Добірка наукової літератури з теми "Biomedical textile"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Biomedical textile".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Статті в журналах з теми "Biomedical textile"

1

Li, Yi, Xin Zhang, and BaoAn Ying. "On textile biomedical engineering." Science China Technological Sciences 62, no. 6 (May 23, 2019): 945–57. http://dx.doi.org/10.1007/s11431-018-9504-5.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Bhavani, S., T. Shanmuganantham, N. Mouni, and G. Jaydeep Sai. "Textile UWB Antennas for Biomedical Applications." IRO Journal on Sustainable Wireless Systems 4, no. 3 (September 15, 2022): 173–84. http://dx.doi.org/10.36548/jsws.2022.3.004.

Повний текст джерела
Анотація:
In recent years, there has been an increase in worry about the security of Wireless Body Area Network systems, particularly worn electronics such as military, entertainment, and medical devices. The ability to communicate wirelessly from or to the body via conformal and wearable antennas is a major characteristic of modern wearable electronics. In this work, circular ring and fractal antennas are designed using a wearable substrate of denim with a dielectric constant of 1.7. Design and simulations are carried out in the CST Microwave environment and different performance characteristics of the antenna are examined in free space and on body medical applications.
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Su, Po-Cheng, Ya-Hsin Hsueh, Ming-Ta Ke, Jyun-Jhe Chen, and Ping-Chen Lai. "Noncontact ECG Monitoring by Capacitive Coupling of Textiles in a Chair." Journal of Healthcare Engineering 2021 (June 16, 2021): 1–8. http://dx.doi.org/10.1155/2021/6698567.

Повний текст джерела
Анотація:
Some patients are uncomfortable with being wired to a device to have their heart activity measured. Accordingly, this study adopts a noncontact electrocardiogram (ECG) measurement system using coupled capacitance in a conductive textile. The textiles can be placed on a chair and are able to record some of the patient’s heart data. Height and distance between the conductive textile electrodes were influential when trying to obtain an optimal ECG signal. A soft and highly conductive textile was used as the electrode, and clothing was regarded as capacitance insulation. The conductive textile and body were treated as the two electrode plates. This study found that placing the two conductive textiles at the same height provided better data than different heights. The system also enabled identifying the P, Q, R, S, and T waves of the ECG signal and eliminated unnecessary noise successfully.
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Iyer, Shriya V., Jyothis George, Suhasini Sathiyamoorthy, Rohini Palanisamy, Abhijit Majumdar, and Pandiyarasan Veluswamy. "Pertinence of Textile-Based Energy Harvesting System for Biomedical Applications." Journal of Nanomaterials 2022 (August 26, 2022): 1–13. http://dx.doi.org/10.1155/2022/7921479.

Повний текст джерела
Анотація:
In the era of technological advancements in healthcare and medicine, monitoring of health status and treatment conditions has been made convenient by the development of various categories and forms of biomedical sensors. They have been incorporated within watches and mobile phones and can be worn as stand-alone based on user preference. However, the longevity, cost, and sustainable functionality have impeded its adoption within the population. In this review article, we have introduced a concept of bridging the textile industry and biomedical sensors to yield a self-powered biomedical system that operates on textile-based energy harvesters. Textile-based wearable systems have been compared to E-skin-based systems. The energy released by different actions in human motion has been quantified along with insights on its effective utilization in the form of energy harvesters in the subsequent sections. Information on designing such a textile-based system with schematics has been done. This review focuses on the development and connection of textile-based energy harvesters to existing models of biomedical sensors.
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Zhu, Chenkai, Ifty Ahmed, Andrew Parsons, Jinsong Liu, and Xiaoling Liu. "The mechanical property, degradation and cytocompatibility analysis of novel phosphate glass fiber textiles." Textile Research Journal 89, no. 16 (November 6, 2018): 3280–90. http://dx.doi.org/10.1177/0040517518809052.

Повний текст джерела
Анотація:
Phosphate glass fibers have been widely considered as potential biomedical materials for orthopedical application due to their full degradability and excellent cytocompatibility. In this study, phosphate-based glass fibers were drawn from the glass system 48P2O5-12B2O3-14CaO-20MgO-1Na2O-5Fe2O3, via a melt-drawn spinning process and then woven into textile fabric using a small lab-scale inkle-loom. The annealing treatment was applied to both fibers and textiles with 1-hour heat treatment at 540℃, which was 10℃ above the glass transition temperature. An increase in Young's modulus was observed for the single filament fibers and a decrease in tensile strength with annealing treatment. During the degradation period, the tensile strength of non-annealed fibers presented a decrease by day 28, whilst annealed fibers had increased by day 7, then decreased by day 28, which was suggested to be due to the peeling effect observed on the surface of the fibers. The cytocompatibility of the textile fabric with annealing treatment (A-textile) and the non-annealed fabric (N-textile) was characterized via seeding of MG63 cells. Higher metabolic activity and DNA concentration were obtained for the A-textile samples when compared to the N-textile, which was suggested to be due to the lower dissolution rate of the A-textile resulting in fewer ions leaching into the solution. The phosphate glass fiber textiles investigated in this study have shown potential application as bioresorbable composites reinforcement for orthopedic treatment.
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Toskas, Georgios, Ronny Brünler, Heike Hund, Rolf-Dieter Hund, Martin Hild, Dilibaier Aibibu, and Chokri Cherif. "Pure chitosan microfibres for biomedical applications." Autex Research Journal 13, no. 4 (December 31, 2013): 134–40. http://dx.doi.org/10.2478/v10304-012-0041-5.

Повний текст джерела
Анотація:
Abstract Due to its excellent biocompatibility, Chitosan is a very promising material for degradable products in biomedical applications. The development of pure chitosan microfibre yarn with defined size and directional alignment has always remained a critical research objective. Only fibres of consistent quality can be manufactured into textile structures, such as nonwovens and knitted or woven fabrics. In an adapted, industrial scale wet spinning process, chitosan fibres can now be manufactured at the Institute of Textile Machinery and High Performance Material Technology at TU Dresden (ITM). The dissolving system, coagulation bath, washing bath and heating/drying were optimised in order to obtain pure chitosan fibres that possess an adequate tenacity. A high polymer concentration of 8.0–8.5% wt. is realised by regulating the dope-container temperature. The mechanical tests show that the fibres present very high average tensile force up to 34.3 N, tenacity up to 24.9 cN/tex and Young’s modulus up to 20.6 GPa, values much stronger than that of the most reported chitosan fibres. The fibres were processed into 3D nonwoven structures and stable knitted and woven textile fabrics. The mechanical properties of the fibres and fabrics enable its usage as textile scaffolds in regenerative medicine. Due to the osteoconductive properties of chitosan, promising fields of application include cartilage and bone tissue engineering.
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Allehyani, Esam S., Yaaser Q. Almulaiky, Sami A. Al-Harbi, and Reda M. El-Shishtawy. "In Situ Coating of Polydopamine-AgNPs on Polyester Fabrics Producing Antibacterial and Antioxidant Properties." Polymers 14, no. 18 (September 10, 2022): 3794. http://dx.doi.org/10.3390/polym14183794.

Повний текст джерела
Анотація:
Nanoparticles are increasingly utilized as coating materials to improve the properties of polyester textiles. In this work, polyester textiles were successfully fabricated, with hydrazide groups serving as ligands for the entrapment of sliver ions and subsequent reduction to AgNPs. Polydopamine (PDA) was used in this work to impart antibacterial and antioxidant properties to the polyester textiles through its phenolic hydroxyl groups, which can convert silver ions into AgNPs. Moreover, glucose was used as a reducing agent to create AgNPs-loaded polyester hydrazide. ATR-FTIR, SEM, EDX, thermogravimetric analysis (TGA), and tensile strength were used to characterize the pristine polyester, the polyester hydrazide, the PDA-coated AgNP-loaded polyester hydrazide and the AgNP-loaded polyester hydrazide. A broth test was also used to investigate the textile’s antimicrobial activities against Escherichia coli and Staphylococcus aureus. Overall, the composite nanocoating with PDA-AgNPs demonstrated good tensile strength and antioxidant and antibacterial characteristics, implying the practicality of PDA-AgNPs coating polyester for biomedical textile applications.
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Javaid, Sana, Azhar Mahmood, Habib Nasir, Mudassir Iqbal, Naveed Ahmed, and Nasir M. Ahmad. "Layer-By-Layer Self-Assembled Dip Coating for Antifouling Functionalized Finishing of Cotton Textile." Polymers 14, no. 13 (June 22, 2022): 2540. http://dx.doi.org/10.3390/polym14132540.

Повний текст джерела
Анотація:
The fouling of surfaces such as textiles is a major health challenge, and there is a continuous effort to develop materials and processes to overcome it. In consideration of this, this study regards the development of antifouling functional nanoencapsulated finishing for the cotton textile fabric by employing a layer-by-layer dip coating technique. Antifouling textile finishing was formulated by inducing the nanoencapsulation of the antifouling functional group inside the hydrophobic polymeric shell. Cotton fabric was taken as a substrate to incorporate antibacterial functionality by alternatively fabricating multilayers of antifouling polymeric formulation (APF) and polyelectrolyte solution. The surface morphology of nanoencapsulated finished textile fabric was characterized through scanning electron microscopy to confirm the uniform distribution of nanoparticles on the cotton textile fabric. Optical profilometry and atomic force microscopy studies indicated increased surface roughness in the coated textile substrate as compared to the uncoated textile. The surface thickness of the fabricated textile increased with the number of deposited bilayers on the textile substrate. Surface hydrophobicity increased with number of coating bilayers with θ values of x for single layer, up to y for 20 bilayers. The antibacterial activity of the uncoated and layer-by-layer coated finished textile was also evaluated. It was significant and exhibited a significant zone of inhibition against microbial strains Gram-positive S. aureus and Gram-negative E. coli. The bilayer coating exhibited water repellency, hydrophobicity, and antibacterial activity. Thus, the fabricated textile could be highly useful for many industrial and biomedical applications.
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Chen, Guopu, Jie Hu, Zhiwu Hong, Gefei Wang, Zhiming Wang, Canwen Chen, Jinjian Huang, Xiuwen Wu, and Jianan Ren. "Multifunctional Electrospun Textiles for Wound Healing." Journal of Biomedical Nanotechnology 18, no. 3 (March 1, 2022): 796–806. http://dx.doi.org/10.1166/jbn.2022.3288.

Повний текст джерела
Анотація:
The novel multifunctional electrospun textiles were fabricated by incorporating sheet-like kaolinite and silver nanoparticles (AgNps) into a polyurethane (PU) textile by using electrostatic spinning to promote wound-healing process. Threedimensional network of PU electrospun textiles offered an appropriate framework for loading kaolinite nanosheets and AgNps. Moreover, the kaolinite nanosheets healed bleeding wounds by accelerating plasma absorption, increasing blood cell concentrations, and stimulating coagulation factors. Furthermore, the AgNps killed microbes by destroying the cell membrane, while the deleterious effects were controlled by incorporation into the electrospun textile. The therapeutic effects of multifunctional electrospun textile in treating full-thickness abdominal wall defect were explored. The wound healing process could be accelerated via the textile by restoring the abdominal physiological environment, reducing the inflammatory response, and promoting collagen deposition, angiogenesis, and epithelization.
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Stefan-van Staden, Raluca-Ioana, Livia Alexandra Gugoaşă, Marius Badulescu, and Carmen Cristina Surdu-Bob. "Novel textile material based disposable sensors for biomedical analysis." RSC Advances 5, no. 56 (2015): 45545–50. http://dx.doi.org/10.1039/c5ra04777c.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Дисертації з теми "Biomedical textile"

1

Irsale, Swagat Appasaheb Adanur Sabit. "Textile prosthesis for vascular applications." Auburn, Ala., 2004. http://hdl.handle.net/10415/953.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Rush, Tabitha. "Hemostatic Mechanisms of Common Textile Wound Dressing Materials." NCSU, 2010. http://www.lib.ncsu.edu/theses/available/etd-03302010-230342/.

Повний текст джерела
Анотація:
The objective of this research is to develop a series of material treatments and modifications, and, using a standardized set of tests, determine the extent of the ability of the modified material to enhance coagulation. This research focuses on materials commonly used in traditional textile based wound dressings; utilizing Streaming Potential studies, Scanning Electron Microscopy (SEM) and Thrombin Assays. The materials tested can be classified into 4 groups: control materials, modified PLA, SAMs treated glass, and TEOS treated materials. The control materials included: spun cotton and rayon yarn; continuous filament Nylon, Polypropylene (PP), and Polyethylene terephthalate (PET); heat cleaned glass (control glass); and PLA staple fibers. Contact angle measurements showed that both the control glass and the PET showed an increase in contact angle when treated with TEOS. This corresponds to a decrease and no improvement, respectively, in thrombogenicity for these materials in the thrombin assay. The remaining materials tested showed no change or a decrease in contact angle after TEOS treatment, and a corresponding increase in thrombogenicity. These results support previous studies that indicate an increase in wettability contributes to the enhancement of coagulation (16). While the streaming potential studies showed no correlation between thrombin formation or contact angle data, these tests provided an important launching platform for future studies utilizing the Streaming Potential Jar. Future work could benefit from the use of more physiologically relevant solutions, such as CaCl2, NaCl, or other blood substitutes (15). While no definitive correlations between test methods were elucidated, the results garnered from this research created a strong launching platform from which future materials research can continue.
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Labay, Cédric. "Treatment of textile surfaces by plasma technology for biomedical applications." Doctoral thesis, Universitat Politècnica de Catalunya, 2014. http://hdl.handle.net/10803/277564.

Повний текст джерела
Анотація:
Medical applications of technical textiles are an expanding field of research. One of the added values of these new materials would be that they were suitable to contain and release active compounds in a controlled and sustained manner. Drug incorporation and release from synthetic fibers is related to the interaction of the drug with the polymer and probably greatly depends on the surface chemistry of the fiber. Plasma technology is a tool that enables to modify physical and chemical properties of the first nanometers of the fibers without affecting the bulk of the material. Applied to the medical textile field, plasma treatment of polymer fibres can lead to the design of new textile-based drug delivery systems. The novelty of this PhD. Thesis rests upon the modification of the drug/fiber interactions by plasma treatment to allow the modulation of the loading and the release of active principles (pharmaceutics and cosmetics) from the textile-based drug delivery systems, without requiring the use of any further chemicals. This Thesis aims at the development of two families of textile-based drug delivery systems, based on a novel surface functionalization by plasma treatment, with suitable characteristics for topical use as medical devices, or for clinical application in soft tissue repair. It is therefore organized in two distinct parts. In both parts of this thesis a general scheme has been followed: we have investigated the surface modification of textile materials with different types of plasmas (atmospheric and low pressure plasma), characterizing the surface modifications achieved by different complementary techniques. The effects of the plasma treatment have been evaluated on the subsequent incorporation of active pharmaceuticals and cosmetics. In the last step, the drug release to a standard medium has been studied by "in-vitro" dissolution assays. The first part is focused on medical textiles for topical application. Therein, the surface modification of polyamide 66 elastic-compressive knitted fabrics has been studied by corona plasma and low pressure plasma. The work has studied in parallel laboratory prepared fabrics and industrially finished fabrics, with views on the potential implementation of the proposed process in the textile industrial chain. Plasma treatment improved the release kinetics of anti-inflammatory pharmaceutic (ketoprofen) and of lipolitic cosmetic (caffeine) active principles, loaded in the polyamide 66 fabrics. A fundamental study comparing three different molecules of the same chemical family (caffeine, theobromine, pentoxifylline) has been performed regarding loading and release of the drugs. The second part focuses on textiles used as implants for soft tissue repair (e.g. hernia). The fiber surface of a polypropylene mesh has been modified by corona plasma and low-pressure plasma. The treatments evaluated had a major effect on the loading of antibiotic (ampicillin) by increasing it three times. As in vitro release kinetics of the drug was very fast, coating of the ampillicin-loaded polypropylene meshes with a biocompatible polymer was investigated by plasma polymerization.
Las aplicaciones médicas de los textiles técnicos son un campo de investigación en expansión. Uno de los valores añadidos de estos nuevos materiales puede ser su capacidad para contener y liberar principios activos farmacéuticos y cosméticos de una forma controlada y sostenida. La incorporación de fármacos y su liberación a partir de fibras sintéticas está relacionada con la interacción del fármaco con el polímero y puede depender en gran medida de la química de superficie de la fibra. La tecnología de plasma es una herramienta que permite modificar las propiedades físicas y químicas de los primero nanómetros de la superficie de las fibras sin afectar el interior del material. Aplicado al campo de los textiles médicos, el tratamiento con plasma de fibras poliméricas podría conducir al diseño de nuevos sistemas de liberación de fármacos basados en soportes textiles. La novedad de esta Tesis Doctoral se basa en la modificación de las interacciones fármaco / fibra por tratamiento de plasma para permitir la modulación de la incorporación y la liberación de los principios activos (farmacéuticos y cosméticos) a partir de sistemas de administración de fármacos basados en material textil, sin requerir el uso de productos químicos adicionales. Esta Tesis tiene como objetivo el desarrollo de dos familias de sistemas de liberación de fármacos basados en soportes textiles, por funcionalización de la superficie mediante tratamiento de plasma, con características adecuadas bien para uso tópico como dispositivos médicos, bien para aplicación clínica en la reparación de tejidos blandos. Por tanto, esta Tesis se organiza en dos partes bien diferenciadas. En ambas partes de esta Tesis se ha seguido el siguiente esquema general: en primer lugar se ha investigado primero la modificación superficial de los materiales textiles con diferentes tipos de plasmas (plasma corona y plasma de presión atmosférica), caracterizando las modificaciones de la superficie obtenidas mediante diferentes técnicas instrumentales. Los efectos del tratamiento con plasma se han evaluado entonces sobre la incorporación de principios activos farmacéuticos o cosméticos. En el último paso, se ha estudiado la liberación del fármaco mediante ensayos de disolución "in vitro". La primera parte de la Tesis Doctoral se centra en los textiles médicos para aplicación tópica. Para ello, se ha estudiado la modificación de la superficie de tejidos de punto elástico-compresivos de poliamida 66 con plasma corona y plasma de baja presión. En este trabajo experimental se han estudiado en paralelo tejidos preparados en laboratorio y tejidos industrialmente acabados, con vistas a la posible implementación del proceso propuesto en la cadena de producción industrial textil. Se ha observado que el tratamiento con plasma mejora la cinética de liberación de un fármaco anti-inflamatorio (ketoprofeno) y de un principio activo cosmético lipolítico (cafeína), incorporados en los tejidos de poliamida 66 tratados con plasma. Se ha desarrollado un estudio fundamental comparando tres moléculas diferentes de la misma familia química (cafeína, teobromina y pentoxifilina) con respecto a la incorporación al material textil y a la liberación del principio activo. La segunda parte se centra en los textiles utilizados como implantes para la reparación de tejidos blandos (por ejemplo, hernias abdominales). La superficie de la fibra de una malla de polipropileno approvada para su uso clínico ha sido modificada por el plasma corona y plasma de baja presión. Los tratamientos estudiados tuvieron un efecto importante sobre la carga de un antibiótico (ampicilina) mostrando un importante incremento del porcentaje de impregnación. La cinética de liberación in vitro del antibiótico de la malla de polipropileno a un medio líquido isotonico fue rápida. También se investigó la posibilidad de realizar un recubrimiento de la malla de polipropileno cargada con ampicilina mediante polimerización por plasma.
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Khalsi, Yosri. "Traitement de surface par jet d'azote supercritique : application aux textiles biomédicaux." Thesis, Mulhouse, 2020. http://www.theses.fr/2020MULH2591.

Повний текст джерела
Анотація:
Les implants cardio-vasculaires sont de plus en plus utilisés pour la réparation des pathologies vasculaires. Près de 300 000 remplacement de valve cardiaque sont réalisés par an à travers le monde. Le développement de ces implants est désormais primordial. L’objectif de ce travail de recherche est de développer des matériaux bio-textiles performants pouvant être utilisés comme implants médicaux par l’amélioration de leur bio intégration dans le milieu biologique. En effet, suite aux études in vivo menées au LPMT, des fibroblastes prolifèrent sur la surface des implants suite à une réaction inflammatoire. Ces dernières, lorsqu’elles se fixent en grandes quantités sont à l’origine du dysfonctionnement de la valve cardiaque en textile. L’état de l’art met en évidence la sensibilité de ces cellules à la topographie. De ce fait, le traitement consiste à modifier la topographie du tissu par la projection de micro particules en surface. Cette technique a été développée par le CRITT TJFU. Le travail de recherche porte sur : i) l’étude élémentaire de l’interaction du jet d’azote supercritique avec la surface d’un polymère, ii) l’étude de l’évolution des caractéristiques physiques : vitesse de particules, température du jet en fonction des conditions du tir et iii) l’étude de l’interaction du jet avec un textile. Ainsi, sous des conditions particulières de traitement, les textiles ont subi une modification de surface à l’échelle des fils. Cette modification est caractérisée par la présence des cratères d’impact et des effilochages. Cette topographie s’avère très intéressante pour limiter les fibroblastes dans le cas de tissu monofilament et pour limiter la réaction inflammatoire sur le tissu multifilament
Cardiovascular implants are increasingly used for the repair of vascular pathologies. Almost 300,000 heart valve replacements per year are performed around the world. Nowadays, the development of these implants become crucial. The objective of this research work is to develop high-performance bio-textile materials that can be used as medical implants by improving their bio-integration into the biological environment. In fact, following in vivo studies carried out at LPMT, fibroblasts proliferate on the surface of implants following an inflammatory reaction. When these cells proliferate in large quantities, they form a biological tissue that cause the dysfunction of the textile heart valve. Bibliographic studies demonstrate the sensitivity of these cells to topography. Therefore, the treatment consists in modifying the topography of the tissue by the projection of micro particles on the surface. This technique was developed by CRITT TJFU. This research work focuses on: i) the elementary study of the supercritical nitrogen jet interaction with the polymer surface, ii) the study of the physical characteristics evolution: particle speed, temperature of the jet as well as iii) the study of the jet interaction with the textile. Thus, under special processing conditions, the particles projected by the jet N2 SC generate craters on the surface of monofilament as well as multifilament fabric, allowing topographical modifications at the yarn scale. Our results showed a significant decrease in fibroblast proliferation with increasing textile roughness compared to untreated one. Moreover, the topography limits the inflammatory reaction on the multifilament fabrics
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Learn, Greg Daniel. "Towards Development of Affinity Polymer-Based Adhesion Barriers for Surgical Mesh Devices." Case Western Reserve University School of Graduate Studies / OhioLINK, 2021. http://rave.ohiolink.edu/etdc/view?acc_num=case1612871430445022.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Jindal, Aditya Jindal. "Electrospinning and Characterization of Polyisobutylene-based Thermoplastic Elastomeric Fiber Mats For Drug Release Application." University of Akron / OhioLINK, 2018. http://rave.ohiolink.edu/etdc/view?acc_num=akron1512483246405986.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Madaan, Puneet. "Texture analysis of PET scans as a tool for image quality assessment." Thesis, University of Iowa, 2012. https://ir.uiowa.edu/etd/2575.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Carrier-Vallières, Martin. "FDG-PET/MR Imaging for prediction of lung metastases in soft-tissue sarcomas of the extremities by texture analysis and wavelet image fusion." Thesis, McGill University, 2013. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=114330.

Повний текст джерела
Анотація:
Soft-tissue sarcoma (STS) of the extremities forms a relatively uncommon yet aggressive group of neoplasms with high metastatic risk of the disease. The vast majority of STS metastases occur in the lungs. Due to the general poor prognosis of patients diagnosed with STS lung metastases, there is a clinical need to identify relevant prognostic factors as early as possible in the course of staging and treatment management. Recent evidence suggests that positron emission tomography (PET) using fluorodeoxyglucose (FDG) and magnetic resonance (MR) imaging texture features have the potential to predict the outcome of tumours through the assessment of their microenvironment heterogeneity characteristics. The goal of this work is therefore to investigate FDG-PET and MR texture features as potential early predictors of lung metastasis risk in STS cancer of the extremities.In this study, a dataset of 35 patients with histologically proven STS of the extremities was retrospectively analyzed. All patients received pre-treatment FDG-PET and MR scans. MR imaging data comprised of T1-weighted, T2 fat-saturation (T2FS) and short tau inversion recovery (STIR) sequences. The median follow-up period was 29 months (range: 4 to 85 months). Thirteen patients from the dataset developed lung metastases. Six texture features from the gray-level co-occurrence matrix (GLCM) were extracted from the FDG-PET, MR and fused FDG-PET/MR scans. In addition, the maximum standard uptake value (SUVmax) of the tumours was included in the feature set. The fusion of FDG-PET and MR scans was carried out using the discrete wavelet transform (DWT) and a band-pass frequencies enhancement technique. Statistical analysis was performed using Spearman's correlation (rho), and multivariable modeling using logistic regression. The prediction performance of the different multivariable models was assessed using bootstrap resampling by calculating the area under the receiver-operating characteristics curve (AUC) and Matthews' correlation coefficient (MCC). The highest univariate prediction of lung metastases was attributed to the SUVmax metric (rho=0.6382, p<0.0001). Most texture features extracted from fused scans had higher Spearman's correlation with lung metastases than those extracted from separate scans. On separate scans, FDG-PET texture features were generally dominant over MR texture features. The highest multivariable prediction of lung metastases was found using fused scans and the following 4-parameters model: 0.94*SUVmax − 0.401*PET-T2FS/STIR--Variance − 6.7*PET-T1--Contrast − 165*PET-T1--Homogeneity + 140. This model reached rho=0.8255, p<0.0001 on the entire dataset and AUC=0.956±0.002, MCC=0.829±0.002 in bootstrap testing sets. Overall, this work indicates the strong potential of FDG-PET and MR texture features for the prediction of lung metastases in STS cancer of the extremities. Substantial prediction improvements were found using texture features from fused scans and multivariable modeling strategies compared to texture features extracted from separate scans and univariate analysis. Potentially, this could improve patient outcomes by allowing better personalization of treatments and the application of pre-emptive strategies to mitigate disease spread.
Les sarcomes des tissus mous (STM) provenant des extrémités forment un groupe relativement rare de néoplasme avec un risque métastatique élevé. La grande majorité des métastases provenant des STM ont lieu dans les poumons, et le pronostique résultant est généralement faible. En ce sens, il est important d'identifier autant de facteurs pronostiques pertinents que possible au moment du diagnostique et de la gestion du traitement. Certains travaux récents ont permis de démontrer que les caractéristiques texturales d'images provenant de la tomographie par émission de positrons (TEP) utilisant le fluorodéoxyglucose (FDG) et l'imagerie par résonance magnétique (IRM) ont le potentiel de prédire l'évolution tumorale grâce à l'évaluation des propriétés d'hétérogénéité biologique des tumeurs. Donc, le but de ce travail est d'évaluer le potentiel des caractéristiques texturales d'images FDG-TEP et IRM en tant que prédicteur du risque de métastases aux poumons pour le cancer des STM provenant des extrémités. Dans cette étude, une cohorte de 35 patients diagnostiqués avec des STM aux extrémités a été rétrospectivement analysée. Tous les patients ont reçu un scan FDG-TEP et un scan IRM avant leur traitement. Les séquences IRM qui ont été utilisés dans l'analyse sont: T1, T2 par saturation des gras (T2FS) et STIR. Les patients ont été suivis sur une période médiane de 29 mois (intervalle: 4 à 85 mois). Treize patients de la cohorte ont développé des métastases aux poumons. Six caractéristiques texturales d'images provenant de la matrice de co-occurrence des niveaux de gris (GLCM) ont été extraites des scans FDG-PET, IRM et FDG-PET/IRM fusionnés. De plus, la valeur maximale de consommation standard des tumeurs (SUVmax) a été incluse dans l'analyse. La fusion des scans a été effectuée grâce à la transformée d'ondelettes discrètes et grâce à une technique de renforcement des fréquences passe-bandes. L'analyse statistique a été effectuée en utilisant la corrélation de Spearman (rho), et l'analyse multivariable en utilisant la régression logistique. Les performances de prédiction des différents modèles multivariables ont été évaluées en calculant 2 métriques à partir de la technique de ré-échantillonnage « bootstrap »: L'aire sous la courbe de fonctionnement (AUC) et le coefficient de corrélation de Matthews (MCC). La plus haute prédiction univariée est attribuée à SUVmax (rho=0.6382, p<0.0001). La plupart des caractéristiques texturales extraites des scans fusionnés possèdent des coefficients de corrélation Spearman plus haut que celles extraites des scans séparés. Dans le cas des scans séparés, les caractéristiques texturales provenant de FDG-TEP sont généralement dominantes par rapport à celles provenant des scans IRM. La plus haute prédiction multivariable est provenue des scans fusionnés avec le model suivant: 0.94*SUVmax − 0.401*PET-T2FS/STIR--Variance − 6.7*PET-T1--Contrast − 165*PET-T1--Homogeneity + 140. Ce model a atteint des résultats de rho=0.8255, p<0.0001 sur l'ensemble des patients et AUC=0.956±0.002, MCC=0.829±0.002 sur les ensembles de tests « bootstrap ». De façon générale, cette étude indique le fort potentiel des caractéristiques texturales provenant des images FDG-TEP et IRM pour prédire les métastases aux poumons dans le cas des patients atteints des STM aux extrémités. Une amélioration substantielle des prédictions a pu être obtenue en utilisant les caractéristiques texturales des scans fusionnés et des stratégies d'analyse multivariable comparativement aux caractéristiques texturales des scans séparés et à l'analyse univariée. Potentiellement, cela pourrait mener à l'application de stratégies préventives pour atténuer la propagation du cancer des STM et à l'application de traitements mieux adaptés aux besoins des patients.
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Gossage, Kirk William. "Optical coherence tomography and texture analysis: Non-invasive monitoring of tissue responses to glaucoma implants." Diss., The University of Arizona, 2004. http://hdl.handle.net/10150/290030.

Повний текст джерела
Анотація:
Glaucoma is a set of diseases that cause optic nerve damage and visual field loss. The most important risk factor for the development of glaucoma is elevated intraocular pressure. One approach used to alleviate the pressure increase is to surgically install glaucoma implants. Optical coherence tomography (OCT) is an imaging modality capable of acquiring cross-sectional images of tissue using back-reflected light. The images have a resolution of 10-15μm, and are thus best suited for visualizing tissue layers and structures. OCT images of some tissue types have few or no features in this size range but display a characteristic repetitive structure due to speckle. The purpose of this research was to show that OCT is capable of visualizing tissue changes, such as those associated with a healing response to glaucoma implants. A new OCT handheld probe was developed to facilitate in vivo imaging in rabbit eye studies. The OCT probe consisted of a mechanical scaffold designed to allow the imaging fiber to be held in a fixed position with respect to the rabbit eye, with minimal anesthesia. A piezo-electric lateral scanning device allowed the imaging fiber to be scanned across the tissue so that 2-D images may be acquired. Preliminary analysis of OCT images of two types of glaucoma implants indicates that OCT can visualize the development of fibrous encapsulation of the implant, tissue erosion and tube position in the anterior chamber. The application of statistical and spectral texture analysis techniques was investigated for differentiating tissue types based on the structural and speckle content in OCT images. Excellent correct classification rates were obtained for images of tissues and tissue phantoms that had slight visual differences and reasonable rates were obtained with nearly identical-appearing images of tissues and tissue phantoms. This study shows that OCT is capable of visualizing structural changes, associated with the healing response, on the order of tens to hundreds of microns. OCT also shows promise in being able to detect sub-resolution tissue healing response changes, by quantifying the changes in the speckle seen in OCT images, using texture analysis.
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Burch, David. "Development of a Multiple Contact Haptic Display with Texture-Enhanced Graphics." VCU Scholars Compass, 2012. http://scholarscompass.vcu.edu/etd/2762.

Повний текст джерела
Анотація:
This dissertation presents work towards the development of a multiple finger, worn, dynamic display device, which utilizes a method of texture encoded information to haptically render graphical images for individuals who are blind or visually impaired. The device interacts directly with the computer screen, using the colors and patterns displayed by the image as a means to encode complex patterns of vibrotactile output, generating the texture feedback to render the image. In turn, the texture feedback was methodically designed to enable parallel processing of certain coarse information, speeding up the exploration of the diagram and improving user performance. The design choices were validated when individuals who are blind or visually impaired, using the multi-fingered display system, performed three-times better using textured image representations versus outline representations. Furthermore, in an open-ended object identification task, the display device saw on average two-times better performance accuracy than that previously observed for raised-line diagrams, the current standard for tactile diagrams.
Стилі APA, Harvard, Vancouver, ISO та ін.

Книги з теми "Biomedical textile"

1

library, Wiley online, ed. Plasma technology for hyperfunctional surfaces: Food, biomedical and textile applications. Weinheim: Wiley-VCH, 2010.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Min, Jie. Taiwan fang zhi chan ye ji shu yu ce: Yi yi liao fang zhi pin wei li = Technological forecasting of textiles in Taiwan : an example of medical textiles. Taibei Xian Tucheng Shi: Cai tuan fa ren fang zhi chan ye zong he yan jiu suo, 2009.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Pan, N., and Gang Sun. Functional textiles for improved performance, protection and health. Cambridge: Woodhead, 2011.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Fan, L. T. Medical textiles for implantation. [S.l.]: Springer, 2012.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

International ITV Conference on Biomaterials (3rd 1989 Stuttgart, Germany). Medical textiles for implantation. Berlin: Springer-Verlag, 1990.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Langenhove, Lieva van. Advances in Smart Medical Textiles: Treatments and Health Monitoring. Elsevier Science & Technology, 2015.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

1939-, Vigo Tyrone L., Turbak Albin F. 1929-, and American Chemical Society. Cellulose, Paper, and Textile Division., eds. High-tech fibrous materials: Composites, biomedical materials, protective clothing, and geotextiles. Washington, DC: American Chemical Society, 1991.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

(Editor), Tyrone L. Vigo, and Albin F. Turbak (Editor), eds. High-Tech Fibrous Materials: Composites, Biomedical Materials, Protective Clothing, and Geotextiles (Acs Symposium Series). An American Chemical Society Publication, 1998.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Medicl Textiles and biomaterials for healthcare (Woodhead Publishing in Textiles). CRC, 2005.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Pan, N., G. Sun, and Ning Pan. Functional Textiles for Improved Performance, Protection and Health. Elsevier Science & Technology, 2016.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Частини книг з теми "Biomedical textile"

1

Walzer, Thomas, Christian Thies, Klaus Meier, and Natividad Martínez Madrid. "Textile Sensor Platform (TSP) - Development of a Textile Real-Time Electrocardiogram." In Bioinformatics and Biomedical Engineering, 359–70. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-78759-6_33.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Walzer, Thomas, Christian Thies, Klaus Meier, and Natividad Martínez Madrid. "Correction to: Textile Sensor Platform (TSP) - Development of a Textile Real-Time Electrocardiogram." In Bioinformatics and Biomedical Engineering, C1. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-78759-6_42.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Shahriari Khalaji, Mina, and Ishaq Lugoloobi. "Biomedical Application of Cotton and Its Derivatives." In Textile Science and Clothing Technology, 393–416. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-9169-3_16.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Sodhani, Deepanshu, R. Varun Raj, Jaan Simon, Stefanie Reese, Ricardo Moreira, Valentine Gesché, Stefan Jockenhoevel, Petra Mela, Bertram Stier, and Scott E. Stapleton. "Artificial Textile Reinforced Tubular Aortic Heart Valves—Multi-scale Modelling and Experimental Validation." In Biomedical Technology, 185–215. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-59548-1_11.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Chiu, Wan-Ting, Tso-Fu Mark Chang, Hiromichi Kurosu, and Masato Sone. "Noble Metallic Pt Coating on Silk Textile by a Supercritical CO2-Promoted Metallization Technique towards Applications of Biocompatible Medical Wearable Devices." In Biomedical Engineering, 33–55. New York: Jenny Stanford Publishing, 2021. http://dx.doi.org/10.1201/9781003141945-3.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Kim, Yong, and Honggang Wang. "Textile-Based Body Sensor Networks and Biomedical Computing for Healthcare Applications." In Handbook of Smart Textiles, 1–16. Singapore: Springer Singapore, 2014. http://dx.doi.org/10.1007/978-981-4451-68-0_17-1.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Kim, Yong, and Honggang Wang. "Textile-Based Body Sensor Networks and Biomedical Computing for Healthcare Applications." In Handbook of Smart Textiles, 985–1004. Singapore: Springer Singapore, 2015. http://dx.doi.org/10.1007/978-981-4451-45-1_17.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Duta, L., A. C. Popescu, G. Dorcioman, I. N. Mihailescu, G. E. Stan, I. Zgura, I. Enculescu, and I. Dumitrescu. "ZnO Thin Films Deposited on Textile Material Substrates for Biomedical Applications." In NATO Science for Peace and Security Series A: Chemistry and Biology, 207–10. Dordrecht: Springer Netherlands, 2011. http://dx.doi.org/10.1007/978-94-007-2488-4_20.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Bide, Martin, Matthew Phaneuf, Frank LoGerfo, William Quist, and Michael Szycher. "Arterial Grafts as Biomedical Textiles." In ACS Symposium Series, 125–54. Washington, DC: American Chemical Society, 2001. http://dx.doi.org/10.1021/bk-2001-0792.ch009.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Petrou, Maria. "Texture in Biomedical Images." In Biomedical Image Processing, 157–76. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-15816-2_6.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Тези доповідей конференцій з теми "Biomedical textile"

1

Selm, Barbel, and Martin Camenzind. "Flexible textile light diffuser for photodynamic therapy." In Biomedical Optics 2005, edited by Israel Gannot. SPIE, 2005. http://dx.doi.org/10.1117/12.610311.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Takamatsu, Seiichi, and Toshihiro Itoh. "Mechanical characterization of biomedical electrode on knit textile." In 2016 Symposium on Design, Test, Integration and Packaging of MEMS/MOEMS (DTIP). IEEE, 2016. http://dx.doi.org/10.1109/dtip.2016.7514836.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Balaji, Pavithra, and R. Narmadha. "Wearable E-shaped Textile Antenna for Biomedical Telemetry." In 2021 International Conference on Advances in Electrical, Computing, Communication and Sustainable Technologies (ICAECT). IEEE, 2021. http://dx.doi.org/10.1109/icaect49130.2021.9392465.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Hong, Youngtaek, Jinpil Tak, and Jaehoon Choi. "All textile antennas for self-monitoring biomedical applications (invited)." In 2015 IEEE MTT-S 2015 International Microwave Workshop Series on RF and Wireless Technologies for Biomedical and Healthcare Applications (IMWS-BIO). IEEE, 2015. http://dx.doi.org/10.1109/imws-bio.2015.7303754.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

"TEXTILE CAPACITIVE ELECTROCARDIOGRAPHY FOR AN AUTOMOTIVE ENVIRONMENT." In International Conference on Biomedical Electronics and Devices. SciTePress - Science and and Technology Publications, 2011. http://dx.doi.org/10.5220/0003194504220425.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Monti, Giuseppina, Emanuele Paiano, Federica Raheli, and Luciano Tarricone. "Bracelet Textile Electrodes for Bioimpedance Measurements." In 2022 IEEE MTT-S International Microwave Biomedical Conference (IMBioC). IEEE, 2022. http://dx.doi.org/10.1109/imbioc52515.2022.9790244.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Soh, P. J., G. A. E. Vandenbosch, F. H. Wee, A. van den Bosch, M. Martinez-Vazquez, and D. M. M. P. Schreurs. "Specific Absorption Rate (SAR) evaluation of biomedical telemetry textile antennas." In 2013 IEEE/MTT-S International Microwave Symposium - MTT 2013. IEEE, 2013. http://dx.doi.org/10.1109/mwsym.2013.6697587.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Cherif, N. H., N. Mezghani, N. Gaudreault, Y. Ouakrim, I. Mouzoune, and P. Boulay. "Physiological Data Validation of the Hexoskin Smart Textile." In 11th International Conference on Biomedical Electronics and Devices. SCITEPRESS - Science and Technology Publications, 2018. http://dx.doi.org/10.5220/0006588001500156.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Soh, P. J., G. A. E. Vandenbosch, and D. M. M. P. Schreurs. "On-body characterization of textile antennas for biomedical health monitoring systems." In 2013 IEEE Topical Conference on Biomedical Wireless Technologies, Networks, and Sensing Systems (BioWireleSS). IEEE, 2013. http://dx.doi.org/10.1109/biowireless.2013.6613661.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Daeli, Yoshi Magdalena, Levy Olivia Nur, and Radial Anwar. "Performance of Sewed Textile Antenna for Biomedical Application at ISM Band." In 2021 7th International Conference on Space Science and Communication (IconSpace). IEEE, 2021. http://dx.doi.org/10.1109/iconspace53224.2021.9768734.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії