Добірка наукової літератури з теми "Brain damage"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Brain damage".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Статті в журналах з теми "Brain damage":

1

Larsson, L. "BRAIN DAMAGE, BRAIN REPAIR." Brain 125, no. 12 (December 1, 2002): 2785–86. http://dx.doi.org/10.1093/brain/awf266.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Raisman, Geoffrey. "Brain Damage, Brain Repair." Journal of the Royal Society of Medicine 96, no. 5 (May 2003): 249–50. http://dx.doi.org/10.1177/014107680309600517.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Lanham, Richard A. "Brain Damage, Brain Repair." Journal of Head Trauma Rehabilitation 17, no. 3 (June 2002): 270–72. http://dx.doi.org/10.1097/00001199-200206000-00012.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Jellinger, K. A. "Brain Damage, Brain Repair." European Journal of Neurology 10, no. 3 (May 2003): 335. http://dx.doi.org/10.1046/j.1468-1331.2003.00557.x.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Raisman, G. "Brain Damage, Brain Repair." JRSM 96, no. 5 (May 1, 2003): 249–50. http://dx.doi.org/10.1258/jrsm.96.5.249.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Toledo, C. A. B. "Brain Damage, Brain Repair." Journal of Chemical Neuroanatomy 27, no. 2 (May 2004): 139. http://dx.doi.org/10.1016/j.jchemneu.2004.01.001.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Floyd, Pink. "Brain Damage." Academic Medicine 83, no. 8 (August 2008): 742. http://dx.doi.org/10.1097/acm.0b013e318181d965.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Volpe, Joseph J., A. Ernest, and Jane G. Stein. "BRAIN DAMAGE." Pediatric Research 20, no. 10 (October 1986): 1024–25. http://dx.doi.org/10.1203/00006450-198610000-00039.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Rothwell, Nancy J., and Giamal N. Luheshi. "Brain TNF: Damage limitation or damaged reputation?" Nature Medicine 2, no. 7 (July 1996): 746–47. http://dx.doi.org/10.1038/nm0796-746.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Lakatos, Andras. "Brain Damage and Brain Repair." Neuropathology and Applied Neurobiology 27, no. 3 (June 2001): 252–53. http://dx.doi.org/10.1046/j.1365-2990.2001.00336-2.x.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Дисертації з теми "Brain damage":

1

Sebastián, Romagosa Marc. "Brain computer interfaces for brain acquired damage." Doctoral thesis, Universitat Autònoma de Barcelona, 2020. http://hdl.handle.net/10803/670835.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
El terme Interfície Cervell-Ordinador (ICC), va sorgir als anys 70 pel Dr. Jacques J. Vidal, que mitjançant l’ús de l’electroencefalografia (EEG) fou el primer a intentar proporcionar una sortida alternativa als senyals cerebrals per controlar un dispositiu extern. L’objectiu principal d’aquesta fita era ajudar als pacients amb problemes de moviment i comunicació a relacionar-se amb el seu entorn. Des de llavors, molts neurocientífics han emprat aquesta idea i han intentat posar-la en pràctica utilitzant diferents mètodes d’adquisició i processament del senyal, nous dispositius d’interacció, noves metes i objectius. Tot això ha facilitat l’aplicació d’aquesta tecnologia en moltes àrees, i actualment les ICC s’utilitzen per jugar a videojocs, moure cadires de rodes, facilitar l’escriptura en persones sense mobilitat, definir criteris i preferències en el món del comerç i el consum, o inclús poden servir com a detector de mentides. Tot i així, el sector que presenta un major avenç en el desenvolupament de les ICC, és el sector biomèdic. A grans trets, podem utilitzar les ICC amb dues finalitats diferents dins de la neurorehabilitació; substituint una funció perduda o induint canvis en la plasticitat neuronal amb l’objectiu de restaurar o compensar la funció perduda. Existeixen diferents principis per al registre dels senyals del cervell; de manera invasiva, col·locant els elèctrodes de registre dintre de la cavitat cranial, o de manera no invasiva, col·locant els elèctrodes de registre fora de la cavitat cranial. El mètode més conegut i difós és l’EEG. El seu ús és molt adequat en entorns clínics, té una resolució temporal molt precisa i és possible obtenir una retroalimentació en temps real que pot induir la plasticitat cortical i el restabliment de la funció motora normal. En aquesta tesi presentem tres objectius diferents: (1) avaluar els afectes clínics de la rehabilitació mitjançant les ICC en pacients amb ictus, ja sigui realitzant un meta-anàlisi dels estudis publicats o avaluant els canvis funcionals dels pacients amb ictus després de la teràpia d’ICC; (2) explorar paràmetres alternatius per quantificar els efectes de les ICC en pacients amb ictus, avaluant diferents biomarcadors de l’EEG en pacients amb aquesta patologia i correlacionant aquests marcadors amb els resultats de les escales funcionals; (3) optimitzar el sistema ICC mitjançant la gamificació d’un avatar.
El término Interfaz Cerebro-Computadora (ICC) surgió en los años 70 por el Dr. Jacques J. Vidal, que mediante el uso de la electroencefalografía (EEG) trató de dar una salida alternativa a las señales del cerebro para controlar un dispositivo externo. El objetivo principal de esta hazaña era ayudar a los pacientes con problemas de movimiento o comunicación a relacionarse con el entorno. Desde entonces, muchos neurocientíficos han utilizado esta idea y han tratado de ponerla en práctica utilizando diferentes métodos de adquisición y procesamiento de señales, nuevos dispositivos de interacción y nuevas metas y objetivos. Todo ello ha facilitado la aplicación de esta tecnología en muchas áreas y actualmente las ICC se utilizan para jugar a videojuegos, mover sillas de ruedas, facilitar la escritura en personas sin movilidad, establecer criterios y preferencias de compra en el mundo del comercio y el consumo, o incluso pueden servir como detector de mentiras. Sin embargo, el sector que presenta un mayor avance y desarrollo de las ICC es el sector biomédico. A grandes rasgos podemos utilizar las ICC con dos finalidades distintas dentro de la neurorehabilitación; sustituir una función perdida o inducir cambios en la plasticidad neuronal con el objetivo de restaurar o compensar dicha función perdida. Hay diferentes principios para el registro de las señales del cerebro; de forma invasiva, colocando los electrodos de registro dentro de la cavidad craneal, o no invasiva, colocando los electrodos de registro fuera de la cavidad craneal. El método más conocido y difundido es la EEG. Su uso es adecuado para entornos clínicos, tiene una resolución temporal muy precisa y su retroalimentación en tiempo real puede inducir la plasticidad cortical y el restablecimiento de la función motora normal. En esta tesis presentamos tres objetivos diferentes: (1) evaluar los efectos clínicos de la rehabilitación mediante las ICC en pacientes con ictus, ya sea realizando un meta-análisis de los estudios publicados o evaluando los cambios funcionales en los pacientes con ictus después de la terapia de ICC; (2) explorar parámetros alternativos para cuantificar los efectos de las ICC en pacientes con ictus, evaluando diferentes biomarcadores de electroencefalografía en pacientes con esta patología y correlacionando los posibles cambios en estos parámetros con los resultados en las escalas funcionales; (3) optimizar el sistema ICC utilizando mediante la gamificación de un avatar.
The term Brain Computer Interface (BCI) emerged in the 70's by Dr. Jacques J Vidal, who by using electroencephalography (EEG) tried to give an alternative output to the brain signals in order to control an external device. The main objective of this feat was to help patients with impaired movement or communication to relate themselves to the environment. Since then many neuroscientists have used this idea and have tried to implement it using different methods of signal acquisition and processing, new interaction devices, new goals and objectives. All this has facilitated the implementation of this technology in many areas and currently BCI is used to play video games, move wheelchairs, facilitate writing in people without mobility, establish criteria and purchase preferences in the world of marketing and consumption, or even serve as a lie detector. However, the sector that presents the most marked progress and development of BCI is the biomedical sector. In rough outlines we can use BCI with two different purposes within the neurorehabilitation; to substitute a lost function or to induce neural plasticity changes with the aim to restore or compensate the lost function. To restore a lost function by inducing neuroplastic changes in the brain is undoubtedly a challenging strategy but a feasible goal through BCI technology. This type of intervention requires that the patient invests time and effort in a therapy based on the practice of motor image and feedback mechanisms in real time. There are different principles to record the brain signals; invasively, placing the recording electrodes inside the cranial cavity, or non-invasive, placing the recording electrodes outside of the cranial cavity. The best known and most widespread one is EEG, since they are suitable for clinical environments, have a highly accurate temporal resolution and their real-time feedback can induce cortical plasticity and the restoration of normal motor function. On this thesis we present three different objectives: (1) to evaluate the clinical effects of rehabilitation based on BCI system in stroke patients, either by performing a meta-analysis of published studies or by evaluating functional changes in stroke patients after BCI training; (2) to explore alternative parameters to quantify effects of BCI in stroke patients, by evaluating different electroencephalography biomarkers in stroke patients and correlating potential changes in these parameters with functional scales; (3) to optimize the BCI system by using a new gamified avatar.
2

Rolheiser, Tyler M. "Functional implications of cortical damage /." Connect to title online (Scholars' Bank) Connect to title online (ProQuest), 2008. http://hdl.handle.net/1794/9494.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Jones, Margaret A. "Caregiving for children who have had a traumatic brain injury structuring for security : a thesis submitted to Auckland University of Technology in partial fulfilment of the degree of Master of Health Science, December 2003." Full thesis. Abstract, 2003.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

McKinnon, Elaine E. "Relation of family characteristics and survivor characteristics to outcome after acquired brain injury in adolescents." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1998. http://www.collectionscanada.ca/obj/s4/f2/dsk1/tape11/PQDD_0022/NQ39290.pdf.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Hornich, Agnieszka Apolonia. "Examination of self-efficacy and locus of control in predicting community integration following moderate to severe traumatic brain injury." [Huntington, WV : Marshall University Libraries], 2008. http://www.marshall.edu/etd/descript.asp?ref=871.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Morriss, Elissa. "Long term neuropsychological and psychosocial outcome following severe traumatic brain injury /." [St. Lucia, Qld.], 2004. http://www.library.uq.edu.au/pdfserve.php?image=thesisabs/absthe17593.pdf.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Burke, Christopher. "Uteroplacental insufficiency and prenatal brain damage /." [St. Lucia, Qld.], 2005. http://www.library.uq.edu.au/pdfserve.php?image=thesisabs/absthe19395.pdf.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Kastuk, Donald John. "Social skills training for the traumatic brain injured." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1999. http://www.collectionscanada.ca/obj/s4/f2/dsk1/tape10/PQDD_0002/NQ43434.pdf.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Cherry, Nicola. "Organic brain damage and occupational solvent exposure." Thesis, McGill University, 1991. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=60012.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
309 cases of organic dementia, cerebral atrophy or psycho-organic syndrome, admitted for 5 days or more to one of 18 Quebec hospitals, were individually matched to a psychiatric referent, admitted with some other diagnosis, and a general hospital referent. Lifetime occupational history was obtained by telephone. Occupational solvent exposure was assessed by (i) individual ratings blind to case status and (ii) a job-exposure matrix. Subjects working with moderate or high solvent concentrations for at least 10 years were considered exposed. With the psychiatric referent series an odds ratio of 1.44 (90% CI 1.03-2.01) was calculated for individual exposure ratings and 1.41 (90% CI 0.89-2.23) for the job matrix. The increased risk was found largely in those with diagnoses of both organic dementia or cerebral atrophy and an alcohol related condition. A similar pattern of risk was found with the general hospital referents. Adjustment for possible confounders did not appreciably alter the risk estimates.
10

McCracken, Eileen. "White matter damage after acute brain injury." Thesis, University of Glasgow, 1999. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.340812.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Книги з теми "Brain damage":

1

Burkholz, Herbert. Brain damage. New York: Atheneum, 1992.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Burkholz, Herbert. Brain damage. Glasgow, Great Britain: Headline, 1992.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

1950-, Fawcett James W., Rosser Anne E, and Dunnett S. B, eds. Brain damage, brain repair. Oxford: Oxford University Press, 2001.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Richard, Foreman. Permanent brain damage. Alexandria, VA: Alexander Street Press, 2006.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Great Britain. Department of Health. Acquired brain injury. London: Department of Health, 2004.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

I, Templer Donald, Hartlage Lawrence C, and Cannon W. Gary, eds. Preventable brain damage: Brain vulnerability and brain health. New York: Springer Pub. Co., 1992.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

A, Hunt W., Nixon Sara Jo 1955-, and National Institute on Alcohol Abuse and Alcoholism (U.S.), eds. Alcohol-induced brain damage. Rockville, MD (5600 Fishers Lane, Rockville 20857): The Institute, 1993.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Coca, Antonio, ed. Hypertension and Brain Damage. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-32074-8.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Rose, F. D., and D. A. Johnson, eds. Recovery from Brain Damage. Boston, MA: Springer US, 1992. http://dx.doi.org/10.1007/978-1-4615-3420-4.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Herdegen, T., and J. Delgado-García, eds. Brain Damage and Repair. Dordrecht: Springer Netherlands, 2004. http://dx.doi.org/10.1007/1-4020-2541-6.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Частини книг з теми "Brain damage":

1

Spiers, Mary. "Brain Damage." In Encyclopedia of Behavioral Medicine, 291. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-39903-0_1325.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Wideman, Timothy H., Michael J. L. Sullivan, Shuji Inada, David McIntyre, Masayoshi Kumagai, Naoya Yahagi, J. Rick Turner, et al. "Brain Damage." In Encyclopedia of Behavioral Medicine, 252. New York, NY: Springer New York, 2013. http://dx.doi.org/10.1007/978-1-4419-1005-9_1325.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

McKinlay, Audrey. "Brain Damage." In Encyclopedia of Child Behavior and Development, 284–86. Boston, MA: Springer US, 2011. http://dx.doi.org/10.1007/978-0-387-79061-9_408.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Morgan, Michael M., MacDonald J. Christie, Thomas Steckler, Ben J. Harrison, Christos Pantelis, Christof Baltes, Thomas Mueggler, et al. "Minimal Brain Damage." In Encyclopedia of Psychopharmacology, 785. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-540-68706-1_3399.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Auer, Roland N. "Hypoglycemic Brain Damage." In Metabolic Encephalopathy, 31–39. New York, NY: Springer New York, 2008. http://dx.doi.org/10.1007/978-0-387-79112-8_3.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Ream, Derek, and Isaac Tourgeman. "Specific Brain Damage." In Encyclopedia of Evolutionary Psychological Science, 1–7. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-319-16999-6_3447-1.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Hutchins, Tiffany, Giacomo Vivanti, Natasa Mateljevic, Roger J. Jou, Frederick Shic, Lauren Cornew, Timothy P. L. Roberts, et al. "Minimal Brain Damage." In Encyclopedia of Autism Spectrum Disorders, 1867. New York, NY: Springer New York, 2013. http://dx.doi.org/10.1007/978-1-4419-1698-3_100884.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Laureys, Steven. "Traumatic Brain Damage." In Neuroscience in the 21st Century, 2499–528. New York, NY: Springer New York, 2013. http://dx.doi.org/10.1007/978-1-4614-1997-6_95.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Auer, Roland N. "Hypoglycemic Brain Damage." In Acute Neuronal Injury, 203–10. Boston, MA: Springer US, 2009. http://dx.doi.org/10.1007/978-0-387-73226-8_13.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Ream, Derek, and Isaac Tourgeman. "Specific Brain Damage." In Encyclopedia of Evolutionary Psychological Science, 7847–53. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-319-19650-3_3447.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Тези доповідей конференцій з теми "Brain damage":

1

Cote, Francois, Joel Crepeau, Nicolas Lapointe, Damon DePaoli, Cleophace Akitegetse, Martin Levesque, and Daniel C. Cote. "Fluorescence Endoscope for Deep Brain Imaging With Minimal Tissue Damage Using a Singlemode Fiber." In Optics and the Brain. Washington, D.C.: OSA, 2018. http://dx.doi.org/10.1364/brain.2018.bf3c.4.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Lebedev, Vadim, and Victor Lempitsky. "Fast ConvNets Using Group-Wise Brain Damage." In 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). IEEE, 2016. http://dx.doi.org/10.1109/cvpr.2016.280.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Kanibolotskiy, A. A., I. P. Papyshev, and I. E. Goncharova. "X-ray morphological comparisons in brain damage." In ЛУЧЕВАЯ ДИАГНОСТИКА ДЛЯ ПАТОЛОГИЧЕСКОЙ АНАТОМИИ И СУДЕБНО-МЕДИЦИНСКОЙ ЭКСПЕРТИЗЫ: ОТ ПРИЖИЗНЕННОЙ К ПОСМЕРТНОЙ. Москва: Межрегиональная общественная организация «Межрегиональное Танаторадиологическое Общество», 2022. http://dx.doi.org/10.54182/9785988117094_2022_54.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Kwon, Jiwoon, Sung J. Lee, Ghatu Subhash, Michael King, and Malisa Sarntinoranont. "Shock Induced Deformation and Damage in Rat Brain Slices." In ASME 2010 Summer Bioengineering Conference. American Society of Mechanical Engineers, 2010. http://dx.doi.org/10.1115/sbc2010-19448.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Shock-induced traumatic brain injury (TBI) and post traumatic stress disorder (PTSD) have received increasing attention because many soldiers returning from Iraq and Afghanistan suffer from these disorders. The shock loading duration is typically on the order of few hundred microseconds and hence the strain rate of deformation is very high. Therefore, in the current study, high-rate loading experiments were conducted on brain tissue slices which mimic loading durations encountered in shock loading [1]. The polymer split Hopkinson pressure bar (PSHPB) was used to generate high rate loading as a high speed digital camera captured the deformation of brain tissue. To further clarify initial injury events, post-test damage was assessed through histological studies. This experimental model provides the opportunity for time-resolved visualization of actual tissue deformation thus allowing improved ability to isolate damage-sensitive tissue regions.
5

Liu, Chao, Zhiyong Zhang, and Dong Wang. "Pruning deep neural networks by optimal brain damage." In Interspeech 2014. ISCA: ISCA, 2014. http://dx.doi.org/10.21437/interspeech.2014-281.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Matejkova, Andrea. "COORDINATED REHABILITATION FROM PATIENT'S PERSPECTIVE AFTER BRAIN DAMAGE." In 5th SGEM International Multidisciplinary Scientific Conferences on SOCIAL SCIENCES and ARTS SGEM2018. STEF92 Technology, 2018. http://dx.doi.org/10.5593/sgemsocial2018h/31/s13.076.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Bartova, Marie. "NEEDS OF FAMILIES OF PATIENTS AFTER BRAIN DAMAGE." In 5th SGEM International Multidisciplinary Scientific Conferences on SOCIAL SCIENCES and ARTS SGEM2018. STEF92 Technology, 2018. http://dx.doi.org/10.5593/sgemsocial2018h/31/s13.085.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Jarusek, Robert, Martin Prasek, Martin Kotyrba, and Vladena Jaremova. "Automated diagnostics of patients with severe brain damage." In INTERNATIONAL CONFERENCE OF NUMERICAL ANALYSIS AND APPLIED MATHEMATICS ICNAAM 2020. AIP Publishing, 2022. http://dx.doi.org/10.1063/5.0085878.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Assari, Soroush, and Kurosh Darvish. "Brain Tissue Material and Damage Properties for Blast Trauma." In ASME 2018 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2018. http://dx.doi.org/10.1115/imece2018-88419.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
The aim of this study was to develop a test method to characterize the material behavior of bovine brain samples in large shear deformations and high strain rates relevant to blast-induced neurotrauma (BINT) and evaluate tissue damage. A novel shear test setup was designed and built capable of applying strain rates ranging from 300 to 1000 s−1. Based on the shear force time history and propagation of shear waves, it was found that the instantaneous shear modulus (about 6 kPa) was more than 3 times higher than the values previously reported in the literature. The shear wave velocity was found to be strain path dependent which is an indication of tissue damage at strains greater than 10%. The results of this study can help in improving finite element models of the brain for simulating tissue injury during BINT.
10

Yates, Keegan, Elizabeth Fievisohn, Warren Hardy, and Costin Untaroiu. "Development and Validation of a Göttingen Miniature Pig Brain Finite Element Model." In ASME 2016 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2016. http://dx.doi.org/10.1115/detc2016-60217.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
The Center for Disease Control and Prevention reports that there are approximately 1.4 million emergency department visits, hospitalizations, or deaths per year in the USA due to traumatic brain injuries (TBI) [1]. In order to lessen the severity or prevent TBIs, accurate dummy models, simulations, and injury risk metrics must be used. Ideally, these models and metrics would be designed with the use of human data. However, available human data is sparse, so animal study data must be applied to the human brain. Animal data must be scaled before it can be applied, and current scaling methods are very simplified. The objective of our study was to develop a finite element (FE) model of a Göttingen mini-pig to allow study of the tissue level response under impact loading. A hexahedral FE model of a miniature pig brain was created from MRI images. The cerebrum, cerebellum, corpus callosum, midbrain, brainstem, and ventricles were modeled and assigned properties as a Kelvin-Maxwell viscoelastic material. To validate the model, tests were conducted using mini-pigs in an injury device that subjected the pig brain to both linear and angular motion. These pigs are commonly used for brain testing because the brains are well developed with folds and the material properties are similar to human brain. The pigs’ brains were embedded with neutral density radio-opaque markers to track the motion of the brain relative to the skull with a biplanar X-ray system. The impact was then simulated, and the motion of nodes closest to the marker locations was recorded and used to optimize material parameters and the skull-brain interface. The injuries were defined at a tissue level with damage measures such as cumulative strain damage measure (CSDM). In future the animal FE model could be used with a human FE model to determine an accurate animal-to-human transfer function.

Звіти організацій з теми "Brain damage":

1

Bramlett, Helen M. Mechanisms and Treatment of Progressive Damage After Traumatic Brain Injury. Fort Belvoir, VA: Defense Technical Information Center, February 2003. http://dx.doi.org/10.21236/ada413329.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Bruhn, Arnold. Simulation of Brain Damage on Bender-gestalt Test by College Subjects. Portland State University Library, January 2000. http://dx.doi.org/10.15760/etd.1579.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Subhash, Ghatu. Cavitation Induced Structural and Neural Damage in Live Brain Tissue Slices: Relevance to TBI. Fort Belvoir, VA: Defense Technical Information Center, September 2014. http://dx.doi.org/10.21236/ada612616.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Sharma, Pushpa, Neil Grunberg, He Li, Erin Berry, and Brandi Benford. Mitochondrial Damage: A Diagnostic and Metabolic Approach in Traumatic Brain Injury and Post-Traumatic Disorder. Fort Belvoir, VA: Defense Technical Information Center, January 2013. http://dx.doi.org/10.21236/ada579698.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Song, Yaowen, Shuiyu Lin, Jun Chen, Silu Ding, and Jun Dang. First-line treatment with TKI plus brain radiotherapy vs TKI alone in EGFR-mutated non-small-cell lung cancer with brain metastases: a systematic review and meta-analysis. INPLASY - International Platform of Registered Systematic Review and Meta-analysis Protocols, January 2023. http://dx.doi.org/10.37766/inplasy2023.1.0013.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Review question / Objective: It remains uncertain whether first-line treatment with upfront brain radiotherapy (RT) in combination with epidermal growth factor receptor tyrosine kinase inhibitors (EGFR-TKIs) is superior to EGFR-TKIs alone in EGFR-mutated non-small-cell lung cancer with newly diagnosed brain metastases (BMs). We performed a meta-analysis to address this issue. Condition being studied: Brain radiotherapy (RT) has been shown to damage the blood-brain barrier (BBB) and improve the concentration of EGFR-TKIs in the CSF. Additionally, RT can result in a reduction of EGFR-TKIs resistance. Therefore, EGFR-TKIs in combination with brain RT should be more effective than EGFR-TKIs alone theoretically. However, results from retrospective studies are inconsistent. There is the possibility that patients characteristics or brain RT technique affect the efficacy of treatments. To date, there is still no randomized controlled trials (RCTs) comparing the two treatment strategies.
6

Ling, Douglas S. F., Lie Yang, Sonia Afroz, and ChangChi Hsieh. The Brain Tourniquet: Physiological Isolation of Brain Regions Damaged by Traumatic Head Injury. Fort Belvoir, VA: Defense Technical Information Center, June 2008. http://dx.doi.org/10.21236/ada483617.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Caldwell, Kevin K. Prenatal Alcohol Exposure Damages Brain Signal Transduction Systems. Fort Belvoir, VA: Defense Technical Information Center, September 2001. http://dx.doi.org/10.21236/ada398260.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Caldwell, Kevin K. Prenatal Alcohol Exposure Damages Brain Signal Transduction System. Fort Belvoir, VA: Defense Technical Information Center, September 2004. http://dx.doi.org/10.21236/ada435060.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Caldwell, Kevin K. Prenatal Alcohol Exposure Damages Brain Signal Transduction Systems. Fort Belvoir, VA: Defense Technical Information Center, September 2002. http://dx.doi.org/10.21236/ada412840.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Zhuo, Guifeng, Hengwang Yu, Ran Liao, Xuexia Zheng, Dongmin Liu, Libing Mei, and Guiling Wu. Auricular point pressing therapy for obstructive sleep apnea hypoventilation syndrome: A protocol for systematic review and meta-analysis. INPLASY - International Platform of Registered Systematic Review and Meta-analysis Protocols, May 2022. http://dx.doi.org/10.37766/inplasy2022.5.0015.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Review question / Objective: Patients with obstructive sleep apnea hypoventilation syndrome (OSAHS) suffer from repeated hypoxemia, hypercapnia, and sleep structure disorders at night, leading to daytime lethargy and complications of heart, brain, lung, and blood vessel damage, which seriously affect their quality of life and life span. Clinical studies have shown that auricular point pressing therapy has an excellent therapeutic effect on OSAHS, and has the potential to be a complementary and alternative therapy for patients with OSAHS. Currently, systematic reviews and meta-analyses evaluating the efficacy and safety of electroacupuncture for the treatment of OSAHS are lacking. This study aimed to address this deficiency. Information sources: RCTs of auricular point pressing therapy in the treatment of OSAHS were searched in the Web of Science, PubMed, Cochrane Library, Embase, Allied and Complementary Medicine Database (AMED), China Science and Technology Journal Database (VIP), China National Knowledge Infrastructure (CNKI), and Wan-Fang Database. The retrieval time is from database construction to the present.

До бібліографії