Добірка наукової літератури з теми "Blade grid"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Blade grid".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Статті в журналах з теми "Blade grid"
Balalaiev, Anton, Kateryna Balalaieva, Maryna Pikul та Grygoriy Golembiyevskyy. "Власні частоти коливань композитної решітчастої дворядної лопатки вентилятора ТРДД". Aerospace Technic and Technology, № 4 (29 серпня 2024): 49–57. http://dx.doi.org/10.32620/aktt.2024.4.06.
Повний текст джерелаBohn, D. E., and N. Moritz. "Algebraic method for efficient adaption of structured grids to fluctuating geometries." Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy 219, no. 4 (June 1, 2005): 303–14. http://dx.doi.org/10.1243/095765005x7619.
Повний текст джерелаProcházka, Pavel, Václav Uruba, Luděk Pešek, and VÍtězslav Bula. "On the effect of moving blade grid on the flow field characteristics." EPJ Web of Conferences 180 (2018): 02086. http://dx.doi.org/10.1051/epjconf/201818002086.
Повний текст джерелаTuncer, I. H., S. Weber, and W. Sanz. "Investigation of Periodic Boundary Conditions in Multipassage Cascade Flows Using Overset Grids." Journal of Turbomachinery 121, no. 2 (April 1, 1999): 341–47. http://dx.doi.org/10.1115/1.2841320.
Повний текст джерелаZadeh, Saman Naghib, Matin Komeili, and Marius Paraschivoiu. "MESH CONVERGENCE STUDY FOR 2-D STRAIGHT-BLADE VERTICAL AXIS WIND TURBINE SIMULATIONS AND ESTIMATION FOR 3-D SIMULATIONS." Transactions of the Canadian Society for Mechanical Engineering 38, no. 4 (December 2014): 487–504. http://dx.doi.org/10.1139/tcsme-2014-0032.
Повний текст джерелаMarin, Ambroise, Emmanuel Denimal, Stéphane Guyot, Ludovic Journaux, and Paul Molin. "A Robust Generic Method for Grid Detection in White Light Microscopy Malassez Blade Images in the Context of Cell Counting." Microscopy and Microanalysis 21, no. 1 (December 16, 2014): 239–48. http://dx.doi.org/10.1017/s1431927614013671.
Повний текст джерелаAbdullah, Bestoon, Vadim Varsegov, and Adolf Limansky. "CENTRIFUGAL COMPRESSOR HEAD CHARACTERISTIC OF A MICRO TURBOJET ENGINE BASED ON NUMERICAL SIMULATION." Perm National Research Polytechnic University Aerospace Engineering Bulletin, no. 62 (2020): 5–11. http://dx.doi.org/10.15593/2224-9982/2020.62.01.
Повний текст джерелаVershkov, V. A., B. S. Kritsky, and R. M. Mirgazov. "FEATURES OF MODELING THE FLOW AROUND THE HELICOPTER MAIN ROTOR TAKING INTO ACCOUNT ARBITRARY BLADES MOTION." Civil Aviation High TECHNOLOGIES 22, no. 3 (June 29, 2019): 25–34. http://dx.doi.org/10.26467/2079-0619-2019-22-3-25-34.
Повний текст джерелаBahaghighat, Mahdi, and Seyed Motamedi. "Vision inspection and monitoring of wind turbine farms in emerging smart grids." Facta universitatis - series: Electronics and Energetics 31, no. 2 (2018): 287–301. http://dx.doi.org/10.2298/fuee1802287b.
Повний текст джерелаLi, Xue Feng, Xiu Quan Huang, and Chao Liu. "Numerical Simulation Method for Fluid-Structure Interaction in Compressor Blades." Applied Mechanics and Materials 488-489 (January 2014): 914–17. http://dx.doi.org/10.4028/www.scientific.net/amm.488-489.914.
Повний текст джерелаДисертації з теми "Blade grid"
Mish, Patrick F. "Mean Loading and Turbulence Scale Effects on the Surface Pressure Fluctuations Occurring on a NACA 0015 Airfoil Immersed in Grid Generated Turbulence." Thesis, Virginia Tech, 2001. http://hdl.handle.net/10919/33751.
Повний текст джерелаMaster of Science
Larssen, Jon Vegard. "Large Scale Homogeneous Turbulence and Interactions with a Flat-Plate Cascade." Diss., Virginia Tech, 2005. http://hdl.handle.net/10919/26540.
Повний текст джерелаPh. D.
Taymans, Claire. "Solving Incompressible Navier-Stokes Equations on Octree grids : towards Application to Wind Turbine Blade Modelling." Thesis, Bordeaux, 2018. http://www.theses.fr/2018BORD0157/document.
Повний текст джерелаThe subject of the thesis is the development of a numerical tool that allows to model the flow around wind blades. We are interested in the solving of incompressible Navier-Stokes equations on octree grids, where the smallest scales close to the wall have been modelled by the use of the so-called Wall Functions. An automatic Adaptive Mesh Refinement (AMR) process has been developed in order to refine the mesh in the areas where the vorticity is higher. The structural model of a real wind blade has also been implemented and coupled with the fluid model. Indeed, an application of the numerical tool is the study of the effects of wind gusts on blades. An experimental work has been conducted with an in-service wind turbine with the measurement of wind speed upstream. This data will allow to calibrate and validate the numerical models developed in the thesis
Linda, Jakub. "Větrné stroje pro obydlené oblasti." Master's thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2020. http://www.nusl.cz/ntk/nusl-417801.
Повний текст джерелаРатушний, Олександр Валерійович, Александр Валерьевич Ратушный та Oleksandr Valeriiovych Ratushnyi. "Повышение напорности ступени центробежного насоса путем усовершенствования лопастной решетки рабочего колеса". Thesis, Изд-во СумГУ, 2015. http://essuir.sumdu.edu.ua/handle/123456789/40844.
Повний текст джерелаВ диссертационной работе представленно новое решение научной задачи, заключающейся в повышении энергетической эффективности ступени центробежного насоса. В качестве пути решения этой задачи рассматривается возможность создания ступеней с существенно большим напором при неизменных геометрических размерах, величинах подачи и скорости вращения. На основе обзора научно-технической информации была обоснована актуальность темы исследования, сформулированные его цель и задачи. Решение научной задачи состоит в объединении различных способов влияния на геометрию лопастной решетки рабочих колес: использование двухъярусной решетки новой геометрии, затыловки выходных кромок лопастей, лопастей S- образной формы с увеличенным углом выхода. На адекватных математических моделях получена картины течения в рабочем колесе, которые дают возможность оценки распределения скоростей и давлений, а также определения геометрических параметров, которые наиболее существенно влияют на его энергетические характеристики. Установлены оптимальные соотношения основных геометрических параметров, которые дают возможность увеличить напор колеса на 15-30% при практически том же уровне экономичности. На основе идеи совместного использования способов повышения напорности рабочего колеса были предложены их две конструкции: колесо, в межлопастном канале которого установлено несколько выполненных в два раза тоньше, по сравнению с основной, коротких дополнительных лопастей длиной в 10% от неё с затыловкой выходных кромок лопастей обоих ярусов; колесо, имеющие лопасти S-образной формы с затыловкой выходных кромок и с несколькими короткими дополнительными лопастями в межлопастном канале, выполненными в два раза тоньше по сравнению с основной лопастью и длиной в 1 0% от неё, повторяющими форму основных лопастей. Установлено влияние отдельных геометрических параметров рабочего колеса с модернизованными лопастными решетками на его характеристики, которое дало возможность провести оптимизацию по разным параметрам на основе методики планирования эксперимента. Была решена компромиссная задача нахождения условного экстремума для одной поверхности отклика при ограничениях, налагаемых другой. Для этого использовался метод неопределённых множителей Лагранжа. Определен диапазон быстроходностей ns = 65…95, в котором совокупность повышения напора и ККД оптимальны. Указана возможность применения модернизованных рабочих колес в составе ступени без замены направляющего аппарата.
In the dissertation presented a new solutionof a scientific problem, consisting in increasing the energy efficiency of the centrifugal pump stage. As away of solving this problem is considered the ability of creation of steps with considerably high pressure at constant geometric dimensions, feed amount and rotational speed. Based on a review of scientific and technical information has been proving the actuality the research topics and formulated its purpose and tasks. The solution of this scientific problem, which is to increase the pressure centrifugal pump stage by combining a variety of ways to influence the geometry of the blade grid of impellers: by using the double blade grid, truncated blade shape modification, the S-shaped blades with a larger angle of outlet. At the appropriate mathematical models to get a picture of flowin the impeller, which allow assessment of distribution of velocities and pressures and determining the geometric parameters that most significantly affect its energy characteristics. The optimum ratio of the basic geometrical parameters which allow increasing the pressure ofthe impeller between 15-30 % with almost the same level of efficiency. The influence of individual geometric parameters of impeller with the modernizing blades on its characteristics, which provided an opportunity to optimize for different parameters based on the methodology of experimental design, is stablished. It determined the range of high-speed ns = 65-95, in which the totality of increasing pressure and the efficiency are optimal. Indicated the possibility of using modernized impellers composed stage without replacing the guide vanes.
Gecgel, Murat. "Parallel, Navier." Master's thesis, METU, 2003. http://etd.lib.metu.edu.tr/upload/12604807/index.pdf.
Повний текст джерелаdimensional laminar and turbulent flowfields over rotary wing configurations. The code employs finite volume discretization and the compact, four step Runge-Kutta type time integration technique to solve unsteady, thin&ndash
layer Navier&ndash
Stokes equations. Zero&ndash
order Baldwin&ndash
Lomax turbulence model is utilized to model the turbulence for the computation of turbulent flowfields. A fine, viscous, H type structured grid is employed in the computations. To reduce the computational time and memory requirements parallel processing with distributed memory is used. The data communication among the processors is executed by using the MPI ( Message Passing Interface ) communication libraries. Laminar and turbulent solutions around a two bladed UH &ndash
1 helicopter rotor and turbulent solution around a flat plate is obtained. For the rotary wing configurations, nonlifting and lifting rotor cases are handled seperately for subsonic and transonic blade tip speeds. The results are, generally, in good agreement with the experimental data.
Duffy, Michael James. "Small wind turbines mounted to existing structures." Thesis, Georgia Institute of Technology, 2010. http://hdl.handle.net/1853/34765.
Повний текст джерелаJoulain, Antoine. "Simulation aérodynamique d'extrémités de pales de rotors sustentateurs d'hélicoptère." Thesis, Aix-Marseille, 2015. http://www.theses.fr/2015AIXM4768.
Повний текст джерелаHelicopter aerodynamics is strongly influenced by the vortices generated from the rotor-blade tips. The design of efficient tip shapes is a challenging task because of the complexity of the aerodynamic phenomena involved and the lack of local blade-tip flow measurements. This work provides a contribution to the design of helicopter tips in hover. An efficient, relatively simple and quick numerical method is set up to study rotating blade tips in fixed-wing configurations. The accuracy of the method is shown at each step of the construction by comprehensive comparisons with reliable experimental data from the literature. First, an efficient steady Reynolds-Averaged Navier-Stokes method is constructed using ONERA's elsA code. Comprehensive studies of convergence, grid dependence and sensitivity to the numerical method are performed in two and three dimensions. The very good agreement of the solution with measurements and the accuracy of the numerical method allow a physical analysis with unprecedented detail of the vortex generation and roll-up near square and rounded wing tips. The new methodology of framework adaptation is then presented. An uncoupled hybrid strategy is set up using AIRBUS HELICOPTERS' Comprehensive Analysis code HOST and the Computational Fluid Dynamics solver elsA. Global and local performance calculations are validated for all investigated test cases. Comparison with previously published adaptation methods indicates considerable improvement in the prediction of the blade aerodynamics
Zhou, Jian Ming. "A multi-grid method for computation of film cooling." Thesis, University of British Columbia, 1990. http://hdl.handle.net/2429/29414.
Повний текст джерелаScience, Faculty of
Mathematics, Department of
Graduate
Banerjee, Mili. "Subordinate Perception of Leadership Style and Power: A Cross-Cultural Investigation." University of Akron / OhioLINK, 2009. http://rave.ohiolink.edu/etdc/view?acc_num=akron1253769052.
Повний текст джерелаКниги з теми "Blade grid"
L, Rigby D., and NASA Glenn Research Center, eds. A numerical analysis of heat transfer and effectiveness on film cooled turbine blade tip models. [Cleveland, Ohio]: National Aeronautics and Space Administration, Glenn Research Center, 1999.
Знайти повний текст джерелаL, Hoffman G., and United States. National Aeronautics and Space Administration., eds. IGB grid: User's manual (a turbomachinery grid generation code). [Washington, DC]: National Aeronautics and Space Administration, 1992.
Знайти повний текст джерелаCenter, Langley Research, ed. Full-potential modeling of blade-vortex interactions. Hampton, Va: National Aeronautics and Space Administration, Langley Research Center, 1997.
Знайти повний текст джерелаCenter, Langley Research, ed. Full-potential modeling of blade-vortex interactions. Hampton, Va: National Aeronautics and Space Administration, Langley Research Center, 1997.
Знайти повний текст джерелаC, Hall Kenneth, and United States. National Aeronautics and Space Administration., eds. Sensitivity analysis for aeroacoustic and aeroelastic design of turbomachinery blades: Final technical report. Durham, NC: Dept. of Mechanical Engineering and Materials Science, School of Engineering, Duke University, 1995.
Знайти повний текст джерелаN, Duque Earl P., and United States. National Aeronautics and Space Administration., eds. Helicopter rotor blade computation in unsteady flows using moving overset grids. Washington, DC: American Institute of Aeronautics and Astronautics, 1996.
Знайти повний текст джерелаCenter, NASA Glenn Research, ed. Heat transfer on a film-cooled rotating blade. [Cleveland, Ohio]: National Aeronautics and Space Administration, Glenn Research Center, 1999.
Знайти повний текст джерелаBoyle, Robert J. Grid orthogonality effects on predicted turbine midspan heat transfer and performance. [Washington, DC]: National Aeronautics and Space Administration, 1995.
Знайти повний текст джерелаA, Garriz Javier, Samareh Jamshid A, and United States. National Aeronautics and Space Administration., eds. The development of a tool for semi-automated generation of structured and unstructured grids about isolated rotorcraft blades. [Washington, D.C: National Aeronautics and Space Administration, 1997.
Знайти повний текст джерелаS, Clark William. Prediction of unsteady flows in turbomachinery using the linearized Euler equations on deforming grids. [Washington, DC: National Aeronautics and Space Administration, 1991.
Знайти повний текст джерелаЧастини книг з теми "Blade grid"
Bartosch, Leonard, Julia Baule, Felipe Castrillón, and Dinah Spitzley. "Managerial Grid nach Blake und Mouton." In Ziel- und Leistungsorientierung, 11–12. Wiesbaden: Springer Fachmedien Wiesbaden, 2017. http://dx.doi.org/10.1007/978-3-658-16882-7_4.
Повний текст джерелаOpiela, M., M. Meinke, and W. Schröder. "Simulation of a Wake-Blade Interaction in Moving Grids." In Computational Fluid Dynamics 2000, 437–42. Berlin, Heidelberg: Springer Berlin Heidelberg, 2001. http://dx.doi.org/10.1007/978-3-642-56535-9_65.
Повний текст джерелаIm, Dong-Kyun, Seong-Yong Wie, Eugene Kim, Jang-Hyuk Kwon, Duck-Joo Lee, Ki-Hoon Chung, and Seung-Bum Kim. "Aerodynamic Analysis of Rotor Blades using Overset Grid with Parallel Computation." In Lecture Notes in Computational Science and Engineering, 101–10. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-14438-7_10.
Повний текст джерелаThakre, Utkarsh, and Asim Tewari. "Using Automated Finite Element Framework to Analyze Offshore Grid Turbine Blades Design." In Lecture Notes in Mechanical Engineering, 621–30. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-0698-4_68.
Повний текст джерелаFuchs, M., H. Burchhardt, A. Losch, and K. M. Stürmer. "Die Versorgung proximaler Oberarmfrakturen im hohen Lebensalter mit der „durchbohrten Winkelplatte 90 Grad“ / Stabilization of Proximal Humeral Fractures with the Cannulated Blade Plate 90° in Elderly Patients." In Deutsche Gesellschaft für Chirurgie, 360. Berlin, Heidelberg: Springer Berlin Heidelberg, 2001. http://dx.doi.org/10.1007/978-3-642-56458-1_118.
Повний текст джерелаSocrates, S., M. Shanmugapriya, B. Murugeshwari, and S. Angalaeswari. "Efficient Design for Implantable Device Constant Current Induction Doubly Fed Generating Incorporating Grid Connectivity." In Advances in Computer and Electrical Engineering, 382–92. IGI Global, 2024. http://dx.doi.org/10.4018/979-8-3693-3735-6.ch019.
Повний текст джерелаBrahimi, Tayeb, and Ion Paraschivoiu. "Aerodynamic Analysis and Performance Prediction of VAWT and HAWT Using CARDAAV and Qblade Computer Codes." In Entropy and Exergy in Renewable Energy [Working Title]. IntechOpen, 2021. http://dx.doi.org/10.5772/intechopen.96343.
Повний текст джерелаValentine, Scott. "Understanding Wind Power Systems." In Wind Power Politics and Policy. Oxford University Press, 2015. http://dx.doi.org/10.1093/oso/9780199862726.003.0004.
Повний текст джерелаBiborski, Mateusz, Marcin Biborski, and Janusz Stępiński. "Badania nad technologią wybranych zabytków żelaznych." In Ocalone Dziedzictwo Archeologiczne, 135–44. Wydawnictwo Profil-Archeo; Muzeum im. Jacka Malczewskiego w Radomiu, 2020. http://dx.doi.org/10.33547/oda-sah.10.zn.12.
Повний текст джерелаElyaalaoui, Kamal, Moussa Labbadi, Khalid Chigane, Mohammed Ouassaid, and Mohamed Cherkaoui. "Operation and Startup of Three-Phase Grid-Connected PWM Inverter for an Experimental Test Bench With DSPACE Real-Time Implementation of PQ Control." In Advances in Environmental Engineering and Green Technologies, 207–32. IGI Global, 2022. http://dx.doi.org/10.4018/978-1-7998-7447-8.ch008.
Повний текст джерелаТези доповідей конференцій з теми "Blade grid"
Min, Byung-Young, Isaac Wilbur, Sandeep Agarwal, Ramin Modarres, Jinggen Zhao, Jonathan Wong, Brian Wake, and Marilyn Smith. "Toward Improved UH-60A Blade Structural Loads Correlation." In Vertical Flight Society 74th Annual Forum & Technology Display, 1–18. The Vertical Flight Society, 2018. http://dx.doi.org/10.4050/f-0074-2018-12762.
Повний текст джерелаZhu, Zheng, and QiJun Zhao. "Numerical Optimization for Rotor Blade-tip Planform with Low HSI Noise Characteristics in Forward Flight." In Vertical Flight Society 71st Annual Forum & Technology Display, 1–9. The Vertical Flight Society, 2015. http://dx.doi.org/10.4050/f-0071-2015-10070.
Повний текст джерелаPeng, Li, Zhao Qi-Jun, and Zhu Qiu-xian. "CFD Calculations on the Unsteady Aerodynamic Force of Tilt-rotor in Conversion Mode." In Vertical Flight Society 70th Annual Forum & Technology Display, 1–12. The Vertical Flight Society, 2014. http://dx.doi.org/10.4050/f-0070-2014-9422.
Повний текст джерелаXi, Chen, and Zhao Qi-jun. "Aerodynamic Performance Analysis for Iced Rotor based on New Three-Dimensional Rotor Icing Model." In Vertical Flight Society 72nd Annual Forum & Technology Display, 1–12. The Vertical Flight Society, 2016. http://dx.doi.org/10.4050/f-0072-2016-11376.
Повний текст джерелаZagitov, R. A., A. N. Dushko, and Yu N. Shmotin. "Automatic Three Dimensional Grid Generation in Turbo Machine Blade Passages." In ASME Turbo Expo 2014: Turbine Technical Conference and Exposition. American Society of Mechanical Engineers, 2014. http://dx.doi.org/10.1115/gt2014-27127.
Повний текст джерелаGroth, Pieter, Hans Mårtensson, and Lars-Erik Eriksson. "Validation of a 4D Finite Volume Method for Blade Flutter." In ASME 1996 International Gas Turbine and Aeroengine Congress and Exhibition. American Society of Mechanical Engineers, 1996. http://dx.doi.org/10.1115/96-gt-429.
Повний текст джерелаArnone, Andrea, Ennio Carnevale, and Michele Marconcini. "Grid Dependency Study for the NASA Rotor 37 Compressor Blade." In ASME 1997 International Gas Turbine and Aeroengine Congress and Exhibition. American Society of Mechanical Engineers, 1997. http://dx.doi.org/10.1115/97-gt-384.
Повний текст джерелаMondal, Pranab, and Joseph Mathew. "Large Eddy Simulation of a Compressor Stage." In ASME 2017 Gas Turbine India Conference. American Society of Mechanical Engineers, 2017. http://dx.doi.org/10.1115/gtindia2017-4849.
Повний текст джерелаPetriaszwili, Georgij, Piotr Janicki, and Serhii Komarov. "Investigations on book cutting by circular knife with eccentric blade movement." In 10th International Symposium on Graphic Engineering and Design. University of Novi Sad, Faculty of technical sciences, Department of graphic engineering and design,, 2020. http://dx.doi.org/10.24867/grid-2020-p24.
Повний текст джерелаIwase, Taku, Kazuyuki Sugimura, and Ryuuichi Shimada. "Technique for Designing Forward Curved Bladed Fans Using Computational Fluid Dynamics and Numerical Optimization." In ASME 2006 2nd Joint U.S.-European Fluids Engineering Summer Meeting Collocated With the 14th International Conference on Nuclear Engineering. ASMEDC, 2006. http://dx.doi.org/10.1115/fedsm2006-98136.
Повний текст джерела