Добірка наукової літератури з теми "Brain symmetry"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Brain symmetry".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Статті в журналах з теми "Brain symmetry"

1

Noorizadeh, Negar, Kamran Kazemi, Reinhard Grebe, Mohammad Sadegh Helfroush, Mahdi Mahmoudzadeh, and Fabrice Wallois. "A Tool to Investigate Symmetry Properties of Newborns Brain: The Newborns’ Symmetric Brain Atlas." ISRN Neuroscience 2013 (September 18, 2013): 1–6. http://dx.doi.org/10.1155/2013/317215.

Повний текст джерела
Анотація:
It is well established that the two hemispheres of the human brain exhibit a certain degree of asymmetry. Postmortem studies of developing brains of pre- and postpartum infants have shown that already in this early stage of development Heschl gyrus, planum temporale and superior temporal sulcus (STS) exhibit pronounced asymmetry. Advances in acquisition and computational evaluation of high-resolution magnetic resonance images provide enhanced tools for noninvasive studies of brain asymmetry in newborns. Until now most atlases used for image processing contain themselves asymmetry and may thus introduce and/or increase asymmetry already contained in the original data of brain structural or functional images. So, it is preferable to avoid the application of these asymmetric atlases. Thus, in this paper we present our framework to create a symmetric brain atlas from a group of newborns aged between 39 and 42 weeks after gestation. The resulting atlas demonstrates no difference between its original and its flipped version as should be the case for an asymmetric atlas. Consequently, the resulting symmetric atlas can be used for applications such as analysis of development of brain asymmetry in the context of language development.
Стилі APA, Harvard, Vancouver, ISO та ін.
2

van Putten, Michel J. A. M. "The revised brain symmetry index." Clinical Neurophysiology 118, no. 11 (November 2007): 2362–67. http://dx.doi.org/10.1016/j.clinph.2007.07.019.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Jones, D. G. "The problematic symmetry between brain birth and brain death." Journal of Medical Ethics 24, no. 4 (August 1, 1998): 237–42. http://dx.doi.org/10.1136/jme.24.4.237.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Steinmetz, Helmuth, Axel Herzog, Gottfried Schlaug, Yanxiong Huang, and Lutz Jäncke. "Brain (A)Symmetry in Monozygotic Twins." Cerebral Cortex 5, no. 4 (1995): 296–300. http://dx.doi.org/10.1093/cercor/5.4.296.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Corballis, Michael C. "Bilaterally Symmetrical: To Be or Not to Be?" Symmetry 12, no. 3 (February 25, 2020): 326. http://dx.doi.org/10.3390/sym12030326.

Повний текст джерела
Анотація:
We belong to a clade of species known as the bilateria, with a body plan that is essentially symmetrical with respect to left and right, an adaptation to the indifference of the natural world to mirror-reflection. Limbs and sense organs are in bilaterally symmetrical pairs, dictating a high degree of symmetry in the brain itself. Bilateral symmetry can be maladaptive, though, especially in the human world where it is important to distinguish between left and right sides, and between left-right mirror images, as in reading directional scripts. The brains of many animals have evolved asymmetries, often but not exclusively in functions not dependent on sensory input or immediate reaction to the environment. Brain asymmetries in humans have led to exaggerate notions of a duality between the sides of the brain. The tradeoff between symmetry and asymmetry results in individual differences in brain asymmetries and handedness, contributing to a diversity of aptitude and divisions of labor. Asymmetries may have their origin in fundamental molecular asymmetries going far back in biological evolution.
Стилі APA, Harvard, Vancouver, ISO та ін.
6

HUGDAHL, KENNETH. "Symmetry and asymmetry in the human brain." European Review 13, S2 (August 22, 2005): 119–33. http://dx.doi.org/10.1017/s1062798705000700.

Повний текст джерела
Анотація:
Structural and functional asymmetry in the human brain and nervous system is reviewed in a historical perspective, focusing on the pioneering work of Broca, Wernicke, Sperry, and Geschwind. Structural and functional asymmetry is exemplified from work done in our laboratory on auditory laterality using an empirical procedure called dichotic listening. This also involves different ways of validating the dichotic listening procedure against both invasive and non-invasive techniques, including PET and fMRI blood flow recordings. A major argument is that the human brain shows a substantial interaction between structurally, or ‘bottom-up’ asymmetry and cognitively, or ‘top-down’ modulation, through a focus of attention to the right or left side in auditory space. These results open up a more dynamic and interactive view of functional brain asymmetry than the traditional static view that the brain is lateralized, or asymmetric, only for specific stimuli and stimulus properties.
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Breakspear, Michael, and Karl Friston. "Symmetries and itineracy in nonlinear systems with many degrees of freedom." Behavioral and Brain Sciences 24, no. 5 (October 2001): 813. http://dx.doi.org/10.1017/s0140525x01250092.

Повний текст джерела
Анотація:
Tsuda examines the potential contribution of nonlinear dynamical systems, with many degrees of freedom, to understanding brain function. We offer suggestions concerning symmetry and transients to strengthen the physiological motivation and theoretical consistency of this novel research direction: Symmetry plays a fundamental role, theoretically and in relation to real brains. We also highlight a distinction between chaotic “transience” and “itineracy.”
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Bertamini, Marco, and Alexis Makin. "Brain Activity in Response to Visual Symmetry." Symmetry 6, no. 4 (December 2, 2014): 975–96. http://dx.doi.org/10.3390/sym6040975.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Bertamini, Marco, Alexis Makin, Letizia Palumbo, Giulia Rampone, and Damien Wright. "Brain Activity in Response to Visual Symmetry." Journal of Vision 15, no. 12 (September 1, 2015): 578. http://dx.doi.org/10.1167/15.12.578.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Al-Azawi, Mohammad. "Symmetry-Based Brain Abnormality Detection Using Machine Learning." Inteligencia Artificial 24, no. 68 (January 19, 2022): 138–50. http://dx.doi.org/10.4114/intartif.vol24iss68pp138-150.

Повний текст джерела
Анотація:
Medical image processing, which includes many applications such as magnetic resonance image (MRI) processing, is one of the most significant fields of computer-aided diagnostic (CAD) systems. the detection and identification of abnormalities in the magnetic resonance imaging of the brain is one of the important applications that uses magnetic resonance imaging and digital image processing techniques. In this study, we present a method that relies on the symmetry and similarity between the two lobes of the brain to determine if there are any abnormalities in the brain because tumours cause deformations in the shape of one of the lobes, which affects this symmetry. The proposed approach overcomes the challenge arising from different shapes of brain images of different people, which poses an obstacle to some approaches that rely on comparing one person’s brain image with other people's brain images. In the proposed method the image of the brain is divided into two parts, one for the left lobe and the other for the right lobe. Some measures are extracted from the features of the image of each lobe separately and the distance between the corresponding metrics are calculated. These distances are used as the independent variables of the classification algorithm which determines the class to which the brain belongs. Metrics extracted from various features, such as colour and texture, were studied, discussed and used in the classification process. The proposed algorithm was applied to 366 images from standard datasets and four classifiers were tested namely Naïve Bayes (NB), random forest (RF), logistic regression (LR), and support vector machine (SVM). The obtained results from these classifiers have been discussed thoroughly and it was found that the best results were obtained from RF classifiers where the accuracy was 98.2%. Finally, The results obtained and the limitations were discussed and benchmarked with state-of-the-art approaches.
Стилі APA, Harvard, Vancouver, ISO та ін.

Дисертації з теми "Brain symmetry"

1

Marais, Patrick Craig. "The segmentation of sparse MR images." Thesis, University of Oxford, 1998. http://ora.ox.ac.uk/objects/uuid:ac0e8f6c-51b7-42e0-8079-4d9a83b578b2.

Повний текст джерела
Анотація:
This thesis develops a methodology for the segmentation of anatomical structures within "sparse" MR images. Sparse images were acquired in large numbers prior to the emergence of high-resolution MRI and they form the basis of many long term imaging studies. The term sparse refers to the fact that the volumetric image has very poor spatial resolution in the direction perpendicular to the slice plane. This leads to a significant degradation in image quality and effectively destroys the spatial continuity of the imaged object. Consequently, generic segmentation schemes --- particularly those based on voxel classification --- will yield poor results unless they have been augmented in some manner. Our Segmentation approach is based on a deformable simplex mesh surface, which iteratively interpolates extracted boundary point data. Prior information is mobilised at two levels. Boundary points are found using a matching algorithm based on a database of pre-specified piecewise constant models. These models represent possible idealised intensity profiles for the object boundary. In addition to the boundary model, there is a shape template. The template is generated from a training set of pre-segmented structures, which means that only shapes similar to those in the training set will be recovered. The segmentation proceeds in two phases. The first recovers the normal shape component, determined by the training set, whilst the second deforms smoothly from this constrained solution to produce a more veridical boundary representation. The segmentation scheme is applied to a number of sparse brain images. Qualitative validation --- accomplished by registering the surface extracted from the sparse data to a high resolution scan acquired at the same time-point --- indicates that a good approximation to the underlying boundary is obtainable from such images.
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Zukauskis, Ronald L. "Tachistoscopic recognition of vertical and horizontal letter symmetry in response to the contralateral organization of the human nervous system." Virtual Press, 2001. http://liblink.bsu.edu/uhtbin/catkey/1221268.

Повний текст джерела
Анотація:
Eight-letter upper case arrays containing vertically symmetrical (VS), e.g., A-T-U-W, horizontally symmetrical (HS), e.g., B-D-C-E, doubly symmetrical (DS), e.g., H-I-O-X, and non-symmetrical (NS), e.g., F-G-L-R, were tachistoscopically exposed bilaterally for 50 ms. to fifteen male and fifteen female undergraduates. The number of letters correctly recognized for each classification condition was used as the criterion measure. A fixed, two-factor design with the second factor being repeated was analyzed using a repeated measures analysis of variance. Consequent to testing Null Hypothesis 1 (that there is no difference between the classification conditions), a check was made for the presence of a significant interaction between gender and classification condition (Null Hypothesis 2). Because Null Hypothesis 1 was rejected and there was no interaction present, the classification group means were tested using a post hoc multiple comparison procedure identified as Tukey's Honestly Significant Difference (HSD) test. Test statistics for the Tukey HSD contrasts found that significantly more VS letters were reported than DS, HS, and NS letters. Significantly more DS letters were reported than HS and NS letters. No difference in report accuracy was found between HS and NS letters. This is in sharp contrast to studies that count only responses reported in the same left-to-right order as the tachistoscopic presentation, i.e., order of report. Previous studies using an order of report method found vertically asymmetrical letters to be reported more accurately than vertically symmetrical ones. The present study disregarded order of from an order of report. It was emphasized that the subject maintain focus on the fixation dot and not attempt to scan the letter-array pattern in a left-to-right direction, as the lettersdid not have to be reported in their respective positions. A different explanation for the Harcum (1964) directionality and Bryden (1968) masking interpretations follows from an order of report method activating additional processing mechanisms such as working memory that are ordinarily not needed to process letter features.Results obtained by the present study are discussed in terms of a reversal of spatial information for touch, kinesthesis, and sound to match the brain’s reversed retino-cortical projection.
Department of Educational Psychology
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Цікало, Владислав Олексійович. "Просторова стандартизація ОФЕКТ зображень головного мозку". Bachelor's thesis, КПІ ім. Ігоря Сікорського, 2020. https://ela.kpi.ua/handle/123456789/40168.

Повний текст джерела
Анотація:
Об’єктом розгляду даної дипломної роботи є «Просторова стандартизація ОФЕКТ зображень головного мозку», її розробка, проведення досліджень та отримання їх результатів, а також вдосконалення, шляхом створення бази даних для зберігання інформації про пацієнтів, та інтерфейсу в середовищі Matlab для зручного її використання. Метою роботи є створення методики просторової стандартизації зображень однофотонної емісійної комп’ютерної томографії (ОФЕКТ) для збільшення точності подальших розрахунків симетрії головного мозку, та зменшення впливу суб’єктивного людського фактору, шляхом автоматизації методики. У першому розділі дані загальні положення про поняття сцинтиграфії, ОФЕКТ дослідження, а також обладнання (гамма-камера), та радіофармацевтичні препарати що в ньому застосовуються. У другому розділі йдеться про методику розробленого методу стандартизації зображень, отриманих внаслідок проведення ОФЕКТ досліджень головного мозку. Третій розділ несе в собі інформацію про результати розробленої методики стандартизації ОФЕКТ досліджень, а також про знайдену особливість серединно-півкулеву симетрію. У четвертому розділі представлена інформація про створену базу даних для зберігання інформації про пацієнтів, а також розроблений інтерфейс для зручного її використання.
The subject is the «Spatial standardization of SPECT images of the brain», its development, research and obtaining their results, as well as improvement by creating a database for storing information about patients, and an interface in the Matlab environment for easy use. The aim of the work is to create a method of spatial standardization of images of single-photon emission computed tomography (SPECT) to increase the accuracy of further calculations of brain symmetry, and reduce the impact of subjective human factors by automating the method. The first section provides general provisions on the concept of scintigraphy, SPECT research, as well as equipment (gamma camera), and radiopharmaceuticals used in it. The second section deals with the methodology of the developed method of standardization of images obtained because of SPECT brain research. The third section contains information about the results of the developed method of standardization of SPECT research, as well as about the found feature of mid-hemispheric symmetry. The fourth section presents information about the created database for storing information about patients, as well as an interface for its convenient use.
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Mappus, Rudolph Louis IV. "Estimating the discriminative power of time varying features for EEG BMI." Diss., Georgia Institute of Technology, 2009. http://hdl.handle.net/1853/31738.

Повний текст джерела
Анотація:
In this work, we present a set of methods aimed at improving the discriminative power of time-varying features of signals that contain noise. These methods use properties of noise signals as well as information theoretic techniques to factor types of noise and support signal inference for electroencephalographic (EEG) based brain-machine interfaces (BMI). EEG data were collected over two studies aimed at addressing Psychophysiological issues involving symmetry and mental rotation processing. The Psychophysiological data gathered in the mental rotation study also tested the feasibility of using dissociations of mental rotation tasks correlated with rotation angle in a BMI. We show the feasibility of mental rotation for BMI by showing comparable bitrates and recognition accuracy to state-of-the-art BMIs. The conclusion is that by using the feature selection methods introduced in this work to dissociate mental rotation tasks, we produce bitrates and recognition rates comparable to current BMIs.
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Slingerland, Johannes Klaas. "Hopf symmetry and its breaking braid statistics and confinement in planar physics /." [S.l. : Amsterdam : s.n.] ; Universiteit van Amsterdam [Host], 2002. http://dare.uva.nl/document/63347.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Strohmaier, Matthias [Verfasser], and Vladimir [Akademischer Betreuer] Braun. "Conformal symmetry breaking and evolution equations in Quantum Chromodynamics / Matthias Strohmaier ; Betreuer: Vladimir Braun." Regensburg : Universitätsbibliothek Regensburg, 2018. http://d-nb.info/1162339756/34.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Lindén, Leo. "The (perhaps) causal brain : A comparison of attractor neural networks usingtemporally symmetric and antisymmetric synapticrules." Thesis, KTH, Skolan för teknikvetenskap (SCI), 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-230186.

Повний текст джерела
Анотація:
The associative memory of the brain is thought to be well modelled by attractorneural networks. A sort of artificial neural network that may store memories and has the ability to associate them with distorted input. The memories may be stored in the system by changing the connecting weights depending on the activity pattern in the network, a process known as synaptic plasticity. There are several different theories of the conditions required for the strength of synaptic connection increase or decrease and which one of these that is the most likely is still an open issue. Many recent studies of the associative memory have used a model that only take correlated activity between neurons into account (BCPNN), but there is some experimental support for another one in which the exact timing of pre- and postsynaptic activity plays a role (STDP). There is, however, no conclusive evidence for either one and this study will, therefore, investigate the differences in an attractor neural network model using the two different rules for synaptic plasticity.In this study two simple attractor neural networks with 64 neurons werecreated, each using either STDP or BCPNN as a model for synaptic plasticity. Forcing the system into several states corresponding to different memories the connecting weights between the neurons changed. By stimulating the network with partial memory patterns its ability to recall memories remain stable could be tested. In several aspects, the system using STDP was found to perform better than BCPNN, and it is possible to conclude that the former synaptic rule was the better choice in this specific case.To draw any conclusions regarding which of STDP or BCPNN is more prob- able as a model for the synaptic plasticity in the brain more detailed studies would have to be undertaken. Preferably utilising more advanced and biologi- cally realistic models.
Hjärnans förmåga till associativt minne anses kunna modelleras med hjälp as- sociativa neurala nätverk. Ett slags konstgjort neuralt nätverk som kan lagra minnen och har förmågan att associera dessa med förvrängda exempel. Min- nena kan lagras i systemet genom att ändra anslutningsvikterna beroende på aktivitetsmönstret i nätverket, en process som kallas synaptisk plasticitet.  Det finns flera olika teorier om villkoren för att styrkan hos synaptiska anslutningar ska öka eller minska, och vilken av dessa som är mest sannolika är fortfarande en öppen fråga.  Flertalet studier av det associativa minnet har använt en mod- ell som enbart tar hänsyn till korrelerad aktivitet mellan neuroner (BCPNN). Det finns dock ett visst experimentellt stöd för en annan modell, där den exakta tidpunkten för pre- och postsynaptisk aktivitet spelar en större roll (STDP). Då det inte finns några avgörande bevis för att någon av dessa modeller skulle vara närmare verkligheten än den andra kommer denna studie att undersöka  skillnaderna  mellan  associativa  neurala  nätverksmodell  som  använder  sig  av  dessa olika teorier för synaptisk plasticitet. I denna studie skapades två enkla associativa neurala nätverk med 64 neu- roner, vardera med antingen STDP eller BCPNN som modell för synaptisk plasticitet. Genom att systemet tvingades in i flera olika tillstånd, motsvarande olika minnen ändras de anslutande vikterna mellan neuronerna. Genom att senare stimulera nätverken med partiella minnesmönster kunde deras förmåga att återkalla minnen, samt  deras  stabilitet  testas. I flera avseenden visade sig STDP fungera bättre än BCPNN, och det är möjligt att dra slutsatsen att den tidigare av dessa synaptiska regler är det bättre valet i detta specifika fall. För att dra några slutsatser om vilken av STDP eller BCPNN som är den mest sannolika modellen för synaptisk plasticitet i hjärnan, skulle mer detaljer-ade studier behöva genomföras. För bättre resultat bör dessa använda sig av mer avancerade och biologiskt realistiska modeller.
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Penrod, Keith G. "Infinite Product Group." BYU ScholarsArchive, 2007. https://scholarsarchive.byu.edu/etd/976.

Повний текст джерела
Анотація:
The theory of infinite multiplication has been studied in the case of the Hawaiian earring group, and has been seen to simplify the description of that group. In this paper we try to extend the theory of infinite multiplication to other groups and give a few examples of how this can be done. In particular, we discuss the theory as applied to symmetric groups and braid groups. We also give an equivalent definition to K. Eda's infinitary product as the fundamental group of a modified wedge product.
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Lin, Shih-Yen, and 林奭彥. "A Fast and Accurate Algorithm for Diffeomorphic and Symmetric Non-rigid Registration of Brain Magnetic Resonance Images." Thesis, 2012. http://ndltd.ncl.edu.tw/handle/10121205640200755368.

Повний текст джерела
Анотація:
碩士
國立交通大學
資訊科學與工程研究所
101
Abstract A fast symmetric and diffeomorphic non-rigid registration algorithm for magnetic resonance images (MRIs) is proposed in this work. A log-Euclidean framework is used to model diffeomorphisms, in which the Lie Algebra of the diffeomorphism is modeled by time-invariant velocity fields. The velocity fields are modeled using linear combinations of compactly-supported Wendland radial basis functions. A symmetric correlation ratio combined with a weighted Laplacian model is used as the objective function for optimization. We used a greedy local optimization scheme to increase the speed of the algorithm. In this setup, a symmetric downhill simplex method is used to estimate the coefficient of each radial basis function separately and consecutively. To incorporate the result of initial affine registration while maintaining overall symmetry, a framework utilizing the concept of “halfway space” is devised. This framework can ensure overall symmetry if the affine registration algorithm is symmetric. To increase the speed and accuracy, we used a hierarchical framework in which the RBFs are deployed and estimated in a coarse-to-fine manner. The proposed algorithm was evaluated using the results of 1560 pairwise registrations of 40 T1-weighted MRIs in LPBA40 dataset. According to the evaluation results, the proposed algorithm is completely diffeomorphic and has sub-voxel accuracy in terms of symmetry. The accuracy of the proposed algorithm was evaluated and compared with 14 registration methods using the evaluation framework by Klein et al., 2010. The median target overlap of the proposed algorithm using LPBA40 dataset is higher than all 14 registration methods. In addition, the proposed algorithm is faster than all diffeomorphic registration methods in the comparison when using 5 scale levels.
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Irvine, Veronika. "Lace tessellations: a mathematical model for bobbin lace and an exhaustive combinatorial search for patterns." Thesis, 2016. http://hdl.handle.net/1828/7495.

Повний текст джерела
Анотація:
Bobbin lace is a 500-year-old art form in which threads are braided together in an alternating manner to produce a lace fabric. A key component in its construction is a small pattern, called a bobbin lace ground, that can be repeated periodically to fill a region of any size. In this thesis we present a mathematical model for bobbin lace grounds representing the structure as the pair (Δ(G), ζ (v)) where Δ(G) is a topological embedding of a 2-regular digraph, G, on a torus and ζ(v) is a mapping from the vertices of G to a set of braid words. We explore in depth the properties that Δ(G) must possess in order to produce workable lace patterns. Having developed a solid, logical foundation for bobbin lace grounds, we enumerate and exhaustively generate patterns that conform to that model. We start by specifying an equivalence relation and define what makes a pattern prime so that we can identify unique representatives. We then prove that there are an infinite number of prime workable patterns. One of the key properties identified in the model is that it must be possible to partition Δ(G) into a set of osculating circuits such that each circuit has a wrapping index of (1,0); that is, the circuit wraps once around the meridian of the torus and does not wrap around the longitude. We use this property to exhaustively generate workable patterns for increasing numbers of vertices in G by gluing together lattice paths in an osculating manner. Using a backtracking algorithm to process the lattice paths, we identify over 5 million distinct prime patterns. This is well in excess of the roughly 1,000 found in lace ground catalogues. The lattice paths used in our approach are members of a family of partially directed lattice paths that have not been previously reported. We explore these paths in detail, develop a recurrence relation and generating function for their enumeration and present a bijection between these paths and a subset of Motzkin paths. Finally, to draw out of the extremely large number of patterns some of the more aesthetically interesting cases for lacemakers to work on, we look for examples that have a high degree of symmetry. We demonstrate, by computational generation, that there are lace ground representatives from each of the 17 planar periodic symmetry groups.
Graduate
0389
0984
0405
veronikairvine@gmail.com
Стилі APA, Harvard, Vancouver, ISO та ін.

Книги з теми "Brain symmetry"

1

Professor, Brian G. Wybourne Commemorative Meeting (2005 Toruń Poland). Symmetry, spectroscopy and SCHUR: Proceedings of the Professor Brian G. Wybourne Commemorative Meeting, Toruń, 12-14 June 2005. Toruń: Nicolaus Copericus University Press, 2006.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Hofstadter, Douglas R. Gödel, Escher, Bach: An eternal golden braid. 2nd ed. London: Penguin, 2000.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Hofstadter, Douglas R. Gödel, Escher, Bach: An eternal golden braid. 2nd ed. New York: Basic Books, 1999.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Hofstadter, Douglas R. Godel, Escher, Bach: An eternal golden braid. Harmondsworth: Penguin, 1990.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Laureno, Robert. Symmetry. Edited by Robert Laureno. Oxford University Press, 2017. http://dx.doi.org/10.1093/med/9780190607166.003.0005.

Повний текст джерела
Анотація:
This chapter examines the causes of symmetric neurologic lesions in toxic and metabolic disease, trauma, neoplastic disease, vascular disease, and infectious disease. The importance of symmetry in diagnosis is emphasized. Symmetry can be a problem for the neurologist; especially on computed tomography (CT) scans, symmetric disease can be difficult to notice on the background of symmetric brain anatomy because the eye more quickly detects a one-sided lesion or multifocal asymmetric lesions than symmetric lesions. Symmetry of brain lesions is important to the clinician because it suggests a toxic, metabolic, or other chemically based cause. Diseases with symmetric pathology but unknown cause probably are chemically based; the clue of symmetry gives investigators an opportunity to pursue various avenues of research.
Стилі APA, Harvard, Vancouver, ISO та ін.
6

R, Mac Cormac Earl, and Stamenov Maksim, eds. Fractals of brain, fractals of mind: In search of a symmetry bond. Amsterdam: J. Benjamins Pub. Co., 1996.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Earl R. Mac Cormac (Editor) and Maksim I. Stamenov (Editor), eds. Fractals of Brain, Fractals of Mind: In Searchg of a Symmetry Bond (Advances in Consciousness Research, No 7). John Benjamins Publishing Co, 1996.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Wittman, David M. Reasoning with Frames and Spacetime Diagrams. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780199658633.003.0004.

Повний текст джерела
Анотація:
To prepare for the high‐speed world where Galilean relativity breaks down, we now practice the skill of thinking in different frames. Practicing this in our familiar lowspeed world will help us avoid cognitive overload when we enter the more counterintuitive high‐speed world. We examine two problems that illustrate the process of thinking in different frames. Te frst is a brain‐teaser that suddenly becomes easier in a particular frame; the second is a classic problem from introductory physics that we can solve in a new way using symmetry and frame‐based thinking tools alone. Along the way, we will learn how to use the spacetime diagram, a major tool that will appear throughout this book. Te chapter concludes with another look at accelerated vs. inertial frames, from the spacetime diagram point of view
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Wittman, David M. The Twin Paradox. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780199658633.003.0010.

Повний текст джерела
Анотація:
To prepare for the high‐speed world where Galilean relativity breaks down, we now practice the skill of thinking in different frames. Practicing this in our familiar lowspeed world will help us avoid cognitive overload when we enter the more counterintuitive high‐speed world. We examine two problems that illustrate the process of thinking in different frames. Te frst is a brain‐teaser that suddenly becomes easier in a particular frame; the second is a classic problem from introductory physics that we can solve in a new way using symmetry and frame-based thinking tools alone. Along the way, we will learn how to use the spacetime diagram, a major tool that will appear throughout this book. Te chapter concludes with another look at accelerated vs. inertial frames, from the spacetime diagram point of view.
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Laureno, Robert. Foundations for Clinical Neurology. Oxford University Press, 2017. http://dx.doi.org/10.1093/med/9780190607166.001.0001.

Повний текст джерела
Анотація:
Part 1 of this book deals with the practice of neurology. It comments on neurologic history-taking, including observations of patient gestures. It also discusses the neurologic examination and its quantification. Magnetic resonance and computerized tomographic brain imaging are compared and contrasted. The importance of gravity, timing of scans, and plane of section of scans are emphasized. Neurologic diagnosis and its pitfalls are discussed. Neurologic treatment, empirical approaches to therapy, and the provision of hope and reassurance are emphasized. In Part 2, symmetry in neurologic disease as a clue to metabolic cause is a major topic. Selective vulnerability of brain areas to trauma, anoxia, toxins, and other diseases are discussed. Diseases of rapid normalization including myelinolysis are described. Carotid stenosis, berry aneurysm, arteriovenous malformations and other examples of asymptomatic disease comprise a final chapter in this section. Part 3 comments on special topics in neurology. Major attention is given to neurologic terminology, its origins, evolution, eponyms, and politics. The rise, fall, and evolution of neurologic concepts are described. Consideration is given to classifications and causation in neurology. The phenomena of decussation and asymmetry in neurology are discussed.
Стилі APA, Harvard, Vancouver, ISO та ін.

Частини книг з теми "Brain symmetry"

1

Aboitiz, Francisco. "Broken Symmetry." In A Brain for Speech, 131–72. London: Palgrave Macmillan UK, 2017. http://dx.doi.org/10.1057/978-1-137-54060-7_4.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Noga, Brian R., and Ioan Opris. "From Symmetry to Symmetry-Breaking in Locomotion." In The Physics of the Mind and Brain Disorders, 155–74. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-29674-6_7.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Narita, Hiroki. "Merge and (A)symmetry*." In Merge in the Mind-Brain, 35–74. New York : Routledge, [2017] | Series: Routledge leading linguists; 23: Routledge, 2017. http://dx.doi.org/10.4324/9781315442808-3.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Boker, Steven M., and Jennifer L. Rotondo. "Symmetry building and symmetry breaking in synchronized movement." In Mirror Neurons and the Evolution of Brain and Language, 163–71. Amsterdam: John Benjamins Publishing Company, 2002. http://dx.doi.org/10.1075/aicr.42.14bok.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Opris, Ioan, Brian R. Noga, Liviu Bilteanu, and Manuel F. Casanova. "Symmetry Breaking in Cognitive Disorders." In The Physics of the Mind and Brain Disorders, 175–91. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-29674-6_8.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Bilteanu, Liviu, Manuel F. Casanova, and Ioan Opris. "Symmetry and Noether Theorem for Brain Microcircuits." In The Physics of the Mind and Brain Disorders, 129–53. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-29674-6_6.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Bodner, Mark, and Gordon L. Shaw. "Symmetry Operations in the Brain: Music and Reasoning." In Algebraic Methods in Physics, 17–38. New York, NY: Springer New York, 2001. http://dx.doi.org/10.1007/978-1-4613-0119-6_2.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Aziz, Fathrul Azarshah Abdul, Mohd Ibrahim Shapiai, Aznida Firzah Abdul Aziz, Fairuz Ali, Ayman Maliha, and Zuwairie Ibrahim. "EEG Brain Symmetry Index Using Hilbert Huang Transform." In Communications in Computer and Information Science, 548–60. Singapore: Springer Singapore, 2017. http://dx.doi.org/10.1007/978-981-10-6463-0_47.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Xing, Li-kun, Xin Li, and Ying-ge Han. "Variable Momentum Factor Odd Symmetry Error Function Blind Equalization Algorithm." In Advances in Brain Inspired Cognitive Systems, 338–44. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-31561-9_38.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Kartaszyński, Rafał Henryk, and Paweł Mikołajczak. "Symmetry Plane of the Brain on Perfusion MR Images." In Advances in Intelligent and Soft Computing, 65–72. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-13105-9_7.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Тези доповідей конференцій з теми "Brain symmetry"

1

Sun, Yu, Bir Bhanu, and Shiv Bhanu. "Symmetry-integrated injury detection for brain MRI." In 2009 16th IEEE International Conference on Image Processing ICIP 2009. IEEE, 2009. http://dx.doi.org/10.1109/icip.2009.5414064.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Ray, Nilanjan, Baidya Nath Saha, and Matthew Robert Graham Brown. "Locating Brain Tumors from MR Imagery Using Symmetry." In 2007 41st Asilomar conference on Signals, Systems and Computers (ACSSC). IEEE, 2007. http://dx.doi.org/10.1109/acssc.2007.4487200.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Jiao, Feng, Desheng Fu, and Shuoben Bi. "Brain Image Segmentation Based on Bilateral Symmetry Information." In 2008 2nd International Conference on Bioinformatics and Biomedical Engineering (ICBBE '08). IEEE, 2008. http://dx.doi.org/10.1109/icbbe.2008.817.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Pedoia, Valentina, Elisabetta Binaghi, Sergio Balbi, Alessandro De Benedictis, Emanuele Monti, and Renzo Minotto. "Glial brain tumor detection by using symmetry analysis." In SPIE Medical Imaging, edited by David R. Haynor and Sébastien Ourselin. SPIE, 2012. http://dx.doi.org/10.1117/12.910172.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Song, Enmin, Qian Wang, Guangzhi Ma, and Hong Liu. "Symmetry analysis to detect pathological brain in MRI." In International Symposium on Multispectral Image Processing and Pattern Recognition, edited by Jianguo Liu, Kunio Doi, Patrick S. P. Wang, and Qiang Li. SPIE, 2007. http://dx.doi.org/10.1117/12.750987.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Liu, Xin, Celina Imielinska, Andrew Francis, and Laine Anthony D'Ambrosio. "Symmetry Based Multi-modality Registration of the Brain Imagery." In 2007 IEEE International Symposium on Signal Processing and Information Technology. IEEE, 2007. http://dx.doi.org/10.1109/isspit.2007.4458192.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Yu Sun, B. Bhanu, and S. Bhanu. "Automatic symmetry-integrated brain injury detection in MRI sequences." In 2009 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR Workshops). IEEE, 2009. http://dx.doi.org/10.1109/cvpr.2009.5204052.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Sun, Yu, Bir Bhanu, and Shiv Bhanu. "Automatic symmetry-integrated brain injury detection in MRI sequences." In 2009 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). IEEE, 2009. http://dx.doi.org/10.1109/cvprw.2009.5204052.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Dvorak, Pavel, and Karel Bartusek. "Brain tumor locating in 3D MR volume using symmetry." In SPIE Medical Imaging, edited by Sebastien Ourselin and Martin A. Styner. SPIE, 2014. http://dx.doi.org/10.1117/12.2042845.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

"Development of an Interhemispheric Symmetry Measurement in the Neonatal Brain." In International Conference on Pattern Recognition Applications and Methods. SCITEPRESS - Science and and Technology Publications, 2014. http://dx.doi.org/10.5220/0004922407650770.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Звіти організацій з теми "Brain symmetry"

1

Maydykovskiy, Igor. Consciousness as a new form of the matter’s state. Intellectual Archive, August 2021. http://dx.doi.org/10.32370/iaj.2555.

Повний текст джерела
Анотація:
The article discusses the physical model of the implicative form of Consciousness in the form of a holographic wave matrix, for which the material basis is directly the phase environment that fills the entire Space. It is shown that a similar form of Consciousness that exists outside the human brain can be represented as a kind of software shell that controls all forms of matter by implementing a fractal cyclic iterative algorithm. The condition for the completion of each iterative cycle at each scale level is the observance of the laws of symmetry that ensure the survival of the object in the process of copying-incarnation.
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії