Зміст
Добірка наукової літератури з теми "Biotechnologie végétale"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Biotechnologie végétale".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Статті в журналах з теми "Biotechnologie végétale"
Gabriel, Patrick. "L'analyse conventionnaliste appliquée à la biotechnologie végétale." Revue française de gestion 30, no. 151 (August 1, 2004): 31–50. http://dx.doi.org/10.3166/rfg.151.31-50.
Повний текст джерелаLAOUFI, Razika, Khaled BOUDJEMA, Samia LEFKIR, Narimen BENHABYLES, Ouahiba BOUCHENAK, and Karima YAHIAOUI. "Valorization and biological effect of Zizuphus jujuba Mill. vegetable oil." Nutrition & Santé 12, no. 01 (June 30, 2023): 38–47. http://dx.doi.org/10.30952/ns.12.1.5.
Повний текст джерелаGARANE, Ali, Koussao SOME, Jeanne NiKIEMA, Mamoudou TRAORE, and Mahamadou SAWADOGO. "Etude du comportement de neuf cultivars de tomates (Solanum Lycopersicum L.) dans différentes zones agro-écologiques du Burkina Faso pendant l’hivernage." Journal of Animal & Plant Sciences 40, no. 3 (June 28, 2019): 6656–73. http://dx.doi.org/10.35759/janmplsci.v40-3.1.
Повний текст джерелаPierron, Jean-Philippe, and Léonie Varobieff. "La bioéthique et les biotechnologies végétales." Revue française d'éthique appliquée N°8, no. 2 (2019): 101. http://dx.doi.org/10.3917/rfeap.008.0101.
Повний текст джерелаSawaya, David B. "Les biotechnologies végétales à l'horizon 2030." Futuribles, no. 383 (February 24, 2012): 17–33. http://dx.doi.org/10.1051/futur/38317.
Повний текст джерелаDemarly, Yves. "L'être végétal, objet pour les biotechnologies." Quaderni 11, no. 1 (1990): 57–73. http://dx.doi.org/10.3406/quad.1990.1302.
Повний текст джерелаCosson, Louis. "L'apport des biotechnologies végétales dans l'étude et la production des substances naturelles végétales." Acta Botanica Gallica 144, no. 4 (January 1997): 463–68. http://dx.doi.org/10.1080/12538078.1997.10515786.
Повний текст джерелаGirard, Fabien, and Christine Noiville. "Propriété industrielle et biotechnologies végétales : la Nova Atlantis." Revue internationale de droit économique XXVIII, no. 1 (2014): 59. http://dx.doi.org/10.3917/ride.281.0059.
Повний текст джерелаKahn, A. "Du nouveau dans la biotechnologie des végétaux." médecine/sciences 2, no. 4 (1986): 224. http://dx.doi.org/10.4267/10608/3487.
Повний текст джерелаPlanchenault, Dominique. "Notre patrimoine génétique végétal est-il menacé par les biotechnologies ?" Annales des Mines - Réalités industrielles Février 2013, no. 1 (2013): 66. http://dx.doi.org/10.3917/rindu.131.0066.
Повний текст джерелаДисертації з теми "Biotechnologie végétale"
Charlemagne, Dominique. "Synthèse enzymatique de surfactants non ioniques à base d'huile végétale." Compiègne, 1994. http://www.theses.fr/1994COMPD713.
Повний текст джерелаChenal, Thomas. "Esters et dérivés préparés par carbonylation d'alcènes d'origine végétale afin d'accéder à une activité biologique." Toulouse, INPT, 1992. http://www.theses.fr/1992INPT018G.
Повний текст джерелаChateau, Sophie. "Les marqueurs de la compétence cellulaire à la transformation génétique via agrobacterium tumefaciens, chez les plantes modèles petunia hybrida L. Et arabidopsis thaliana L." Amiens, 2000. http://www.theses.fr/2000AMIE0105.
Повний текст джерелаJaziri, Mondher. "La biotechnologie végétale: une voie alternative pour l'obtention de métabolites secondaires d'origine végétale. Cas des quassinoïdes en culture in vitro de cellules de Ailanthus altissima (Mill.) Swingle (Simaroubaceae)." Doctoral thesis, Universite Libre de Bruxelles, 1989. http://hdl.handle.net/2013/ULB-DIPOT:oai:dipot.ulb.ac.be:2013/213218.
Повний текст джерелаBourgaud, Frédéric. "Etude de la biologie de plantes du genre Psoralea (légumineuses), productrices de furocoumarines à intêrét pharmaceutique : essais de cultures in-vitro." Vandoeuvre-les-Nancy, INPL, 1990. http://docnum.univ-lorraine.fr/public/INPL_T_1990_BOURGAUD_F.pdf.
Повний текст джерелаN'diaye, Senghane. "Fractionnement de la matière végétale : mise au point d'un procédé thermo-mécano-chimique et modélisation du fonctionnement du réacteur bi-vis." Toulouse, INPT, 1996. http://www.theses.fr/1996INPT040G.
Повний текст джерелаFontaine, Florent. "Functional study of Lipid Droplet (LD) addressing domains to improve the purification of recombinant proteins." Electronic Thesis or Diss., université Paris-Saclay, 2025. http://www.theses.fr/2025UPASB004.
Повний текст джерелаThe production of hydrophobic recombinant proteins, such as transmembrane proteins, is complex due to their association with lipid environments, making their purification costly and difficult, accounting for up to 80% of production costs. This thesis proposes an innovative approach exploiting the properties of plant lipid droplets (GLs) to facilitate the folding and flotation purification of hydrophobic proteins, via anchoring by AtOLE1 oleosin, a major protein in seed GLs. While this method has been validated for soluble proteins, it remains unexplored for transmembrane proteins.GLs are dynamic structures composed of a core of triacylglycerols (TAGs) surrounded by a monolayer of phospholipids, with which proteins from the endoplasmic reticulum (ER) or cytosol are associated. Some of these proteins, involved in GL biogenesis, attach early to their surface. Addressing of proteins to GLs does not depend on a conserved domain, but rather on specific structural motifs. However, as these motifs are also present on proteins not associated with GLs, the study of their specificity remains complex.This thesis explored protein-GL interactions, identifying the factors influencing their specificity and affinity for the GL surface, with the aim of developing biotechnological applications. Proof of concept was achieved using SARS-CoV-2 transmembrane proteins E and M fused to AtOLE1. In Nicotiana benthamiana, which transiently overproduces GLs, microscopic observation showed that E and M proteins specifically target GLs through AtOLE1. A colocalization pipeline was developed to quantify this specificity.The E and M proteins were then expressed in Camelina sativa seeds. Analysis of purified GLs confirmed their surface presence, enhanced by fusion to AtOLE1. This work has shown that GL addressing efficiency varies according to the plant frame used, revealing mechanisms that are still poorly understood.To investigate these mechanisms further, the interaction specificity of various proteins and domains was assessed by microscopy in N. benthamiana. The results were then compared with the structural properties of the proteins, such as charge and hydrophobicity. No direct correlation was observed, suggesting that protein specificity for GLs is more influenced by their function in GL biogenesis or their arrival kinetics. Proteins that localize early to the GL surface show increased specificity.Assessing the affinity of proteins for GLs, defined by their ability to remain associated despite increasingly stringent washings, required the production of a new N. benthamiana chassis stably overaccumulating GLs, with a 22- to 23-fold increase in the number of GLs compared with the wild type. Isolated GLs were subjected to rigorous washing conditions, and associated proteins were detected by biochemical techniques. The results showed that some proteins, in the form of oligomers, remained attached, regardless of the stringency of the treatments.These observations were validated in C. sativa seeds, notably with the production of HsFGF2, a commercial growth factor. The results highlight the key role of arrival kinetics and protein function in GL biogenesis in determining their specificity and affinity. This understanding of the mechanisms of interaction between proteins and GLs opens the way to optimizations for biotechnological applications, notably in the production and purification of hydrophobic proteins
Trémouillaux-Guiller, Jocelyne. "Etude comparative des méthodologies de sélection de cultures cellulaires végétales à haute capacité d'accumulation : application à des souches et lignées clonales biosynthétisant des alcaloides dihydrofuoquinoleiques." Tours, 1988. http://www.theses.fr/1988TOUR3804.
Повний текст джерелаDos, Santos Cagarelho Nicolas. "Les droits français et européen à l'épreuve de l'innovation scientifique en matière agricole végétale." Thesis, Paris 2, 2016. http://www.theses.fr/2016PA020062.
Повний текст джерелаFrench agriculture, which perpetuated an after-war objective of established efficiency criteria, was guided by the search for a greater productivity. This direction, promoted by both the Common Agricultural Policy and the globalisation of the markets, was mostly driven by States with strong agricultural potentials, especially France playing a leading role. This evolution was guided by scientific and technology innovations, carried by three initial promoters: the public authorities, the agricultural sector and industrial groups. Scientific innovations, in an effort to protect the plants and improve the quality of vegetables, triggered a growing involvement of public authorities which faced alerts from environmental activists and increasing public opinion on the matter. The expansion of a national legislation has been followed up over the last twenty years by a growing European regulation. The latter aims at establishing a compromise between health and food safety as well as protecting the environment and industrial progress. It also questions the coherence of the existing legal framework for agricultural crops applied to the French territory, the current legislation on scientific innovations for plant agriculture and it's possible limits. This thesis deals with 'The French and European Law Facing Scientific Innovation for Plant Agriculture'
Gouyé-Guilbert, Nathalie. "Mise au point d'un procédé de recyclage de boues de fermentation appliquée à la production de la pristinamycine. Incidence du recyclage sur la biosynthèse de l'antibiotique." Montpellier 2, 1995. http://www.theses.fr/1995MON20022.
Повний текст джерелаКниги з теми "Biotechnologie végétale"
Boudreault-Lapointe, Lise. Vocabulaire de biotechnologie végétale. Ottawa: Secrétariat du Canada = Dept. of the Secretary of State of Canada, 1988.
Знайти повний текст джерелаR, Glick Bernard, and Thompson John E, eds. Methods in plant molecular biology and biotechnology. Boca Raton: CRC Press, 1993.
Знайти повний текст джерела1965-, Gray John, ed. Programmed cell death in plants. Oxford: Blackwell, 2004.
Знайти повний текст джерелаTourte, Yves. Génie génétique et biotechnologies: Concepts et méthodes : applications à l'agronomie et aux bio-industries. Paris: Dunod, 1998.
Знайти повний текст джерелаTourte, Yves. Génie génétique et biotechnologies: Concepts, méthodes et applications agronomiques. 2nd ed. Paris: Dunod, 2002.
Знайти повний текст джерелаRichards, A. J. Plant breeding systems. 2nd ed. London: Chapman & Hall, 1997.
Знайти повний текст джерелаRichards, A. J. Plant breeding systems. 2nd ed. London: Chapman & Hall, 1997.
Знайти повний текст джерелаZrÿd, Jean-Pierre. Cultures de cellules, tissus et organes végétaux: Fondements théoriques et utilisations pratiques. Lausanne: Presses Polytechniques Romandes, 1988.
Знайти повний текст джерелаA, Wilson Kimberly, ed. Genetically engineered food: Changing the nature of nature. Rochester, Vt: Park Street Press, 1999.
Знайти повний текст джерела