überlebenszeit von 4-24 Stunden wurden die Tiere getötet. Die Dichte degenerierter Zellen wurde lichtmikroskopisch in den nach De Olmos gefärbten Hirnschnitten mit Hilfe des stereologischen Dissektors ermittelt. Weiterhin wurden eine TUNEL-Färbung, elektronenmikroskopische sowie eine immunhistochemische Untersuchung für Caspase 3 und den Fas Rezeptor durchgeführt. Die Unterschiede zwischen den einzelnen Versuchsgruppen wurde mit Hilfe des Student`s t-Test auf ihre Signifikanz hin überprüft. Die Untersuchungen zur Zeit und Dosisabhängigkeit wurde mit Hilfe der ermittelten Gesamtscores und der Varianzanalyse (ANOVA) überprüft. Diese Untersuchung zeigte, dass eine Exposition mit den Zytostatika Cyclophosphamid und Thiotepa altersabhängig zu ausgeprägten Zellschädigungen im Gehirn führt. Besonders ausgeprägte Zelluntergänge fanden sich im Cortex, den thalamischen Kerngebieten, und dem Hippocampus. Ultrastrukturell ließen sich bereits kurz nach der Applikation des Zytostatikums anschwellende Dendriten als Hinweis auf einen exzitotoxischen Zelltodmechanismus nachweisen. Im Gegensatz dazu zeigten sich bei Tieren mit längerer Lebensdauer nach Exposition gegenüber dem Zytostatikum typische ultrastrukturelle Veränderungen wie man sie bei apoptotischem Zelltod finden kann. Mit dieser Untersuchung konnte gezeigt werden, dass die neurotoxische Wirkung der Zytostatika Cyclophosphamid und Thiotepa eine exzitotoxische und eine apoptotische Komponente aufweist.
Survival rates for children with cancer have increased dramatically over the past few decades. The expanded use of older agents, the development of new chemotherapeutic agents, the introduction of high dose chemotherapy and stem cell transplantation regimen have had a major impact on this improvement. These positive results have also focused increased attention on post-therapeutic effects of anticancer drugs. To investigate whether common cytotoxic drugs cause neurotoxic effects in the developing rat brain the following alkylated agents were administered to 7-day-old rats: cyclophosphamide (200–600mg/kg IP) and thiotepa (15– 45mg/kg IP). The brains were analysed at 4 to 24 hours. Quantitation of brain damage was performed in De Olmos cupric silver-stained sections using the stereological dissector method. Furthermore electron microscopy on plastic sections, TUNEL staining and immunohistochemistry for activated caspase 3 and Fas receptor was performed. Statistical analysis was performed by means of Student´s t test or one-way analysis of variance with subsequent pairwise comparison (Scheffé-test). Cytotoxic drugs produced widespread lesions within cortex, thalamus, hippocampal dentate gyrus, and caudate nucleus in a dose-dependent fashion. Early histological analysis demonstrated dendritic swelling and relative preservation of axonal terminals, which are morphological features indicating excitotoxicity. After longer survival periods, degenerating neurons displayed morphological features consistent with active cell death. These results demonstrate that anticancer drugs are potent neurotoxins in vivo; they activate excitotoxic mechanisms but also trigger active neuronal death.
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Miksa, Michael. "N-Methyl-D-Aspartat-Antagonisten induzierten apoptotische Zelluntergänge im Gehirn junger Ratten." Doctoral thesis, Humboldt-Universität zu Berlin, Medizinische Fakultät - Universitätsklinikum Charité, 2004. http://dx.doi.org/10.18452/15030.

Повний текст джерела
Анотація:
Der wichtigste exzitatorische Neurotransmitter Glutamat spielt eine grosse Rolle in der Gehirnentwicklung, wie neuronale Migration und Synaptogenese. Ob glutamaterge Stimulation für das Überleben entwickelnder Neuronen notwendig ist, war bislang jedoch unbekannt. Um zu untersuchen, ob eine Hemmung von Glutamatrezeptoren im unreifen Gehirn zu Neurodegeneration führt, wurden Ratten im Alter von 1 bis 31 Tagen für 24 Stunden mit dem N-Methyl-D-Aspartat-(NMDA) Glutamatrezeptorantagonisten Dizocilpin (MK801) behandelt. Die Dichte neuronaler Degeneration wurde mikroskopisch in Kupfer-Silber- und TUNEL- gefärbten Hirnschnittpräparaten ermittelt und Unterschiede mittels ANOVA analysiert (Signifikanzniveau p
The predominant excitatory neurotransmitter glutamate plays a major role in certain aspects of neural development. However, whether developing neurons depend on glutamate for survival remains unknown. To investigate if deprivation of glutamate stimulation in the immature mammalian brain causes neuronal cell death (apoptosis), rat pups aged 0 to 30 days were treated for 24 hours with dizocilpine maleate (MK801), an N-methyl-D-aspartate-(NMDA) glutamate receptor antagonist. Density of neural degeneration was evaluated by a stereological dissector method in cupric-silver and TUNEL-stained brain slices. Groups were compared by ANOVA and significance considered at p
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Braun, Ariane [Verfasser], Michael Gutachter] Bucher, Oliver [Gutachter] Thews, and Markus A. [Gutachter] [Weigand. "Die Wirkung selektiver Cyclooxygenase-1- und Cyclooxygenase-2-Inhibition auf die Expression renaler Transporter für organische Anionen und die Nierenfunktion nach Ischämie und Reperfusion im Rattenmodell / Ariane Braun ; Gutachter: Michael Bucher, Oliver Thews, Markus A. Weigand." Halle (Saale) : Universitäts- und Landesbibliothek Sachsen-Anhalt, 2020. http://nbn-resolving.de/urn:nbn:de:gbv:3:4-1981185920-331968.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Braun, Ariane [Verfasser], Michael [Gutachter] Bucher, Oliver [Gutachter] Thews, and Markus A. [Gutachter] Weigand. "Die Wirkung selektiver Cyclooxygenase-1- und Cyclooxygenase-2-Inhibition auf die Expression renaler Transporter für organische Anionen und die Nierenfunktion nach Ischämie und Reperfusion im Rattenmodell / Ariane Braun ; Gutachter: Michael Bucher, Oliver Thews, Markus A. Weigand." Halle (Saale) : Universitäts- und Landesbibliothek Sachsen-Anhalt, 2020. http://d-nb.info/1210727382/34.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Mantovani, Michela [Verfasser], and Rolf [Akademischer Betreuer] Schubert. "Modulation of neocortical neurotransmissions by antidepressants and neuromodulatory drugs in human and rodent brain tissue and effect of electrical high-frequency stimulation in human neocortex = Modulation der Neokortikalen Neurotransmissionen durch Antidepressiva und Neuromodulatorische Substanzen im Hirngewebe von Menschen und Nagetieren und Wirkung der elektrischen Hochfrequenzstimulation im menschlichen Neokortex." Freiburg : Universität, 2012. http://d-nb.info/1123472971/34.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Книги з теми "Brain wiring"

1

Astrocytes: Wiring the brain. Boca Raton: CRC Press, 2012.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Connectome: How the brain's wiring makes us who we are. Boston: Houghton Mifflin Harcourt, 2012.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Connectome: How the brain's wiring makes us who we are. London: Allen Lane, 2012.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Conkling, Winifred. Smart-wiring your baby's brain: What you can do to stimulate your child during the critical first three years. New York: Quill, 2001.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Scemes, Eliana, and David C. Spray. Astrocytes: Wiring the Brain. Taylor & Francis Group, 2016.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Scemes, Eliana, and David C. Spray. Astrocytes: Wiring the Brain. Taylor & Francis Group, 2016.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Scemes, Eliana, and David C. Spray. Astrocytes: Wiring the Brain. Taylor & Francis Group, 2018.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Scemes, Eliana, and David C. Spray. Astrocytes: Wiring the Brain. Taylor & Francis Group, 2011.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Neuronal Guidance: The Biology of Brain Wiring. Cold Spring Harbor Laboratory Press, 2010.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Sprenger, Marilee B. Wiring the Brain for Reading: Brain-Based Strategies for Teaching Literacy. Wiley & Sons, Incorporated, John, 2013.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Частини книг з теми "Brain wiring"

1

Nieuwenhuys, Rudolf, and Luis Puelles. "The ‘Wiring’ of the Brain." In Towards a New Neuromorphology, 273–300. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-25693-1_11.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Lledo, Pierre-Marie. "Wiring New Neurons with Old Circuits." In Neurogenesis in the Adult Brain I, 371–93. Tokyo: Springer Japan, 2011. http://dx.doi.org/10.1007/978-4-431-53933-9_16.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

McMichael, Ryan. "Brain Drain: An Unintended Consequence of Wiring Brazil?" In Information Technology and World Politics, 145–59. New York: Palgrave Macmillan US, 2002. http://dx.doi.org/10.1057/9780230109223_11.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Nisar, Humaira, Aamir Saeed Malik, Rafi Ullah, Seong-O. Shim, Abdullah Bawakid, Muhammad Burhan Khan, and Ahmad Rauf Subhani. "Tracking of EEG Activity Using Motion Estimation to Understand Brain Wiring." In Signal and Image Analysis for Biomedical and Life Sciences, 159–74. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-10984-8_9.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Brodal, Alf. "The “Wiring Patterns” of the Brain: Neuroanatomical Experiences and Their Implications for General Views of the Organization of the Brain." In The Neurosciences: Paths of Discovery, I, 123–40. Boston, MA: Birkhäuser Boston, 1992. http://dx.doi.org/10.1007/978-1-4612-2970-4_7.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Brodal, Alf. "The “Wiring Patterns” of the Brain: Neuroanatomical Experiences and Their Implications for General Views of the Organization of the Brain." In The Neurosciences: Paths of Discovery, I, 122–40. Boston, MA: Birkhäuser Boston, 1992. http://dx.doi.org/10.1007/978-1-4684-6817-5_7.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Molano-Mazón, M., A. J. Valiño-Perez, S. Sala, M. Martínez-García, J. Malo, F. T. Sommer, J. A. Hirsch, and L. M. Martinez. "The Brain’s Camera. Optimal Algorithms for Wiring the Eye to the Brain Shape How We See." In Converging Clinical and Engineering Research on Neurorehabilitation II, 81–83. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-46669-9_15.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Pizzi, Nicolino. "Classifying Magnetic Resonance Spectra of Brain Neoplasms Using Fuzzy and Robust Gold Standard Adjustments." In Neural Nets WIRN VIETRI-97, 252–56. London: Springer London, 1998. http://dx.doi.org/10.1007/978-1-4471-1520-5_24.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Fünfgeld, E. W. "Wirkung von Sermion auf das Computer EEG (Dynamic Brain Mapping) von Parkinson-Patienten mit hirnorganischem Psychosyndrom." In Sermion Forte Sermion Spezial, 158–70. Berlin, Heidelberg: Springer Berlin Heidelberg, 1992. http://dx.doi.org/10.1007/978-3-642-76728-9_21.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

"Macaque Brain Wiring Diagram." In Encyclopedia of Computational Neuroscience, 1645. New York, NY: Springer New York, 2015. http://dx.doi.org/10.1007/978-1-4614-6675-8_100320.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Тези доповідей конференцій з теми "Brain wiring"

1

Mizutani, H., H. Sagara, A. Takeuchi, T. Ohigashi, W. Yashiro, K. Uesugi, Y. Suzuki, et al. "Nano-Resolution X-ray Tomography for Deciphering Wiring Diagram of Mammalian Brain." In THE 10TH INTERNATIONAL CONFERENCE ON X-RAY MICROSCOPY. AIP, 2011. http://dx.doi.org/10.1063/1.3625387.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Vassanelli, Stefano. "Wiring brain and artificial neurons through neural interfaces and memristive synapses: The first steps." In 2017 7th IEEE International Workshop on Advances in Sensors and Interfaces (IWASI). IEEE, 2017. http://dx.doi.org/10.1109/iwasi.2017.7974206.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Звіти організацій з теми "Brain wiring"

1

Brain firing, but not wiring, is different in children with ADHD. Acamh, January 2018. http://dx.doi.org/10.13056/acamh.10505.

Повний текст джерела
Анотація:
When in a relaxed state, the brains of children and adolescents with ADHD tend to fire differently to those without the disorder, although there don’t seem to be changes in the physical connections or ‘wiring’ of their brains.
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії