Добірка наукової літератури з теми "Black hole population"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Black hole population".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Статті в журналах з теми "Black hole population"
Nomoto, K., K. Maeda, H. Umeda, and N. Tominaga. "Nucleosynthesis in Population III Supernovae." Highlights of Astronomy 13 (2005): 560–65. http://dx.doi.org/10.1017/s1539299600016580.
Повний текст джерелаStevenson, Simon. "Biases in Estimates of Black Hole Kicks from the Spin Distribution of Binary Black Holes." Astrophysical Journal Letters 926, no. 2 (February 1, 2022): L32. http://dx.doi.org/10.3847/2041-8213/ac5252.
Повний текст джерелаPesce, Dominic W., Daniel C. M. Palumbo, Angelo Ricarte, Avery E. Broderick, Michael D. Johnson, Neil M. Nagar, Priyamvada Natarajan, and José L. Gómez. "Expectations for Horizon-Scale Supermassive Black Hole Population Studies with the ngEHT." Galaxies 10, no. 6 (December 2, 2022): 109. http://dx.doi.org/10.3390/galaxies10060109.
Повний текст джерелаDoctor, Zoheyr, Ben Farr, and Daniel E. Holz. "Black Hole Leftovers: The Remnant Population from Binary Black Hole Mergers." Astrophysical Journal Letters 914, no. 1 (June 1, 2021): L18. http://dx.doi.org/10.3847/2041-8213/ac0334.
Повний текст джерелаCallister, Thomas A., Simona J. Miller, Katerina Chatziioannou, and Will M. Farr. "No Evidence that the Majority of Black Holes in Binaries Have Zero Spin." Astrophysical Journal Letters 937, no. 1 (September 1, 2022): L13. http://dx.doi.org/10.3847/2041-8213/ac847e.
Повний текст джерелаRees, Martin J., and Marta Volonteri. "Massive black holes: formation and evolution." Proceedings of the International Astronomical Union 2, S238 (August 2006): 51–58. http://dx.doi.org/10.1017/s1743921307004681.
Повний текст джерелаReynolds, Christopher S. "Observational Constraints on Black Hole Spin." Annual Review of Astronomy and Astrophysics 59, no. 1 (September 8, 2021): 117–54. http://dx.doi.org/10.1146/annurev-astro-112420-035022.
Повний текст джерелаTreister, Ezequiel, Claudia M. Urry, Kevin Schawinski, Brooke D. Simmons, Priyamvada Natarajan, and Marta Volonteri. "The Multiwavelength AGN Population and the X-ray Background." Proceedings of the International Astronomical Union 9, S304 (October 2013): 188–94. http://dx.doi.org/10.1017/s1743921314003731.
Повний текст джерелаNetzer, Hagai. "Black Hole Demographics: Statistical Characteristics of Accreting Black Holes." Proceedings of the International Astronomical Union 5, S267 (August 2009): 213–22. http://dx.doi.org/10.1017/s1743921310006319.
Повний текст джерелаZevin, Michael, and Daniel E. Holz. "Avoiding a Cluster Catastrophe: Retention Efficiency and the Binary Black Hole Mass Spectrum." Astrophysical Journal Letters 935, no. 1 (August 1, 2022): L20. http://dx.doi.org/10.3847/2041-8213/ac853d.
Повний текст джерелаДисертації з теми "Black hole population"
Plowman, Joseph Eugene. "Constraining massive black hole population models with gravitational wave observations." Thesis, Montana State University, 2010. http://etd.lib.montana.edu/etd/2010/plowman/PlowmanJ0510.pdf.
Повний текст джерелаBuchner, Johannes. "On the obscuration of the growing supermassive black hole population." Diss., Ludwig-Maximilians-Universität München, 2015. http://nbn-resolving.de/urn:nbn:de:bvb:19-181878.
Повний текст джерелаActive Galactic Nuclei (AGN) are powered by the growth of super-massive black holes (SMBHs), which can be found at the centre of every massive galaxy. Due to tight scaling relationships of their masses with properties of their host spheroidal components, as well as the massive energy output AGN release, they are thought to play an important role in the formation and evolution of galaxies. The first step to understanding AGN is to determine their prevalence in the Universe, as well as the luminosity output of their entire population. This enterprise is hampered by the fact that most AGN are obscured by thick layers of gas and dust, making them difficult to detect. Even in the energetic X-ray wavelengths employed in this work, the intrinsic radiation of obscured AGN is suppressed by multiple orders of magnitude. In this work I first study the properties of this obscurer, specifically its geometry, column density distribution and its relation to the AGN luminosity. For this, ∼ 300 AGN from the deepest X-ray field to date, the Chandra Deep Field South survey, are used. I apply a novel Bayesian spectral analysis methodology to distinguish between several physically motivated models for the obscurer. The X-ray spectrum is, mainly due to Compton scattering, sensitive to the covering fraction of the obscurer. A detailed spectral analysis shows that the obscurer is consistent with a torus (“donut”) shape, but complete covering as well as disk-like configurations can be excluded. Furthermore, a high-density component is necessary to explain additional observed Compton-reflection beyond that expected from the line-of-sight obscuration, indicating a structured obscurer such as a torus with a density gradient. The study of the population of AGN requires a large sample with detailed understanding of the selection effect and sophisticated inference techniques. A X-ray selected sample of ∼ 2000 AGN from a multi-tiered survey including the CDFS, AEGIS-XD, COSMOS and XMM-XXL fields is analysed in detail. Through Bayesian spectral analysis with a physical model, the intrinsic luminosity, redshift and column density (N H ) is obtained for each source, including their uncertainties. This thesis also develops advanced statistical methodology for choosing the correct counterpart, and propagates the uncertainty from missing counterparts, redshift estimation as well as the Poisson noise from X-ray spectra into all final results. Another important new contribution is a Bayesian non-parametric technique to reconstruct the unbiased number density of AGN in cosmological volumes as a function of intrinsic luminosity, redshift and column density (N_H). Despite only assuming smoothness, this approach is capable of reproducing the shapes commonly assumed for the luminosity function and its evolution, without assuming them a priori. Overall, the luminosity function appears to be consistent with a double powerlaw at all redshifts studied. Both the normalisation and break luminosity evolve over time, while there is no evidence that the shape changes. This indicates that contrary to previous claims, the feedback mechanism works the same across the history of the Universe, but only the number and luminosity scale of the accreting systems changes. The non-parametric reconstruction allows the study of the fraction of obscured AGN up to the Compton-thick regime in a very robust way, i.e. without assuming a luminosity or redshift-dependent behaviour a priori. About 77 +4 −5 % of AGN are obscured (N_H > 10^22 cm −2), while 38 +8 −7 % belong to the heavily obscured, elusive Compton-thick class (N_H > 10^24 cm −2). The latter fraction in particular finally constrains the importance of obscured growth phases in the life of accreting SMBHs. Based on the total luminosity output of the AGN population, the mass locked into black holes over cosmic time is estimated, and the mass density of relic SMBHs in the local Universe is predicted, and matches local estimates. The large fraction of obscured AGN suggests that the obscuring torus must have a large angular extent. The non-parametric reconstruction also finds and characterises a negative luminosity dependence for the fraction of obscured AGN, in particular those that are Compton-thin, which are less prevalent at high luminosities. Additionally, this luminosity dependence appears to evolve with redshift. These findings are discussed in the context of existing models and it is concluded that the observed evolution may be to first order a side-effect of a anti-hierarchical growth of super-massive black holes.
Buchner, Johannes [Verfasser], and Kirpal [Akademischer Betreuer] Nandra. "On the obscuration of the growing supermassive black hole population / Johannes Buchner. Betreuer: Kirpal Nandra." München : Universitätsbibliothek der Ludwig-Maximilians-Universität, 2015. http://d-nb.info/1070762989/34.
Повний текст джерелаPierra, Grégoire. "Cosmologie avec les sirènes sombres et populations de binaires de trous noirs avec les ondes gravitationnelles de LIGO-Virgo-KAGRA." Electronic Thesis or Diss., Lyon 1, 2024. http://www.theses.fr/2024LYO10162.
Повний текст джерелаGravitational waves constitute a new probe for exploring the Universe and studying cosmic phenomena that were previously inaccessible. This thesis is based on gravitational wave data collected by the LIGO-Virgo-KAGRA scientific collaboration detectors. The first part of this work focuses on cosmology with dark sirens, a method that uses binary black hole mergers to measure cosmological distances and infer the value of the Hubble constant, without requiring an electromagnetic counterpart. It also presents ICAROGW, a hierarchical Bayesian inference code that uses gravitational wave data and models describing the astrophysical properties of black holes, such as their masses, distances, and spins, to estimate the Hubble constant. The second part of this study tests in particular the robustness of the dark siren method for cosmology. It explores the impact of binary black hole population parameterization on the estimation of the Hubble constant, especially when certain astrophysical processes are not modelled. The third part focuses on the search and identification of subpopulations of binary black holes in the universe. It examines how different formation channels can influence the intrinsic characteristics of these compact objects, particularly through po- tential correlations between their mass and spin. The existence of these correlations would be indicative of the presence of subpopulations of black holes, such as hierarchical black holes, resulting from previous mergers. Finally, the manuscript concludes with a study on the use of machine learning methods to improve the quality of the Virgo interferometer data and detect the presence of non-Gaussian noises. This work also explores the potential integration of iDQ results into gravitational wave signal detection algorithms, thereby aiming to strengthen the confidence level in these detections
Higgins, Jennifer C. "Survival, Home Range and Spatial Relationships of Virginia's Exploited Black Bear Population." Thesis, Virginia Tech, 1997. http://hdl.handle.net/10919/36765.
Повний текст джерелаMaster of Science
Jones, Michael D. "DNA-based Population Estimation, Harvest Vulnerability, and Home Range Dynamics of Black Bears in Western Maryland." Thesis, West Virginia University, 2013. http://pqdtopen.proquest.com/#viewpdf?dispub=1522522.
Повний текст джерелаAfter nearly being extirpated from the state, black bears in Maryland have rebounded to a point where recreational harvest has now become an important management tool. Having a better understanding of bear population parameters, movements, and harvest vulnerability allows managers to implement hunting more effectively and responsibly. To estimate demographics of the Maryland bear population, we implemented noninvasive genetic sampling of bear hair during summer 2011. We used a model-based sampling design that allowed us to collect samples more efficiently. We used presence-only maximum entropy (Maxent) modeling to classify the study area based on predicted probability of bear occurrence, and allocated the majority of our hair snares to areas with high or medium probabilities. Using microsatellite analysis and mark-recapture methods, we estimated the bear population at 701 individuals. This represents a nearly doubling of the population since the previous estimate in 2005. Our density estimate (0.25 bears/km2) is comparable to other estimates from southeastern and mid-Atlantic states. Our sampling approach did lead to more efficient sample collection, with more hair samples collected at snares located in areas with predicted high or medium probability of bear occurrence than those in low probability areas. However, in the eastern portion of our study area, where bear occurrence is presumed to be much lower, our sampling effort seemed insufficient to collect enough samples for reliable abundance estimation. As a first step toward quantifying harvest vulnerability, we used Global Positioning System (GPS) units to record movements and spatial behaviors of 108 bear hunters during the 2005–2007 Maryland bear hunting seasons. Median values showed that hunters traveled 2.9 km per hunting event, but only 0.6 km from their starting point. Hunters did not seem to show any preferential use of areas based on the landscape metrics we examined (e.g., elevation, distance from nearest road) except cover type, where 81% of locations were in deciduous forests. We found few differences between spatial behaviors of groups of hunters based on harvest success, residency, and previous bear hunting experience, as classified using post-hunt mail surveys. One notable difference is that successful hunters used steeper slopes than unsuccessful hunters. We also found that hunter perceptions of total distance traveled and distance from nearest roads were often highly inaccurate, showing that hunter surveys are not a useful tool for collecting those data. For Garrett County, Maryland, we used the hunter locations to create a Maxent model of the spatial distribution of harvest pressure. We also created a model using fall telemetry locations of female bears and compared the models to identify areas of high (i.e., high hunter and high bear occurrence) and low (i.e., low hunter and high bear occurrence) harvest vulnerability. Both models showed higher probability of occurrence on public lands. Both high and low vulnerability areas comprised small portions of the county. The low vulnerability areas included 9 larger blocks (>1 km 2), which were 2.3 times steeper, 2.0 times farther from roads, and 1.5 times farther from streams than the medians for the study area. Those characteristics may limit hunter access to and use of the areas. Our predicted high vulnerability areas did not correspond to most previous bear harvest locations, indicating that our definition of harvest vulnerability often does not translate to actual harvest. Finally, we used GPS collars to track female bear locations in Garrett County and examine home range dynamics. Fixed kernel estimates for annual, spring, summer, and fall home ranges were 10.40 km 2, 8.93 km2, 16.08 km2, and 19.35 km 2, respectively. Fall and summer home ranges were larger than spring home ranges, but summer and fall ranges were similar. Solitary females had mean spring home ranges 6.9 times larger than females with cubs-of-the-year, but ranges did not differ during other seasons. Bears exhibited high levels of home range fidelity, with home range centroids shifting little among seasons or years. Intraspecific overlap of home ranges occurred during all 3 seasons, but was most common in summer. The results of this study provide Maryland bear biologists and managers with essential information about the state’s bear population. Home range estimates represent important baseline information to determine appropriate spatial scales of management. The abundance estimates will be used to set proper harvest quotas with the goal of slowing the bear population growth. The hunter movement analysis and harvest vulnerability modeling may be used by managers to adjust harvest regulations to increase the efficacy of the hunting seasons.
Volonteri, Marta, Amy E. Reines, Hakim Atek, Daniel P. Stark, and Maxime Trebitsch. "High-redshift Galaxies and Black Holes Detectable with the JWST: A Population Synthesis Model from Infrared to X-Rays." IOP PUBLISHING LTD, 2017. http://hdl.handle.net/10150/626181.
Повний текст джерелаKinugawa, Tomoya. "The binary population synthesis in the early universe and the detection rate of gravitational waves from the binary black holes." 京都大学 (Kyoto University), 2016. http://hdl.handle.net/2433/215304.
Повний текст джерелаCharisi, Maria. "A Population of Short-Period Variable Quasars from PTF as Supermassive Black Hole Binary Candidates." Thesis, 2017. https://doi.org/10.7916/D88S52C3.
Повний текст джерелаSingh, Neha. "Exploring compact binary populations with Einstein Telescope." Doctoral thesis, 2021. https://depotuw.ceon.pl/handle/item/4091.
Повний текст джерелаW niniejszej pracy zajmujemy się analizą potencjału naukowego Teleskopu Einsteina, czyli przyszłego detektora fal grawitacyjnych trzeciej generacji. Teleskop Einsteina ma być zbudowany na planie trójkąta równobocznego, i zawierać po dwa interferometry w każdym wierzchołku. Praca zawiera zarówno analizę krótkotrwałych sygnałów fal grawitacyjnych z koalescencji układów podwójnych obiektów zwartych, jak i analizę sygnałów długotrwałych. W dalszej części pracy metody te zastosowane są do analizy układów podwójnych pochodzących z gwiazd populacji I i II, z populacji III oraz z gromad kulistych. Co istotne w przypadku obserwacji tylko jednym instrumentem nie można lokalizować źródeł za pomocą analizy różnicy czasów przyjścia sygnału w różnych detektorach. W celu rozwiązania tego problemu korzystamy z faktu, że każdy z detektorów ma inną odpowiedź kątową, co pozwala nałożyć ograniczenia na położenie na niebie oraz polaryzację źródła porównując stosunki sygnału do szumu w poszczególnych detektorach. W dalszej części uzyskujemy ograniczenia na masę ćwierku M, masę całkowitą M , stosunek mas q oraz przesunięcie ku czerwieni obserwowanej koalescencji obiektów zwartych. W przypadku sygnałów krótkich najmniejszy obszar lokalizacji na poziomie 90% to 40 stopni kwadratowych, kiedy efektywny stosunek sygnału do szumu wynosi około 103. Błędy wyznaczenia masy ćwierku i stosunku mas dochodzą do 10% dla efektywnego sygnału do szumu około 100, jednakże typowe wartości błędów to 25%. A zatem Teleskop Einsteina, jako pojedynczy instrument, powala wyznaczyć przesunięcie ku czerwieni, odległość i masę ćwierku dla większości źródeł z dokładnością 20-30%. Dla źródeł długotrwałych uwzględniamy również obrót Ziemi. W tym przypadku najlepsza lokalizacja to około 6 stopni kwadratowych dla efektywnego sygnału do szumu około 73. Jednakże tylko 1% źródeł może być zlokalizowanych z dokładnością poniżej 500 stopni kwadratowych. Wartości masy ćwierku i całkowitej masy układu mogą być wyznaczone z dokładnością osiągającą 2%, podczas gdy przesuniecie ku czerwieni i odległość z dokładnością dochodzącą do 10% dla efektywnego sygnału do szumu około 100. Ostatnia część pracy poświęcona jest analizie syntetycznych populacji układów podwójnych obiektów zwartych pochodzących z gwiazd populacji I i II, z populacji III oraz z gromad kulistych. Wyznaczamy dla każdej nich rozkłady wykrytych mas ćwierku, mas całkowitych i przesunięć ku czerwieni oraz zależność tempa koalescencji od przesunięcia ku czerwieni. Ta analiza pokazuje, że Teleskop Einsteina jako pojedynczy instrument, jest w stanie wykryć i rozróżnić poszczególne populacje układów podwójnych. Ponadto Teleskop Einsteina będzie mógł określić rozkłady masy i przesunięć ku czerwieni poszczególnych populacji zakładając, że każda z nich jest odpowiednio liczna.
Книги з теми "Black hole population"
Charisi, Maria. A Population of Short-Period Variable Quasars from PTF as Supermassive Black Hole Binary Candidates. [New York, N.Y.?]: [publisher not identified], 2017.
Знайти повний текст джерелаClark, Christopher J. Gaining Voice. Oxford University Press, 2019. http://dx.doi.org/10.1093/oso/9780190933562.001.0001.
Повний текст джерелаArcher, Richard. The World of Hosea Easton and David Walker. Oxford University Press, 2017. http://dx.doi.org/10.1093/oso/9780190676643.003.0001.
Повний текст джерелаBrown, Karida L. Gone Home. University of North Carolina Press, 2018. http://dx.doi.org/10.5149/northcarolina/9781469647036.001.0001.
Повний текст джерелаEdwards, Erica R. The Other Side of Terror. NYU Press, 2021. http://dx.doi.org/10.18574/nyu/9781479808427.001.0001.
Повний текст джерелаBullock, III, Charles S., Susan A. MacManus, Jeremy D. Mayer, and Mark J. Rozell. African American Statewide Candidates in the New South. Oxford University Press, 2022. http://dx.doi.org/10.1093/oso/9780197607428.001.0001.
Повний текст джерелаMonforti, Jessica Lavariega. One Hundred Years since Women’s Suffrage. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780190265144.003.0006.
Повний текст джерелаvan Rooy, Bertus. English in South Africa. Edited by Markku Filppula, Juhani Klemola, and Devyani Sharma. Oxford University Press, 2014. http://dx.doi.org/10.1093/oxfordhb/9780199777716.013.017.
Повний текст джерелаFeinberg, Melissa. The Power of the Powerless. Oxford University Press, 2017. http://dx.doi.org/10.1093/oso/9780190644611.003.0006.
Повний текст джерелаRodriguez, Andrea, Alison McFadden, Chris Murray, and Catriona Laird. Engaging People from Ethic Minority Groups in Health and Oral Health Research: an infographic. Edited by Siyang Yuan. University of Dundee, 2022. http://dx.doi.org/10.20933/100001268.
Повний текст джерелаЧастини книг з теми "Black hole population"
De Zeeuw, P. T. "Central Black Holes and Dark Halos in Elliptical Galaxies." In Stellar Populations, 215–25. Dordrecht: Springer Netherlands, 1995. http://dx.doi.org/10.1007/978-94-011-0125-7_20.
Повний текст джерелаElder, Jamee. "Theory Testing in Gravitational-Wave Astrophysics." In Synthese Library, 57–79. Cham: Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-031-26618-8_4.
Повний текст джерелаMoran, Edward C. "Distant X-Ray Galaxies: Insights from the Local Population." In Supermassive Black Holes in the Distant Universe, 225–43. Dordrecht: Springer Netherlands, 2004. http://dx.doi.org/10.1007/978-1-4020-2471-9_7.
Повний текст джерелаHaardt, Francesco. "From Population III Stars to (Super)Massive Black Holes." In The Initial Mass Function 50 Years Later, 501–6. Dordrecht: Springer Netherlands, 2005. http://dx.doi.org/10.1007/978-1-4020-3407-7_93.
Повний текст джерелаKing, Chris N., Anna C. Church, Wesley L. James, Rhonda G. Okoth, and Karen C. Matthews. "Birth Weight Outcomes for Non-Hispanic Black Women in a Home Visiting Program in Rural Mississippi: Observations from the Field." In Population Change and Public Policy, 81–89. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-57069-9_5.
Повний текст джерелаAgarwal, Bhaskar. "Primordial gas collapse in the presence of radiation: direct collapse black hole or Population III star?" In Formation of the First Black Holes, 115–24. WORLD SCIENTIFIC, 2019. http://dx.doi.org/10.1142/9789813227958_0006.
Повний текст джерелаBrown, Karida L. "Introduction." In Gone Home, 1–8. University of North Carolina Press, 2018. http://dx.doi.org/10.5149/northcarolina/9781469647036.003.0001.
Повний текст джерелаBolton, Charles C. "The FEPC and Black Workers." In Home Front Battles, 65–92. Oxford University Press, 2024. http://dx.doi.org/10.1093/oso/9780197655610.003.0004.
Повний текст джерелаBrown, Karida L. "The Coming of the Coal Industry." In Gone Home, 11–26. University of North Carolina Press, 2018. http://dx.doi.org/10.5149/northcarolina/9781469647036.003.0002.
Повний текст джерелаChu, C. Y. Cyrus. "Age-Specific Population Models: Steady States and Comparative Statics." In Population Dynamics. Oxford University Press, 1998. http://dx.doi.org/10.1093/oso/9780195121582.003.0007.
Повний текст джерелаТези доповідей конференцій з теми "Black hole population"
Maccarone, Thomas J., Arunav Kundu, Stephen E. Zepf, I. C. Shih, Katherine L. Rhode, John J. Salzer, Gilles Bergond, et al. "A Black Hole in an Extragalactic Globular Cluster." In A POPULATION EXPLOSION: The Nature & Evolution of X-ray Binaries in Diverse Environments. AIP, 2008. http://dx.doi.org/10.1063/1.2945073.
Повний текст джерелаSa̧dowski, Aleksander, Janusz Ziółkowski, Krzysztof Belczyński, Tomasz Bulik, Reba M. Bandyopadhyay, Stefanie Wachter, Dawn Gelino, and Christopher R. Gelino. "The Missing Population of Be+Black Hole X-Ray Binaries." In A POPULATION EXPLOSION: The Nature & Evolution of X-ray Binaries in Diverse Environments. AIP, 2008. http://dx.doi.org/10.1063/1.2945087.
Повний текст джерелаSadowski, Aleksander. "The Missing Population of Be+Black Hole X-Ray Binaries." In 7th INTEGRAL Workshop. Trieste, Italy: Sissa Medialab, 2009. http://dx.doi.org/10.22323/1.067.0076.
Повний текст джерелаZiolkowski, Janusz. "The Missing Population of Be+Black Hole X-Ray Binaries." In VII Microquasar Workshop: Microquasars and Beyond. Trieste, Italy: Sissa Medialab, 2009. http://dx.doi.org/10.22323/1.062.0073.
Повний текст джерелаSa̧dowski, Aleksander, Janusz Ziółkowski, Krzysztof Belczyński, Tomasz Bulik, Reba M. Bandyopadhyay, Stefanie Wachter, Dawn Gelino, and Christopher R. Gelino. "Calculations of the Galactic Population of Black Hole X-Ray Binaries." In A POPULATION EXPLOSION: The Nature & Evolution of X-ray Binaries in Diverse Environments. AIP, 2008. http://dx.doi.org/10.1063/1.2945086.
Повний текст джерелаSoleri, P., D. Altamirano, R. Fender, P. Casella, V. Tudose, D. Maitra, R. Wijnands, et al. "Multiwavelength Observations of the Black Hole Candidate Swift J1753.5-0127." In A POPULATION EXPLOSION: The Nature & Evolution of X-ray Binaries in Diverse Environments. AIP, 2008. http://dx.doi.org/10.1063/1.2945015.
Повний текст джерелаMeurs, Evert, Patrick Kavanagh, L. Norci, and G. O'Halloran. "Distribution and population size of Black Hole binaries in the Galaxy." In 8th INTEGRAL Workshop “The Restless Gamma-ray Universe”. Trieste, Italy: Sissa Medialab, 2011. http://dx.doi.org/10.22323/1.115.0136.
Повний текст джерелаGalache, José Luis, Mike R. Garcia, Manuel P. Torres, Danny Steeghs, Steve S. Murray, Benjamin F. Williams, Reba M. Bandyopadhyay, Stefanie Wachter, Dawn Gelino, and Christopher R. Gelino. "Monitoring Black Hole X-Ray Transients in M31 with Chandra and HST." In A POPULATION EXPLOSION: The Nature & Evolution of X-ray Binaries in Diverse Environments. AIP, 2008. http://dx.doi.org/10.1063/1.2945061.
Повний текст джерелаGelino, Dawn M., Solen Balman, Umit Kiziloglu, Arda Yilmaz, Emrah Kalemci, John A. Tomsick, Reba M. Bandyopadhyay, Stefanie Wachter, Dawn Gelino, and Christopher R. Gelino. "The Inclination Angle and Mass of the Black Hole in XTE J1118+480." In A POPULATION EXPLOSION: The Nature & Evolution of X-ray Binaries in Diverse Environments. AIP, 2008. http://dx.doi.org/10.1063/1.2945095.
Повний текст джерелаMarziani, Paola, S. Terefe Mengistue, A. del Olmo, J. Perea, A. Deconto-Machado, M. Pović, E. Bon, and N. Bon. "THE DISK PLUS (FAILED) WIND SYSTEM OF 3C 47: A STORY OF ACCRETION DISKS AND BINARY BLACK HOLES." In VI Conference on Active Galactic Nuclei and ravitational Lensing. Astronomical Observatory Belgrade, Volgina 7, 11060 Belgrade 38, Serbia, 2024. http://dx.doi.org/10.69646/aob24012.
Повний текст джерелаЗвіти організацій з теми "Black hole population"
Chen, Gengbin, Tuo Lin, Manfeng Wu, Guiyuan Cai, Qian Ding, Jiayue Xu, Wanqi Li, Cheng Wu, Hongying Chen, and Yue Lan. Effects of repetitive transcranial magnetic stimulation on upper-limb and finger function in stroke patients: a systematic review and meta-analysis of randomized controlled trials. INPLASY - International Platform of Registered Systematic Review and Meta-analysis Protocols, May 2022. http://dx.doi.org/10.37766/inplasy2022.5.0121.
Повний текст джерелаDeSaix, Matthew. Bird community monitoring at New River Gorge National River, Gauley River National Recreation Area, and Bluestone National Scenic River, 1997 - 2018. National Park Service, January 2022. http://dx.doi.org/10.36967/nrr-2289846.
Повний текст джерела