Добірка наукової літератури з теми "BioSystems Science and Engineering"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "BioSystems Science and Engineering".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Статті в журналах з теми "BioSystems Science and Engineering"

1

Witney, Professor Brian D. "Biosystems Engineering." Biosystems Engineering 81, no. 1 (January 2002): 1. http://dx.doi.org/10.1006/bioe.2001.0032.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Barker, S. A. "Enzyme engineering — Immobilized biosystems." Endeavour 17, no. 2 (January 1993): 96. http://dx.doi.org/10.1016/0160-9327(93)90216-p.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Lucia, Umberto. "Bio-engineering thermodynamics: an engineering science for thermodynamics of biosystems." International Journal of Thermodynamics 18, no. 4 (December 1, 2015): 254. http://dx.doi.org/10.5541/ijot.5000131605.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Knapczyk, Adrian, Sławomir Francik, Marek Wróbel, Marcin Jewiarz, and Krzysztof Mudryk. "Decision support systems for scheduling tasks in Biosystems Engineering." E3S Web of Conferences 132 (2019): 01008. http://dx.doi.org/10.1051/e3sconf/201913201008.

Повний текст джерела
Анотація:
Modern decision support systems have many applications, including assistance in scheduling tasks. Biosystems engineering combines engineering sciences and physical sciences in order to understand and improve biological systems in agriculture, food production, environment, etc. The work reviews the decision support systems in the aspect of scheduling tasks in the field of biosystems engineering. The analysis was based on documents (articles and proceedings paper) indexed in the Web of Science Core Collection (WoS-CC) database from 1945-2018. The search has been limited to the category of WoS-CC related to agriculture, water resources, food processing, horticulture and forestry. The main research topics, areas of application and methods used were determined. In the analyzed documents, task scheduling was mainly used in irrigation and harvest scheduling. Simple and advanced optimization tools were used.
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Berg, Hermann. "Nanofabrications and biosystems, integrating materials science, engineering, and biology." Bioelectrochemistry and Bioenergetics 43, no. 1 (June 1997): 188–89. http://dx.doi.org/10.1016/s0302-4598(97)00021-4.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Yang, Xiaohan, June I. Medford, Kasey Markel, Patrick M. Shih, Henrique C. De Paoli, Cong T. Trinh, Alistair J. McCormick, et al. "Plant Biosystems Design Research Roadmap 1.0." BioDesign Research 2020 (December 5, 2020): 1–38. http://dx.doi.org/10.34133/2020/8051764.

Повний текст джерела
Анотація:
Human life intimately depends on plants for food, biomaterials, health, energy, and a sustainable environment. Various plants have been genetically improved mostly through breeding, along with limited modification via genetic engineering, yet they are still not able to meet the ever-increasing needs, in terms of both quantity and quality, resulting from the rapid increase in world population and expected standards of living. A step change that may address these challenges would be to expand the potential of plants using biosystems design approaches. This represents a shift in plant science research from relatively simple trial-and-error approaches to innovative strategies based on predictive models of biological systems. Plant biosystems design seeks to accelerate plant genetic improvement using genome editing and genetic circuit engineering or create novel plant systems through de novo synthesis of plant genomes. From this perspective, we present a comprehensive roadmap of plant biosystems design covering theories, principles, and technical methods, along with potential applications in basic and applied plant biology research. We highlight current challenges, future opportunities, and research priorities, along with a framework for international collaboration, towards rapid advancement of this emerging interdisciplinary area of research. Finally, we discuss the importance of social responsibility in utilizing plant biosystems design and suggest strategies for improving public perception, trust, and acceptance.
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Ren, Baiyu, Yichao Wang, and Jian Zhen Ou. "Engineering two-dimensional metal oxides via surface functionalization for biological applications." Journal of Materials Chemistry B 8, no. 6 (2020): 1108–27. http://dx.doi.org/10.1039/c9tb02423a.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Vakulenko, Sergey, and Dmitry Grigoriev. "Deep Gene Networks and Response to Stress." Mathematics 9, no. 23 (November 26, 2021): 3028. http://dx.doi.org/10.3390/math9233028.

Повний текст джерела
Анотація:
We consider systems of differential equations with polynomial and rational nonlinearities and with a dependence on a discrete parameter. Such systems arise in biological and ecological applications, where the discrete parameter can be interpreted as a genetic code. The genetic code defines system responses to external perturbations. We suppose that these responses are defined by deep networks. We investigate the stability of attractors of our systems under sequences of perturbations (for example, stresses induced by environmental changes), and we introduce a new concept of biosystem stability via gene regulation. We show that if the gene regulation is absent, then biosystems sooner or later collapse under fluctuations. By a genetic regulation, one can provide attractor stability for large times. Therefore, in the framework of our model, we prove the Gromov–Carbone hypothesis that evolution by replication makes biosystems robust against random fluctuations. We apply these results to a model of cancer immune therapy.
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Gould, Paula. "Nanoparticles probe biosystems." Materials Today 7, no. 2 (February 2004): 36–43. http://dx.doi.org/10.1016/s1369-7021(04)00082-3.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Clark, O. G., and R. Kok. "Engineering of highly autonomous biosystems: Review of the relevant literature." International Journal of Intelligent Systems 13, no. 8 (August 1998): 749–83. http://dx.doi.org/10.1002/(sici)1098-111x(199808)13:8<749::aid-int3>3.0.co;2-j.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Дисертації з теми "BioSystems Science and Engineering"

1

Barreto-Munoz, Armando. "Multi-Sensor Vegetation Index and Land Surface Phenology Earth Science Data Records in Support of Global Change Studies: Data Quality Challenges and Data Explorer System." Diss., The University of Arizona, 2013. http://hdl.handle.net/10150/301661.

Повний текст джерела
Анотація:
Synoptic global remote sensing provides a multitude of land surface state variables. The continuous collection, for more than 30 years, of global observations has contributed to the creation of a unique and long term satellite imagery archive from different sensors. These records have become an invaluable source of data for many environmental and global change related studies. The problem, however, is that they are not readily available for use in research and application environment and require multiple preprocessing. Here, we looked at the daily global data records from the Advanced Very High Resolution Radiometer (AVHRR) and the Moderate Resolution Imaging Spectroradiometer (MODIS), two of the most widely available and used datasets, with the objective of assessing their quality and suitability to support studies dealing with global trends and changes at the land surface. Findings show that clouds are the major data quality inhibitors, and that the MODIS cloud masking algorithm performs better than the AVHRR. Results show that areas of high ecological importance, like the Amazon, are most prone to lack of data due to cloud cover and aerosols leading to extended periods of time with no useful data, sometimes months. While the standard approach to these challenges has been compositing of daily images to generate a representative map over a preset time periods, our results indicate that preset compositing is not the optimal solution and a hybrid location dependent method that preserves the high frequency of these observations over the areas where clouds are not as prevalent works better. Using this data quality information the Vegetation Index and Phenology (VIP) Laboratory at The University of Arizona produced over 30 years of seamless sensor independent record of vegetation indices and land surface phenology metrics. These data records consist of 0.05-degree resolution global images for daily, 7-days, 15-days and monthly temporal frequency. These sort of remote sensing based products are normally made available through the internet by large data centers, like the Land Processes Distributed Active Archive Center (LP DAAC), however, in this project an online tool, the VIP Data Explorer, was developed to support the visualization, exploration, and distribution of these Earth Science Data Records (ESDRs) keeping it closer to the data generation center which provides a more active data support and distribution model. This web application has made it possible for users to explore and evaluate the products suite before download and use.
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Bon, Tom A., and Henry L. Kucera. "Agricultural and Biosystems Engineering Capstone Course Evolution at North Dakota State University." American Society of Agricultural and Biological Engineers, 2005. https://hdl.handle.net/10365/31010.

Повний текст джерела
Анотація:
The approach to the department's capstone design course has changed considerably since the 1960s. The general evolution of the course has proceeded from extended laboratory exercises to individuals working on self-defined projects to team-based projects. Interactions between the capstone course and other courses have been attempted with varying success. This paper presents the development of the NDSU Agricultural and Biosystems Engineering Department' s capstone course and thoughts on possible future modifications to the course.
Agricultural and Biosystems Engineering
College of Graduate and Interdisciplinary Studies
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Sherman, Adrian Tyrone. "Occurrence and distribution of fecal indicator bacteria with respect to urban and rural land uses." Click HERE to connect, 2009. http://digital.library.okstate.edu/etd/Sherman_okstate_0664M_10169.pdf.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Tejral, Ronald. "Impact of dam and reservoir parameters on peak breach discharge predictions for two models." Click HERE to connect, 2009. http://digital.library.okstate.edu/etd/Tejral_okstate_0664M_10170.pdf.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Wilding, Kristen Michelle. "Engineering Cell-Free Biosystems for On-Site Production and Rapid Design of Next-Generation Therapeutics." BYU ScholarsArchive, 2018. https://scholarsarchive.byu.edu/etd/7713.

Повний текст джерела
Анотація:
While protein therapeutics are indispensable in the treatment of a variety of diseases, including cancer, rheumatoid arthritis, and diabetes, key limitations including short half-lives, high immunogenicity, protein instability, and centralized production complicate long-term use and on-demand production. Site-specific polymer conjugation provides a method for mitigating these challenges while minimizing negative impacts on protein activity. However, the location-dependent effects of polymer conjugation are not well understood. Cell-free protein synthesis provides direct access to the synthesis environment and rapid synthesis times, enabling rapid evaluation of multiple conjugation sites on a target protein. Here, work is presented towards developing cell-free protein synthesis as a platform for both design and on-demand production of next generation polymer-protein therapeutics, including (1) eliminating endotoxin contamination in cell-free reagents for simplified therapeutic preparation, (2) improving shelf-stability of cell-free reagents via lyophilization for on-demand production, (3) coupling coarse-grain simulation with high-throughput cell-free protein synthesis to enable rapid identification of optimal polymer conjugation sites, and (4) optimizing cell-free protein synthesis for production of therapeutic proteins
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Gendrault, Yves. "Structuration d'un flot de conception pour la biologie synthétique." Phd thesis, Université de Strasbourg, 2013. http://tel.archives-ouvertes.fr/tel-01015878.

Повний текст джерела
Анотація:
La biologie synthétique est une science issue du rapprochement entre les biotechnologies et les sciences pour l'ingénieur. Elle consiste à créer de nouveaux systèmes biologiques par une combinaison rationnelle d'éléments biologiques standardisés, découplés de leur contexte naturel. L'environnement, l'agroalimentaire et la santé figurent parmi ses principaux domaines d'application. Cette thèse s'est focalisée sur les aspects liés à la conception ex-vivo de ces biosystèmes artificiels. A partir des analogies réalisées entre les processus biologiques et certaines fonctions électroniques, l'accent a été mis sur la réutilisation et l'adaptation des outils de conception numériques, supportant l'approche de conception " top-down ". Ainsi, une adaptation complète des méthodes de CAO de la microélectronique a été mise en place pour la biologie synthétique. Dans cette optique, les mécanismes biologiques élémentaires ont été modélisés sous plusieurs niveaux d'abstraction, allant de l'abstraction numérique à des modèles flux de signal et des modèles conservatifs. Des modèles en logique floue ont aussi été développés pour faire le lien entre ces niveaux d'abstraction. Ces différents modèles ont été implémentés avec deux langages de description matérielle et ont été validés sur la base de résultats expérimentaux de biosystèmes artificiels parmi les plus avancés. Parallèlement au travail de formalisation des modèles destinés au flot de conception, leur amélioration a aussi été étudiée : la modélisation des interactions entre plusieurs molécules a été rendue plus réaliste et le développement de modèles de bruits biologiques a également été intégré au processus. Cette thèse constitue donc une contribution importante dans la structuration et l'automatisation d'étapes de conception pour les biosystèmes synthétiques. Elle a permis de tracer les contours d'un flot de conception complet, adapté de la microélectronique, et d'en mettre en évidence les intérêts.
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Edward, Drabold T. "BIOLOGICAL DESIGN OF CONTINUOUS MICROALGAE SYSTEMS: A REVIEW." Ohio University Honors Tutorial College / OhioLINK, 2005. http://rave.ohiolink.edu/etdc/view?acc_num=ouhonors161891425130329.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Drabold, Edward T. "BIOLOGICAL DESIGN OF CONTINUOUS MICROALGAE SYSTEMS: A REVIEW." Ohio University Honors Tutorial College / OhioLINK, 2021. http://rave.ohiolink.edu/etdc/view?acc_num=ouhonors161891425130329.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Kacheris, William, and William Kacheris. "A Novel Approach for Calculating the Feasibility of Urban Agriculture using an Enhanced Hydroponic System." Thesis, The University of Arizona, 2016. http://hdl.handle.net/10150/620674.

Повний текст джерела
Анотація:
With a continued worldwide trend in population shift from rural to urban areas predicted to increase, new approaches to agricultural production must be considered and implemented. Little academic interest has been applied to determining economically viable urban agriculture crop production sites for business investment. A feasibility model to aid investors in selecting appropriate sites for the development of urban agriculture food production within population centers was created. Lettuce crop trials were performed from August 2015 to December 2015 at the University of Arizona Controlled Environment Agriculture Center to validate the productivity of a unique high density hydroponic system designed for the rooftop environment. The feasibility model is based on this system and with a minimal number of inputs, ranging from size of growing space to growing media costs, determines a wide range of useful outputs. These outputs include crop productivity within the facility, material inputs and a cost breakdown of starting a new agricultural venture. The model utilizes multiple sheets within one excel document to give the user a clear and organized financial perspective of a hypothetical growing operation in the main sheet. With this model, investors into urban agriculture will have a means to gain an objective view of financial considerations before substantial investment is completed.
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Rodriguez, Jesus, and Jesus Rodriguez. "Downscaling Modis Evapotranspiration via Cokriging in Wellton-Mohawk Irrigation and Drainage District, Yuma, AZ." Diss., The University of Arizona, 2016. http://hdl.handle.net/10150/621782.

Повний текст джерела
Анотація:
Evapotranspiration (ET) is a key parameter for irrigation planning and management, and it is a crucial factor for water conservation practices considering the challenges associated with agricultural water availability. Field ET determination is the most accurate, but remains to be expensive and limited in scope. On the other hand, remote sensing is becoming an alternative tool for the estimation of ET. Operational ET algorithms, like the Moderate Resolution Imaging Spectroradiometer (MODIS)-based ET, are now successful at generating ET estimates globally at 1km resolution, however their intent is not management of agriculture irrigation. This research was done to develop an integrated method for downscaling MODIS ET appropriate for farm-level applications using geostatistical and remote sensing techniques. The proposed methodology was applied in the Wellton-Mohawk Irrigation and Drainage District of Yuma, Arizona. In a first effort, ET data was downscaled from standard 1-km-MODIS to a medium 250-m-spatial resolution via cokriging using Land Surface Temperature and Enhanced Vegetation Index as covariates. Results showed consistent downscaled ET with a variance greater than the variance of the coarse scale input and nearly similar mean values. This 250m product can serve larger irrigation districts in developed countries, where plot size is fairly large and regular. However, the size and shapes of most farms in developing countries makes the 250m ET challenging. For this reason, the second part of this work was done to downscale global scale 1km ET to 30m farm level application for irrigation use. This approach involved the generation of daily vegetation indices (VI) at 30m in order to support the downscaling of MODIS 1km ET. Landsat and MODIS reflectances were combined with the Spatial and Temporal Adaptive Reflectance Fusion Model (STARFM) algorithm and the resulting VI data was used as a covariate to downscale ET with the cokriging approach. The results showed that the MODIS ET data seriously underestimates ET over irrigated areas. To correct this problem the MODIS data was then adjusted using field measured values to make it useful for operational purposes. The proposed geospatial method was applied to different growth stages of cotton and results were validated with actual ET from The Arizona Meteorological Network (AZMET) and published consumptive use of water for the area. The adjusted downscaled ET was comparable to these two published data (maximum error of 33%). This methodology is a practical alternative in areas where there is no ancillary data to estimate ET and it is expected to help in the planning of irrigation agriculture that will lead to improved agricultural productivity and irrigation efficiency.
Стилі APA, Harvard, Vancouver, ISO та ін.

Книги з теми "BioSystems Science and Engineering"

1

C, Hoch Harvey, Jelinski Lynn, and Craighead Harold G, eds. Nanofabrication and biosystems: Integrating materials science, engineering, and biology. Cambridge: Cambridge University Press, 1996.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Öchsner, Andreas. Characterization and Development of Biosystems and Biomaterials. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Nag, Ahindra. Biosystems engineering. New York: McGraw-Hill, 2010.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Wittmann, Christoph, and Rainer Krull, eds. Biosystems Engineering II. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-13866-9.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Wittmann, Christoph, and Rainer Krull, eds. Biosystems Engineering I. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-14231-4.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Principles of biosystems engineering. North Chelmsford, MA: Erudition Books, 2002.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Barbillon, Gregory, Alain Bosseboeuf, Kukjin Chun, Rosaria Ferrigno, and Olivier Français, eds. Engineering of Micro/Nano Biosystems. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-13-6549-2.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Malik, Junaid Ahmad, Megh R. Goyal, and Mohamed Jaffer M. Sadiq. Sustainable Nanomaterials for Biosystems Engineering. New York: Apple Academic Press, 2023. http://dx.doi.org/10.1201/9781003333517.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

service), ScienceDirect (Online, ed. Environmental biotechnology: A biosystems approach. Amsterdam: Elsevier/Academic Press, 2010.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Ferro, Vito, Giuseppe Giordano, Santo Orlando, Mariangela Vallone, Giovanni Cascone, and Simona M. C. Porto, eds. AIIA 2022: Biosystems Engineering Towards the Green Deal. Cham: Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-031-30329-6.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Частини книг з теми "BioSystems Science and Engineering"

1

Müller, Peter, and Jan-Hendrik Passoth. "Engineering Collaborative Social Science Toolkits. STS Methods and Concepts as Devices for Interdisciplinary Diplomacy." In Biosystems & Biorobotics, 137–45. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-030-01836-8_13.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Gazya, Gennadiy V., T. V. Gavrilenko, V. A. Galkin, and V. V. Eskov. "Possibilities of Generating Dynamic Chaos by Biosystems." In Software Engineering Research in System Science, 562–68. Cham: Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-031-35311-6_53.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Shen, Ming Wei, Fei Lin Hao, Yong He, and Lei Feng. "Some Consideration of Experiment Teaching and Practice of Biosystems Engineering." In Communications in Computer and Information Science, 304–8. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-24022-5_49.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Klein-Marcuschamer, Daniel, Vikramaditya G. Yadav, Adel Ghaderi, and Gregory N. Stephanopoulos. "De Novo Metabolic Engineering and the Promise of Synthetic DNA." In Biosystems Engineering I, 101–31. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/10_2009_52.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Lapin, Alexei, Michael Klann, and Matthias Reuss. "Multi-Scale Spatio-Temporal Modeling: Lifelines of Microorganisms in Bioreactors and Tracking Molecules in Cells." In Biosystems Engineering II, 23–43. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/10_2009_53.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Seibel, Jürgen, Hans-Joachim Jördening, and Klaus Buchholz. "Extending Synthetic Routes for Oligosaccharides by Enzyme, Substrate and Reaction Engineering." In Biosystems Engineering I, 163–93. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/10_2009_54.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Weckbecker, Andrea, Harald Gröger, and Werner Hummel. "Regeneration of Nicotinamide Coenzymes: Principles and Applications for the Synthesis of Chiral Compounds." In Biosystems Engineering I, 195–242. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/10_2009_55.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Vijayendran, Chandran, and Erwin Flaschel. "Impact of Profiling Technologies in the Understanding of Recombinant Protein Production." In Biosystems Engineering II, 45–70. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/10_2009_56.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Lee, Sang Yup, and Jin Hwan Park. "Integration of Systems Biology with Bioprocess Engineering: l-Threonine Production by Systems Metabolic Engineering of Escherichia Coli." In Biosystems Engineering I, 1–19. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/10_2009_57.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Wittmann, Christoph. "Analysis and Engineering of Metabolic Pathway Fluxes in Corynebacterium glutamicum." In Biosystems Engineering I, 21–49. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/10_2009_58.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Тези доповідей конференцій з теми "BioSystems Science and Engineering"

1

Horabik, Józef. "Discrete element method modeling of processes important for biosystems engineering." In THE 3RD FACULTY OF INDUSTRIAL TECHNOLOGY INTERNATIONAL CONGRESS 2021 INTERNATIONAL CONFERENCE: Enriching Engineering Science through Collaboration of Multidisciplinary Fields. AIP Publishing, 2023. http://dx.doi.org/10.1063/5.0115282.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Egan, Paul, Jonathan Cagan, Christian Schunn, Philip LeDuc, Jeffrey Moore, and Felix Chiu. "The D3 Science-to-Design Methodology: Automated and Cognitive-Based Processes for Discovering, Describing, and Designing Complex Nanomechanical Biosystems." In ASME 2015 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2015. http://dx.doi.org/10.1115/detc2015-47466.

Повний текст джерела
Анотація:
New opportunities in design often surface with scientific advances, however, the rapid pace of scientific findings in biological domains, and their complexity, may impede effective technological design. This paper addresses such challenges through weaving phases of scientific discovery, analytical description, and technological design in an integrative “d3 Methodology.” The method is implemented using human-guided automated processes developed with cognitive-based considerations. A case study of designing myosin bio-libraries is specifically investigated, and optimization results suggest that bio-libraries of designed synthetic isoforms have advantages over natural isoforms. The findings are motivating for future scientific endeavors to investigate the benefits of designed myosins, thus demonstrating reciprocity among design and science. The successes in implementing each d3 phase suggests the methodology is a feasible approach for nanoscale biosystems design, and is well-suited for driving the scientific inquiries of today towards the novel technologies of tomorrow.
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Rigatos, Gerasimos. "Preface to Special Session No. 11 “Biosystems’ Control and Signal Processing”." In INTERNATIONAL CONFERENCE OF COMPUTATIONAL METHODS IN SCIENCES AND ENGINEERING 2016 (ICCMSE 2016). Author(s), 2016. http://dx.doi.org/10.1063/1.4968673.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Ribeiro, Carolina Alves, Isaura Nelsivania Sombra Oliveira, and Danielo G. Gomes. "Uma Análise Bibliométrica da Produção Científica em Apicultura de Precisão." In Escola Regional de Computação do Ceará, Maranhão e Piauí. Sociedade Brasileira de Computação - SBC, 2022. http://dx.doi.org/10.5753/ercemapi.2022.226438.

Повний текст джерела
Анотація:
A Bibliometria é uma técnica quantitativa e estatística para aferir métricas de produção e de disseminação do conhecimento científico. Diante disso, o objetivo deste artigo é destacar as tendências globais das pesquisas na área de apicultura de precisão através de análises bibliométricas. Os conjuntos de dados utilizados foram extraídos das bases Scopus e Web of Science. As análises foram feitas usando o Biblioshiny da biblioteca Bibliometrix, usada no software RStudio. Evidenciou-se que o maior número de publicações sobre apicultura de precisão ocorreu nos anos 2020 e 2021, sendo a Letônia o país com mais trabalhos publicados. Computers and Electronics in Agriculture, Engineering for Rural Development e Biosystems Engineering foram os periódicos que se destacaram. E foram determinados os tópicos de tendência em apicultura de precisão (precision beekeeping) de 2016 a 2021.
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Ravichandran, Dharneedar, and Kenan Song. "One-Step 3D Printed Layers Along With xy-in Plane Directions for Enhanced Multifunctional Nanocomposites." In ASME 2022 17th International Manufacturing Science and Engineering Conference. American Society of Mechanical Engineers, 2022. http://dx.doi.org/10.1115/msec2022-85056.

Повний текст джерела
Анотація:
Abstract Composite and hybrid materials displaying layered structures have broad applications in structural composites, fire retardant barriers, tissue scaffolds, and microelectronics. Inspired by biosystems, in this study, we explore the invention of a new 3D printing principle that can produce layered structures similar to those in trees, overcoming the bottleneck in additive manufacturing to include multi-materials. We use polyvinyl alcohol (PVA) and carbon nanotubes (CNTs) as material examples for producing alternating layers. With the unique 3D printing platform, Multiphase Direct Ink Writing (MDIW), the optimized dispersion quality and rheology behaviors allow the number of layers within an individual printing line to change between 4 and 512 layers. The mechanical tests consistently increased young’s modulus and ultimate tensile strength with decreased layer thickness and dispersion quality. The best-performed composites have 128 layers in one printing line, beyond which the dispersion of CNTs deteriorated due to aggregates. Due to the thin layer thickness, the improved composite mechanics relate to the closely packed CNTs and their alignment. Moreover, we will also demonstrate this MDIW printing with different polymers (e.g., thermoplastic urethane and polylactic acid) and nanoparticles (e.g., iron oxide, carbon fibers) for mechanical enhancement and intelligent behaviors. This research demonstrated one new 3D printing method, MDIW, that can fabricate multilayered composites containing well-managed content in each layer. Our advanced manufacturing method is compatible with other materials and has potential use in batteries, supercapacitors, solar cells, regenerative medicine, and energetic systems requiring layered structures.
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Demetres Briassoulis, Eutiquio Gallego, Antonio Marco Pantaleo, Nicholas M Holden, Philip M. O Owende, K C Ting, and Parameswaran Kumar Mallikarjunan. "The "Threads" of Biosystems Engineering." In 2012 Dallas, Texas, July 29 - August 1, 2012. St. Joseph, MI: American Society of Agricultural and Biological Engineers, 2012. http://dx.doi.org/10.13031/2013.41927.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Berestneva, Olga, Oxana Zharkova, Yakov Pekker, Olga Marukhina, Hatem Hassanin, and Konstantin Sharopin. "Entropy Methods Application For Biosystems State Analysis." In Information Technologies in Science, Management, Social Sphere and Medicine. Paris, France: Atlantis Press, 2016. http://dx.doi.org/10.2991/itsmssm-16.2016.69.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Thomas P Curran, Enda J Cummins, Nicholas M Holden, Kevin P McDonnell, and Colleen Blaney. "The Biosystems Engineering Design Challenge at University College Dublin." In 2007 Minneapolis, Minnesota, June 17-20, 2007. St. Joseph, MI: American Society of Agricultural and Biological Engineers, 2007. http://dx.doi.org/10.13031/2013.23543.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Davis, Jonathan Neal, Mark Dougherty, Sarah Tyndall, and Oladiran Fasina. "Uses and Impacts of E-portfolios for Biosystems Engineering Graduates." In 2021 ASABE Annual International Virtual Meeting, July 12-16, 2021. St. Joseph, MI: American Society of Agricultural and Biological Engineers, 2021. http://dx.doi.org/10.13031/aim.202100263.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Cicek, Jillian Seniuk, Danny Mann, and Sandra Ingram. "Validating & implementing engineering graduate attribute rubrics in a biosystems engineering curriculum." In 2017 IEEE Frontiers in Education Conference (FIE). IEEE, 2017. http://dx.doi.org/10.1109/fie.2017.8190632.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Звіти організацій з теми "BioSystems Science and Engineering"

1

Lesuer, D. R. Materials science and engineering. Office of Scientific and Technical Information (OSTI), January 1998. http://dx.doi.org/10.2172/15009526.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Lesuer, D. R. Materials Science and Engineering. Office of Scientific and Technical Information (OSTI), March 1993. http://dx.doi.org/10.2172/10194532.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Lesuer, D. R. Materials science and engineering. Office of Scientific and Technical Information (OSTI), February 1997. http://dx.doi.org/10.2172/623044.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Allocca, Clare, and Stephen Freiman. Materials Science and Engineering Laboratory :. Gaithersburg, MD: National Institute of Standards and Technology, 2005. http://dx.doi.org/10.6028/nist.ir.7130.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Rotman, D. Earth Systems Science and Engineering. Office of Scientific and Technical Information (OSTI), February 2006. http://dx.doi.org/10.2172/928198.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Farrar, Charles Reed. Science, Engineering & Technology Los Alamos Judicial Science School. Office of Scientific and Technical Information (OSTI), February 2020. http://dx.doi.org/10.2172/1601596.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Anderson, Hazel. Pre-Engineering Program: Science, Technology, Engineering and Mathematics (STEM). Fort Belvoir, VA: Defense Technical Information Center, August 2013. http://dx.doi.org/10.21236/ada591097.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Dr. Wynn Volkert, Dr. Arvind Kumar, Dr. Bryan Becker, Dr. Victor Schwinke, Dr. Angel Gonzalez, and Dr. DOuglas McGregor. Midwest Nuclear Science and Engineering Consortium. Office of Scientific and Technical Information (OSTI), December 2010. http://dx.doi.org/10.2172/1000076.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Chavez, Jon. Microsystems Engineering Science & Applications (MESA). Office of Scientific and Technical Information (OSTI), December 2019. http://dx.doi.org/10.2172/1592911.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Longstaff, Tom, and Jeannette Wing. Information Assurance Science and Engineering Project. Fort Belvoir, VA: Defense Technical Information Center, March 2004. http://dx.doi.org/10.21236/ada422193.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії