Добірка наукової літератури з теми "Brain encoding"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Brain encoding".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Статті в журналах з теми "Brain encoding":

1

Heinze, S., G. Sartory, B. W. Mueller, M. Forsting, and M. Jueptner. "Brain activation during verbal encoding." Schizophrenia Research 60, no. 1 (March 2003): 220. http://dx.doi.org/10.1016/s0920-9964(03)81186-6.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Duss, Simone B., Thomas P. Reber, Jürgen Hänggi, Simon Schwab, Roland Wiest, René M. Müri, Peter Brugger, Klemens Gutbrod, and Katharina Henke. "Unconscious relational encoding depends on hippocampus." Brain 137, no. 12 (September 27, 2014): 3355–70. http://dx.doi.org/10.1093/brain/awu270.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Henin, Simon, Anita Shankar, Helen Borges, Adeen Flinker, Werner Doyle, Daniel Friedman, Orrin Devinsky, György Buzsáki, and Anli Liu. "Spatiotemporal dynamics between interictal epileptiform discharges and ripples during associative memory processing." Brain 144, no. 5 (April 23, 2021): 1590–602. http://dx.doi.org/10.1093/brain/awab044.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Abstract We describe the spatiotemporal course of cortical high-gamma activity, hippocampal ripple activity and interictal epileptiform discharges during an associative memory task in 15 epilepsy patients undergoing invasive EEG. Successful encoding trials manifested significantly greater high-gamma activity in hippocampus and frontal regions. Successful cued recall trials manifested sustained high-gamma activity in hippocampus compared to failed responses. Hippocampal ripple rates were greater during successful encoding and retrieval trials. Interictal epileptiform discharges during encoding were associated with 15% decreased odds of remembering in hippocampus (95% confidence interval 6–23%). Hippocampal interictal epileptiform discharges during retrieval predicted 25% decreased odds of remembering (15–33%). Odds of remembering were reduced by 25–52% if interictal epileptiform discharges occurred during the 500–2000 ms window of encoding or by 41% during retrieval. During encoding and retrieval, hippocampal interictal epileptiform discharges were followed by a transient decrease in ripple rate. We hypothesize that interictal epileptiform discharges impair associative memory in a regionally and temporally specific manner by decreasing physiological hippocampal ripples necessary for effective encoding and recall. Because dynamic memory impairment arises from pathological interictal epileptiform discharge events competing with physiological ripples, interictal epileptiform discharges represent a promising therapeutic target for memory remediation in patients with epilepsy.
4

Fazio, P., A. Cantagallo, L. Craighero, A. D'Ausilio, A. C. Roy, T. Pozzo, F. Calzolari, E. Granieri, and L. Fadiga. "Encoding of human action in Broca's area." Brain 132, no. 7 (May 14, 2009): 1980–88. http://dx.doi.org/10.1093/brain/awp118.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Staurenghi, Erica, Gabriella Testa, Valerio Leoni, Rebecca Cecci, Lucrezia Floro, Serena Giannelli, Eugenio Barone, et al. "Altered Brain Cholesterol Machinery in a Down Syndrome Mouse Model: A Possible Common Feature with Alzheimer’s Disease." Antioxidants 13, no. 4 (April 3, 2024): 435. http://dx.doi.org/10.3390/antiox13040435.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Down syndrome (DS) is a complex chromosomal disorder considered as a genetically determined form of Alzheimer’s disease (AD). Maintenance of brain cholesterol homeostasis is essential for brain functioning and development, and its dysregulation is associated with AD neuroinflammation and oxidative damage. Brain cholesterol imbalances also likely occur in DS, concurring with the precocious AD-like neurodegeneration. In this pilot study, we analyzed, in the brain of the Ts2Cje (Ts2) mouse model of DS, the expression of genes encoding key enzymes involved in cholesterol metabolism and of the levels of cholesterol and its main precursors and products of its metabolism (i.e., oxysterols). The results showed, in Ts2 mice compared to euploid mice, the downregulation of the transcription of the genes encoding the enzymes 3-hydroxy-3-methylglutaryl-CoA reductase and 24-dehydrocholesterol reductase, the latter originally recognized as an indicator of AD, and the consequent reduction in total cholesterol levels. Moreover, the expression of genes encoding enzymes responsible for brain cholesterol oxidation and the amounts of the resulting oxysterols were modified in Ts2 mouse brains, and the levels of cholesterol autoxidation products were increased, suggesting an exacerbation of cerebral oxidative stress. We also observed an enhanced inflammatory response in Ts2 mice, underlined by the upregulation of the transcription of the genes encoding for α-interferon and interleukin-6, two cytokines whose synthesis is increased in the brains of AD patients. Overall, these results suggest that DS and AD brains share cholesterol cycle derangements and altered oxysterol levels, which may contribute to the oxidative and inflammatory events involved in both diseases.
6

Rudenga, K. J., R. Sinha, and D. M. Small. "Stress impacts brain encoding of food." Appetite 52, no. 3 (June 2009): 855. http://dx.doi.org/10.1016/j.appet.2009.04.167.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Turella, Luca, Raffaella Rumiati, and Angelika Lingnau. "Hierarchical Action Encoding Within the Human Brain." Cerebral Cortex 30, no. 5 (January 14, 2020): 2924–38. http://dx.doi.org/10.1093/cercor/bhz284.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Abstract Humans are able to interact with objects with extreme flexibility. To achieve this ability, the brain does not only control specific muscular patterns, but it also needs to represent the abstract goal of an action, irrespective of its implementation. It is debated, however, how abstract action goals are implemented in the brain. To address this question, we used multivariate pattern analysis of functional magnetic resonance imaging data. Human participants performed grasping actions (precision grip, whole hand grip) with two different wrist orientations (canonical, rotated), using either the left or right hand. This design permitted to investigate a hierarchical organization consisting of three levels of abstraction: 1) “concrete action” encoding; 2) “effector-dependent goal” encoding (invariant to wrist orientation); and 3) “effector-independent goal” encoding (invariant to effector and wrist orientation). We found that motor cortices hosted joint encoding of concrete actions and of effector-dependent goals, while the parietal lobe housed a convergence of all three representations, comprising action goals within and across effectors. The left lateral occipito-temporal cortex showed effector-independent goal encoding, but no convergence across the three levels of representation. Our results support a hierarchical organization of action encoding, shedding light on the neural substrates supporting the extraordinary flexibility of human hand behavior.
8

Miller, Michael B., Alan Kingstone, and Michael S. Gazzaniga. "Hemispheric Encoding Asymmetry is More Apparent Than Real." Journal of Cognitive Neuroscience 14, no. 5 (July 1, 2002): 702–8. http://dx.doi.org/10.1162/08989290260138609.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Previous neuroimaging studies have claimed a left hemisphere specialization for episodic “encoding” and a right hemisphere specialization for episodic “retrieval.” Yet studies of split-brain patients indicate relatively minor memory impairment after disconnection of the two hemispheres. This suggests that both hemispheres are capable of encoding and retrieval. In the present experiment, we examined the possible limits on encoding capacity of each hemisphere by manipulating the “depth” of processing during the encoding of unfamiliar faces and familiar words in the left and right hemispheres of two split-brain patients. Results showed that only the left hemisphere benefited from deeper (more elaborate) encoding of familiar words, and only the right hemisphere benefited from deeper encoding of unfamiliar faces. Our findings are consistent with the view that hemispheric asymmetries in episodic encoding are related to hemisphere-specific processing of particular stimuli. Convergent with recent neuroimaging studies, these results with split-brain patients also suggest that these hemispheric differences are not due to unique specializations in each half brain for encoding memories, but rather, are due to preferential recruitment of the synaptically closer prefrontal cortex to posterior regions processing material-specific information.
9

Tulving, Endel, Hans J. Markowitsch, Shitij Kapur, Reza Habib, and Sylvain Houle. "Novelty encoding networks in the human brain." NeuroReport 5, no. 18 (December 1994): 2525–28. http://dx.doi.org/10.1097/00001756-199412000-00030.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Bird, C. M., S. C. Berens, A. J. Horner, and A. Franklin. "Categorical encoding of color in the brain." Proceedings of the National Academy of Sciences 111, no. 12 (March 3, 2014): 4590–95. http://dx.doi.org/10.1073/pnas.1315275111.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Дисертації з теми "Brain encoding":

1

Bruguier, Antoine Jean Quartz Steven Quartz Steven Bossaerts Peter L. "Encoding of financial signals in the human brain /." Diss., Pasadena, Calif. : Caltech, 2008. http://resolver.caltech.edu/CaltechETD:etd-10262007-140735.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Treue, Stefan. "Encoding surfaces from motion in the primate visual system." Thesis, Massachusetts Institute of Technology, 1992. http://hdl.handle.net/1721.1/12930.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Zhang, Suyi. "Encoding and decoding of pain relief in the human brain." Thesis, University of Cambridge, 2019. https://www.repository.cam.ac.uk/handle/1810/286332.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
The studies in this thesis explored how pain and its relief are represented in the human brain. Pain and relief are important survival signals that motivate escape from danger and search for safety, however, they are often evaluated by subjective descriptions only. Studying how humans learn and adapt to pain and relief allows objective investigation of the information processing and neural circuitry underlying these internal experiences. My research set out to use computational learning models to provide mechanistic explanations for the behavioural and functional neuroimaging data collected in pain/relief learning experiments with independent groups of healthy human participants. With a Pavlovian acute pain conditioning task in Experiment 1, I found that 'associability' (a form of uncertainty signal) had a crucial role in controlling the learning rates of different conditioned responses, and can be used to anatomically dissociate underlying neural systems. Experiment 2 focused on relief learning of terminating a tonic pain stimulus, in which the priority for relief-seeking is in conflict with the general suppression of cognition and attention. I showed that associability during active learning not only controls the relief learning rate, but also correlates with endogenously modulated (reduced) ongoing pain. This finding was confirmed in Experiment 3 using an independent active relief learning paradigm in a complex dynamic environment. Critically, both experiments showed that associability was correlated with responses in the pregenual anterior cingulate cortex (pgACC), a brain region previously implicated in aspects of endogenous pain control related to attention and controllability. This provided a potential computational account of an information-sensitive endogenous analgesic mechanism. In Experiment 4, I explored the implications of endogenous controllability for technology-based pain therapeutics. I designed an adaptive closed-loop system that learned to control pain stimulation using decoded real-time pain representations from the brain. Subjects were shown to actively enhance the discriminability of pain only in the pgACC, and uncertainty during learning again correlated with endogenously modulated pain and were associated with pgACC responses. Together, these studies (i) show the importance of uncertainty in controlling learning during both acute and tonic pain, (ii) describe how uncertainty also flexibly modulates pain to maximise the impact of learning, (iii) illustrate a central role for the pgACC in this process, and (iv) reveal the implications for future technology-based therapeutic systems.
4

Fellner, Marie-Christin [Verfasser]. "Unraveling brain oscillatory correlates of memory encoding / Marie-Christin Fellner." Konstanz : Bibliothek der Universität Konstanz, 2015. http://d-nb.info/1110772386/34.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Howland, Brian G. "Episodic memory, integrative processing, and memory-contingent brain activity during encoding." [Gainesville, Fla.] : University of Florida, 2005. http://purl.fcla.edu/fcla/etd/UFE0011629.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Gruber, M. J. "The role of prestimulus brain activity in long-term memory encoding." Thesis, University College London (University of London), 2011. http://discovery.ucl.ac.uk/1333224/.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
It has been shown that brain activity before an item can predict whether this item will later be remembered. However, the cognitive mechanisms underlying this so-called prestimulus brain activity are poorly understood. The studies in this PhD thesis addressed the role of prestimulus neural activity in long-term memory encoding and whether this activity is under voluntary control. To allow better dissociation between brain activity before and after an item, electroencephalography (EEG) was used due to its high temporal resolution. In a series of studies EEG data were analyzed in terms of Event-Related Potentials (ERPs) and oscillatory power in the theta frequency band (4-8 Hz) that plays a crucial role in memory processes. The findings demonstrate that brain activity preceding a stimulus is indeed under a person‟s control. In one experiment, ERP and frontal theta prestimulus activity before an item was only evident when participants were highly motivated to encode an upcoming item. In another experiment, ERP prestimulus activity only emerged when participants prioritized encoding over a concurrent task. These studies suggest that, at least, some prestimulus activities reflect preparatory processes that depend on the available cognitive resources. Two further experiments demonstrated that frontal prestimulus encoding-related theta power is specific to semantic encoding conditions. Finally, a series of behavioural experiments showed that memory performance does not differ depending on the opportunity to prepare during encoding. The findings of my PhD thesis suggest that (i) some prestimulus signals (i.e. frontal theta) reflect a preparatory process ahead of semantic encoding, (ii) and, most importantly, prestimulus signals (i.e. ERPs and frontal theta) reflect active preparatory processes for long-term memory formation. The results of this thesis could lead to the development of new strategies of how to improve memory, especially in clinical settings.
7

Costa, Faidella Jordi. "Regularity encoding in the auditory brain as revealed by human evoked potentials." Doctoral thesis, Universitat de Barcelona, 2011. http://hdl.handle.net/10803/78918.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Acoustic regularity encoding has been associated with a decrease of the neural response to repeated stimulation underlying the representation of auditory objects in the brain. The present thesis encloses two studies that sought to assess the neural correlates of acoustic regularity encoding in the human auditory system, by means of analyzing auditory evoked potentials. Study I was conducted at the Cognitive Neuroscience Research Group, at the Faculty of Psychology of the University of Barcelona (Barcelona, Catalonia, Spain), under the direct supervision of Dr. Carles Escera. This study aimed to explore the dynamics of adaptation of the auditory evoked potentials to probabilistic stimuli embedded in a complex sequence of sounds. The main outcome of this study was the demonstration that the amplitude of auditory evoked potentials adapts to the complex history of stimulation with different time constants concurrently: it adapts faster to local and slower to global probabilities of stimulation. This study also showed that auditory evoked potential amplitudes correlate with stimulus expectancy as defined by a combination of local and global stimulus probabilities. Study II was conducted at the Institute of Child Health (ICH), at the University College of London (UCL; London, United Kingdom), under the direct supervision of Dr. Torsten Baldeweg. This study aimed to explore the influence of timing predictability in the neural adaptation to probabilistic stimuli. The main outcome of this study was the demonstration that timing predictability enhances the repetition-related modulation of the auditory evoked potentials amplitude, being essential for repetition effects at early stages of the auditory processing hierarchy.
La codificació de regularitats acústiques està associada amb la reducció de la resposta neuronal a l’estimulació repetida, essent la base de la representació dels objectes auditius al cervell. La present tesi doctoral inclou dos estudis que exploren els correlats neuronals de la codificació de regularitats acústiques al sistema auditiu humà, mitjançant l’anàlisi dels potencials evocats auditius. L’objectiu del primer estudi, realitzat al Grup de Recerca en Neurociència Cognitiva de la Facultat de Psicologia de la Universitat de Barcelona (UB) i sota la supervisió directa del Dr. Carles Escera, va ser el d’explorar les dinàmiques d’adaptació dels potencials evocats auditius a estímuls probabilístics en una complexa seqüència de sons. El resultat principal d’aquest estudi va ser la demostració de que l’amplitud dels potencials evocats auditius s’adapta a la historia complexa d’estimulació amb diferents constants temporals simultàniament: s’adapta més ràpidament a probabilitats d’estimulació locals que globals. Aquest estudi també va mostrar que l’amplitud dels potencials evocats auditius correlaciona amb l’expectància d’un estímul definida com a una combinació de probabilitats locals i globals d’estimulació. L’objectiu del segon estudi, realitzat al Institute of Child Health (ICH), de l’University College of London (UCL), sota la supervision directa del Dr. Torsten Baldeweg, va ser el d’explorar la influència de la predictabilitat temporal en l’adaptació de l’activitat neuronal a estímuls probabilístics. El resultat principal d’aquest estudi va ser la demostració que la predictabilitat temporal intensifica la modulació de l’amplitud dels potencials evocats auditius a la repetició dels estímuls, essent esencial pels efectes que la repetició exerceix en etapes primerenques de la jerarquía de processament auditiu.
8

Recasens, Fusté Marc. "Source localization of deviance detection and regularity encoding in the auditory brain." Doctoral thesis, Universitat de Barcelona, 2014. http://hdl.handle.net/10803/396286.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
El nostre sistema auditiu codifica regularitats acústiques i les compara amb els inputs sensorials de forma continuada. Els sons novedosos o canvis acústics són detectats inconscientment de forma ràpida i automàtica, permetent així la mobilització de recursos atencionals i un ajustament adequat de la nostra conducta. La tesi aquí present inclou tres estudis que utilitzen Magnetoencefalografia i la localització de camps evocats auditius generats en un paradigma oddball per tal d'investigar els correlats neuronals de la detecció de novetat i la codificació de regularitats en estadis primerencs del sistema auditiu humà. El primer estudi, portat a terme al Grup de Recerca en Neurociència Cognitiva (Universitat de Barcelona), mostra diferents generadors neuronal involucrats en la codificació de son novedodos en finestres temporals primerenques i tardanes; respectivament indicades per les Respostes de Latència Mitja (MLR) generades entre els 20 i 50 milisegons després del inici de un so, i el posterior Potencial de Disparitat (MMN), evocat entre els 100 and 250 milisegons. El segon estudi, portat a terme a l'Institut für Biomagnetismus & Biosignalanalys (Universitat de Münster), mostra que característiques acústiques novedoses formades per nivells de complexitat diferents són processades en intervals de temps diferents i en àrees neuronals separades, suggerint per tant una organització jeràrquica de la detecció de novetat i codificació de regularitats. El tercer estudi, portat a terme al Grup de Recerca en Neurociència Cognitiva emprant un paradigma roving-standard, mostra que tant la supressió com l'increment neuronal relacionats amb la repetició de un estímul estan involucrats en el procés de formació de traces de memòria, i que els generadors neuronals relacionats amb aquest procés estan localitzats tant en regions auditives com regions no auditives d'alt ordre. En resum, els resultats d'aquesta tesi doctoral suggereixen que la percepció auditiva es basa en un sistema sensorial organitzat jeràrquicament que té com a objectiu la predicció d'esdeveniments futurs partint de la predicció de regularitats prèviament codificades.
Our auditory system is continuously encoding acoustic regularities and comparing them with incoming sensory inputs. Novel sounds or acoustic changes must be detected fast in an automatic and unconscious fashion, thus allowing for the reallocation of attentional resources and the proper adjustment of our behaviour. The present thesis encloses three studies that employ Magnetoencephalography and source localization of auditory evoked fields as generated in oddball paradigms to assess the neural correlates of deviance detection and regularity encoding in early stages of the human auditory system. The first study, conducted at the Cognitive Neuroscience Research Group (University of Barcelona), shows distinct neuronal generators involved in the encoding of novel sounds in early and late time intervals; as respectively indexed by Middle Latency-Responses (MLR) evoked between 20 and 50 milliseconds after sound onset, and the later Mismatch component (MMN) generated between 100 and 250 milliseconds. The second study, conducted at the Institut fur Biomagnetismus & Biosignalanalys (University of Munster), shows that deviant acoustic features involving different levels of complexity are processed in distinct time ranges and generated in separated neuronal sources, thus suggesting a hierarchical organization of deviance detection and regularity encoding. The third study, conducted in the Cognitive Neuroscience Research Group using a roving-standard paradigm, indicates that neural repetition-related suppression and repetition enhancement underlie auditory memory trace formation, and that neural generators involved in this process are located in both auditory and non-auditory high-order regions. In sum, results from this thesis suggest that auditory perception is based on a hierarchically organized sensory system whose goal is to predict future events on the basis of previously encoded regularities.
9

Elexpuru-Camiruaga, Jose Antonio. "Susceptibility to brain tumours : role of polymorphism at loci encoding detoxifying enzymes." Thesis, Keele University, 1996. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.336995.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Benavides, Amanda Michelle. "Early neurodevelopmental outcomes in preterm infants: memory, attention, & encoding speed." Diss., University of Iowa, 2017. https://ir.uiowa.edu/etd/5415.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Due to a steady increase in the number of babies born prematurely over the past 20 years, prematurity (a birth occurring before 37 weeks gestation) has emerged as an important public health concern. Even with improved survival of these infants, they remain at risk for many unfavorable health outcomes. Most of those risks include cognitive and behavioral deficits that show up later in life, highlighting the importance of studying the development of the brain, in particular. The current study investigates brain development outcomes in the first years of life using: (1) structural magnetic resonance imaging (MRI) to study brain structure, and (2) three novel cognitive assessments of visual working memory, attention, and speed of processing information. Healthy 12-month-old infants were recruited through University of Iowa’s Neonatal Admissions Registry. An MRI imaging acquisition protocol was developed in order to scan infants during their naptime without sedation. Additionally, a new automatic approach to classifying areas of the brain was developed at the University of Iowa Department of Radiology for 12-month-old brain images. These novel cognitive assessments are based on infant eye movements (including how long it takes for an infant to react to certain stimuli and the direction of their looking). Results from this study support the use of these cognitive tasks to detect specific functional changes in performance based on gestational age. Therefore, these tasks may be potential early markers of risk in preterm populations, but continued investigations are necessary to fully elucidate early brain outcomes during this critical period of development.

Книги з теми "Brain encoding":

1

1955-, Parker Amanda, Wilding Edward L. 1968-, and Bussey Timothy J. 1961-, eds. The cognitive neuroscience of memory: Encoding and retrieval. New York: Psychology Press, 2002.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Cao, Chenglong. Immunological screening of a rat brain cDNA library for genes encoding potential novel glutamate receptors. Ottawa: National Library of Canada, 1993.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Parker, Amanda, Timothy J. Bussey, and Edward L. Wilding. Cognitive Neuroscience of Memory: Encoding and Retrieval. Taylor & Francis Group, 2005.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Parker, Amanda, Timothy J. Bussey, and Edward L. Wilding. Cognitive Neuroscience of Memory: Encoding and Retrieval. Taylor & Francis Group, 2005.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Parker, Amanda, Timothy J. Bussey, and Edward L. Wilding. Cognitive Neuroscience of Memory: Encoding and Retrieval. Taylor & Francis Group, 2014.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Parker, Amanda, Timothy J. Bussey, and Edward L. Wilding. Cognitive Neuroscience of Memory: Encoding and Retrieval. Taylor & Francis Group, 2005.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Parker, Amanda, Timothy J. Bussey, and Edward L. Wilding. Cognitive Neuroscience of Memory: Encoding and Retrieval. Taylor & Francis Group, 2005.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Parker, Amanda, Timothy J. Bussey, and Edward L. Wilding. Cognitive Neuroscience of Memory: Encoding and Retrieval. Taylor & Francis Group, 2005.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Cao, Chenglong. Immunological screening of a rat brain cDNA library for genes encoding potential novel glutamate receptors. 1994.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Roth, Jeffrey Stephen. Isolation and expression of a cDNA clone encoding the catalytic subunit of the rat cAMP-dependent protein kinase. 1987.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Частини книг з теми "Brain encoding":

1

Qiu, Jie-Lin, Xin-Yi Qiu, and Kai Hu. "Emotion Recognition Based on Gramian Encoding Visualization." In Brain Informatics, 3–12. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-030-05587-5_1.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Bonato, Jacopo, Sebastiano Curreli, Tommaso Fellin, and Stefano Panzeri. "Optimizing Measures of Information Encoding in Astrocytic Calcium Signals." In Brain Informatics, 117–28. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-15037-1_10.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Van Leemput, Koen. "Probabilistic Brain Atlas Encoding Using Bayesian Inference." In Medical Image Computing and Computer-Assisted Intervention – MICCAI 2006, 704–11. Berlin, Heidelberg: Springer Berlin Heidelberg, 2006. http://dx.doi.org/10.1007/11866565_86.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Beinborn, Lisa, Samira Abnar, and Rochelle Choenni. "Robust Evaluation of Language–Brain Encoding Experiments." In Computational Linguistics and Intelligent Text Processing, 44–61. Cham: Springer Nature Switzerland, 2023. http://dx.doi.org/10.1007/978-3-031-24337-0_4.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Maffei, Lamberto. "Encoding and Processing of Visual Information in Cortical Neurones." In Experimental Brain Research Supplementum, 97–116. Berlin, Heidelberg: Springer Berlin Heidelberg, 1985. http://dx.doi.org/10.1007/978-3-662-09224-8_6.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Li, Mi, Shengfu Lu, Jiaojiao Li, and Ning Zhong. "The Role of the Parahippocampal Cortex in Memory Encoding and Retrieval: An fMRI Study." In Brain Informatics, 377–86. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-15314-3_36.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Jallais, Maëliss, and Demian Wassermann. "Single Encoding Diffusion MRI: A Probe to Brain Anisotropy." In Mathematics and Visualization, 171–91. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-56215-1_8.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
AbstractThis chapter covers anisotropy in the context of probing microstructure of the human brain using single encoded diffusion MRI. We will start by illustrating how diffusion MRI is a perfectly adapted technique to measure anisotropy in the human brain using water motion, followed by a biological presentation of human brain. The non-invasive imaging technique based on water motions known as diffusion MRI will be further presented, along with the difficulties that come with it. Within this context, we will first review and discuss methods based on signal representation that enable us to get an insight into microstructure anisotropy. We will then outline methods based on modeling, which are state-of-the-art methods to get parameter estimations of the human brain tissue.
8

Dimkovski, Martin, and Aijun An. "Computational Role of Astrocytes in Bayesian Inference and Probability Distribution Encoding." In Brain Informatics and Health, 24–33. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-47103-7_3.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Bai, Lijun, and Jie Tian. "Temporospatial Encoding of Acupuncture Effects in the Brain." In Multi-Modality Neuroimaging Study on Neurobiological Mechanisms of Acupuncture, 31–60. Singapore: Springer Singapore, 2017. http://dx.doi.org/10.1007/978-981-10-4914-9_2.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Rahman, Md Monibor, Md Shibly Sadique, Ahmed G. Temtam, Walia Farzana, L. Vidyaratne, and Khan M. Iftekharuddin. "Brain Tumor Segmentation Using UNet-Context Encoding Network." In Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries, 463–72. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-08999-2_40.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Тези доповідей конференцій з теми "Brain encoding":

1

Shin, Gi-Hwan, and Young-Seok Kweon. "Differential EEG Characteristics during Working Memory Encoding and Re-encoding." In 2022 10th International Winter Conference on Brain-Computer Interface (BCI). IEEE, 2022. http://dx.doi.org/10.1109/bci53720.2022.9735117.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Gozukara, Dora, Djamari Oetringer, Linda Geerligs, and Umut Güçlü. "Precision Brain Encoding Under Naturalistic Conditions." In 2023 Conference on Cognitive Computational Neuroscience. Oxford, United Kingdom: Cognitive Computational Neuroscience, 2023. http://dx.doi.org/10.32470/ccn.2023.1567-0.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Zhao, Shijie, Junwei Han, Xintao Hu, Lei Guo, and Tianming Liu. "Encoding functional brain interactions from computational visual features." In 2013 Chinese Automation Congress (CAC). IEEE, 2013. http://dx.doi.org/10.1109/cac.2013.6775739.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Li, Chao, Baolin Liu, and Jianguo Wei. "Visual Encoding and Decoding of the Human Brain Based on Shared Features." In Twenty-Ninth International Joint Conference on Artificial Intelligence and Seventeenth Pacific Rim International Conference on Artificial Intelligence {IJCAI-PRICAI-20}. California: International Joint Conferences on Artificial Intelligence Organization, 2020. http://dx.doi.org/10.24963/ijcai.2020/103.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Using a convolutional neural network to build visual encoding and decoding models of the human brain is a good starting point for the study on relationship between deep learning and human visual cognitive mechanism. However, related studies have not fully considered their differences. In this paper, we assume that only a portion of neural network features is directly related to human brain signals, which we call shared features. In the encoding process, we extract shared features from the lower and higher layers of the neural network, and then build a non-negative sparse map to predict brain activities. In the decoding process, we use back-propagation to reconstruct visual stimuli, and use dictionary learning and a deep image prior to improve the robustness and accuracy of the algorithm. Experiments on a public fMRI dataset confirm the rationality of the encoding models, and comparing with a recently proposed method, our reconstruction results obtain significantly higher accuracy.
5

Rahnama, Arash, Abdullah Alchihabi, Vijay Gupta, Panos J. Antsaklis, and Fatos T. Yarman Vural. "Encoding Multi-Resolution Brain Networks Using Unsupervised Deep Learning." In 2017 IEEE 17th International Conference on Bioinformatics and Bioengineering (BIBE). IEEE, 2017. http://dx.doi.org/10.1109/bibe.2017.00-75.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Kalafatovich, Jenifer, and Minji Lee. "Neural Oscillations for Encoding and Decoding Declarative Memory using EEG Signals." In 2020 8th International Winter Conference on Brain-Computer Interface (BCI). IEEE, 2020. http://dx.doi.org/10.1109/bci48061.2020.9061650.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Zhang, Shan, Peng Cao, Lili Dou, Jinzhu Yang, and Dazhe Zhao. "An Auto-Encoding Generative Adversarial Networks for Generating Brain Network." In ISICDM 2020: The Fourth International Symposium on Image Computing and Digital Medicine. New York, NY, USA: ACM, 2020. http://dx.doi.org/10.1145/3451421.3451425.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Yang, Huzheng, Yuanning Li, and Shi Gu. "Voxel-wise Encoding Models with Hierarchical Task-optimized Brain Atlas." In 2022 Conference on Cognitive Computational Neuroscience. San Francisco, California, USA: Cognitive Computational Neuroscience, 2022. http://dx.doi.org/10.32470/ccn.2022.1105-0.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Cao, Lu, Dandan Huang, and Yue Zhang. "When Computational Representation Meets Neuroscience: A Survey on Brain Encoding and Decoding." In Thirtieth International Joint Conference on Artificial Intelligence {IJCAI-21}. California: International Joint Conferences on Artificial Intelligence Organization, 2021. http://dx.doi.org/10.24963/ijcai.2021/594.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Real human language mechanisms and the artificial intelligent language processing methods are two independent systems. Exploring the relationship between the two can help develop human-like language models and is also beneficial to reveal the neuroscience of the reading brain. The flourishing research in this interdisciplinal research field calls for surveys to systemically study and analyze the recent successes. However, such a comprehensive review still cannot be found, which motivates our work. This article first briefly introduces the interdisciplinal research progress, then systematically discusses the task of brain decoding from the perspective of simple concepts and complete sentences, and also describes main limitations in this field and put forward with possible solutions. Finally, we conclude this survey with certain open research questions that will stimulate further studies.
10

Zhang, Duzhen, Tielin Zhang, Shuncheng Jia, Qingyu Wang, and Bo Xu. "Recent Advances and New Frontiers in Spiking Neural Networks." In Thirty-First International Joint Conference on Artificial Intelligence {IJCAI-22}. California: International Joint Conferences on Artificial Intelligence Organization, 2022. http://dx.doi.org/10.24963/ijcai.2022/790.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
In recent years, spiking neural networks (SNNs) have received extensive attention in brain-inspired intelligence due to their rich spatially-temporal dynamics, various encoding methods, and event-driven characteristics that naturally fit the neuromorphic hardware. With the development of SNNs, brain-inspired intelligence, an emerging research field inspired by brain science achievements and aiming at artificial general intelligence, is becoming hot. This paper reviews recent advances and discusses new frontiers in SNNs from five major research topics, including essential elements (i.e., spiking neuron models, encoding methods, and topology structures), neuromorphic datasets, optimization algorithms, software, and hardware frameworks. We hope our survey can help researchers understand SNNs better and inspire new works to advance this field.

Звіти організацій з теми "Brain encoding":

1

Yaron, Zvi, Abigail Elizur, Martin Schreibman, and Yonathan Zohar. Advancing Puberty in the Black Carp (Mylopharyngodon piceus) and the Striped Bass (Morone saxatilis). United States Department of Agriculture, January 2000. http://dx.doi.org/10.32747/2000.7695841.bard.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Both the genes and cDNA sequences encoding the b-subunits of black carp LH and FSH were isolated, cloned and sequenced. Sequence analysis of the bcFSHb and LHb5'flanking regions revealed that the promoter region of both genes contains canonical TATA sequences, 30 bp and 17 bp upstream of the transcription start site of FSHb and LHb genes, respectively. In addition, they include several sequences of cis-acting motifs, required for inducible and tissue-specific transcriptional regulation: the gonadotropin-specific element (GSE), GnRH responsive element (GRE), half sites of estrogen and androgen response elements, cAMP response element, and AP1. Several methods have been employed by the Israeli team to purify the recombinant b subunits (EtOH precipitation, gel filtration and lentil lectin). While the final objective to produce pure recombinantGtH subunits has not yet been achieved, we have covered much ground towards this goal. The black carp ovary showed a gradual increase in both mass and oocyte diameter. First postvitellogenic oocytes were found in 5 yr old fish. At this age, the testes already contained spermatozoa. The circulating LH levels increased from 0.5 ng/ml in 4 yr old fish to >5ng/ml in 5 yr old fish. In vivo challenge experiments in black carp showed the initial LH response of the pituitary to GnRH in 4 yr old fish. The response was further augmented in 5 yr old fish. The increase in estradiol level in response to gonadotropic stimulation was first noted in 4 yr old fish but this response was much stronger in the following year. In vivo experiments on the FSHb and LHb mRNA levels in response to GnRH were carried out on common carp as a model for synchronom spawning cyprinids. These experiments showed the prevalence of FSHP in maturing fish while LHP mRNA was prevalent in mature fish, especially in females. The gonadal fat-pad was found to originate from the retroperitoneal mesoderm and not from the genital ridge, thus differing from that reported in certain amphibians This tissue possibly serves as the major source of sex steroids in the immature black carp. However, such a function is taken over by the developing gonads in 4 yr old fish. In the striped bass, we described the ontogeny of the neuro-endocrine parameters along the brain-pituitary-gonadal axis during the first four years of life, throughout gonadal development and the onset of puberty. We also described the responsiveness of the reproductive axis to long-term hormonal manipulations at various stages of gonadal development. Most males reached complete sexual maturity during the first year of life. Puberty was initiated during the third year of life in most females, but this first reproductive cycle did not lead to the acquisition of full sexual maturity. This finding indicates that more than one reproductive cycle may be required before adulthood is reached. Out of the three native GnRHs present in striped bass, only sbGnRH and cGnRH II increased concomitantly with the progress of gonadal development and the onset of puberty. This finding, together with data on GtH synthesis and release, suggests that while sbGnRH and cGnRH II may be involved in the regulation of puberty in striped bass, these neuropeptides are not limiting factors to the onset of puberty. Plasma LH levels remained low in all fish, suggesting that LH plays only a minor role in early gonadal development. This hypothesis was further supported by the finding that experimentally elevated plasma LH levels did not result in the induction of complete ovarian and testicular development. The acquisition of complete puberty in 4 yr old females was associated with a rise in the mRNA levels of all GtH subunit genes, including a 218-fold increase in the mRNA levels of bFSH. mRNA levels of the a and PLH subunits increased only 11- and 8-fold, respectively. Although data on plasma FSH levels are unavailable, the dramatic increase in bFSH mRNA suggests a pivotal role for this hormone in regulating the onset and completion of puberty in striped bass. The hormonal regulation of the onset of puberty and of GtH synthesis and release was studied by chronic administration of testosterone (T) and/or an analog of gonadotropin-releasing hormone (G). Sustained administration of T+G increased the mRNA levels of the PLH subunit to the values characteristic of sexually mature fish, and also increased the plasma levels of LH. However, these changes did not result in the acceleration of sexual maturation. The mRNA levels of the bFSH subunit were slightly stimulated, but remained about 1/10 of the values characteristic of sexually mature fish. It is concluded that the stimulation of FSH gene expression and release does not lead to the acceleration of sexual maturity, and that the failure to sufficiently stimulate the bFSH subunit gene expression may underlie the inability of the treatments to advance sexual maturity. Consequently, FSH is suggested to be the key hormone to the initiation and completion of puberty in striped bass. Future efforts to induce precocious puberty in striped bass should focus on understanding the regulation of FSH synthesis and release and on developing technologies to induce these processes. Definite formulation of hormonal manipulation to advance puberty in the striped bass and the black carp seems to be premature at this stage. However, the project has already yielded a great number of experimental tools of DNA technology, slow-release systems and endocrine information on the process of puberty. These systems and certain protocols have been already utilized successfully to advance maturation in other fish (e.g. grey mullet) and will form a base for further study on fish puberty.

До бібліографії