Добірка наукової літератури з теми "BIOMEDICAL INSTRUMENT"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "BIOMEDICAL INSTRUMENT".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Статті в журналах з теми "BIOMEDICAL INSTRUMENT"
Broer, Klaas H. "Instrument evaluation in biomedical sciences." TrAC Trends in Analytical Chemistry 5, no. 4 (April 1986): xxii. http://dx.doi.org/10.1016/0165-9936(86)80052-8.
Повний текст джерелаLi, Zheng Jeremy. "Mathematical Modeling and Computational Simulation of a New Biomedical Instrument Design." ISRN Biomathematics 2012 (December 10, 2012): 1–5. http://dx.doi.org/10.5402/2012/256741.
Повний текст джерелаHeibeyn, Jan, Nils König, Nadine Domnik, Matthias Schweizer, Max Kinzius, Armin Janß, and Klaus Radermacher. "Design and Evaluation of a Novel Instrument Gripper for Handling of Surgical Instruments." Current Directions in Biomedical Engineering 7, no. 1 (August 1, 2021): 1–5. http://dx.doi.org/10.1515/cdbme-2021-1001.
Повний текст джерелаWagner, Lars, Lukas Bernhard, Jonas Fuchtmann, Mert Asim Karaoglu, Alexander Ladikos, Hubertus Feußner, and Dirk Wilhelm. "Integrating 3D cameras into sterile surgical environments: A comparison of different protective materials regarding scan accuracy." Current Directions in Biomedical Engineering 8, no. 1 (July 1, 2022): 25–29. http://dx.doi.org/10.1515/cdbme-2022-0007.
Повний текст джерелаMuralidhar, Deutschland, Shiva Sirasala, Venkata Jammalamadaka, Moritz Spiller, Thomas Sühn, Alfredo Illanes, Axel Boese, and Michael Friebe. "Collaborative Robot as Scrub Nurse." Current Directions in Biomedical Engineering 7, no. 1 (August 1, 2021): 162–65. http://dx.doi.org/10.1515/cdbme-2021-1035.
Повний текст джерелаBachmann, Ada L., Giuliano A. Giacoppo, and Peter P. Pott. "Work space analysis of a new instrument for Natural Orifice Transluminal Endoscopic Surgery (NOTES)." Current Directions in Biomedical Engineering 8, no. 2 (August 1, 2022): 301–4. http://dx.doi.org/10.1515/cdbme-2022-1077.
Повний текст джерелаLebedev, Andrei D., Maria A. Ivanova, Aleksey V. Lomakin, and Valentine A. Noskin. "Heterodyne quasi-elastic light-scattering instrument for biomedical diagnostics." Applied Optics 36, no. 30 (October 20, 1997): 7518. http://dx.doi.org/10.1364/ao.36.007518.
Повний текст джерелаVujović, Stefan, Andjela Draganić, Maja Lakičević Žarić, Irena Orović, Miloš Daković, Marko Beko, and Srdjan Stanković. "Sparse Analyzer Tool for Biomedical Signals." Sensors 20, no. 9 (May 2, 2020): 2602. http://dx.doi.org/10.3390/s20092602.
Повний текст джерелаZhuang, Ziyun, and Ho Pui Ho. "Application of digital micromirror devices (DMD) in biomedical instruments." Journal of Innovative Optical Health Sciences 13, no. 06 (August 5, 2020): 2030011. http://dx.doi.org/10.1142/s1793545820300116.
Повний текст джерелаShadgan, Babak, W. Darlene Reid, Reza Gharakhanlou, Lynn Stpublisher-ids, and Andrew John Macnab. "Wireless near-infrared spectroscopy of skeletal muscle oxygenation and hemodynamics during exercise and ischemia." Spectroscopy 23, no. 5-6 (2009): 233–41. http://dx.doi.org/10.1155/2009/719604.
Повний текст джерелаДисертації з теми "BIOMEDICAL INSTRUMENT"
Ahmed, Mohamed E. "PORTABLE MEDICAL INSTRUMENT FOR OBJECTIVELY DIAGNOSING HUMAN TINNITUS." OpenSIUC, 2010. https://opensiuc.lib.siu.edu/theses/165.
Повний текст джерелаMares, David M. "Developmental laboratories for biomedical instrumentation and digital signal processing with virtual instrument technology and diverse software techniques." Laramie, Wyo. : University of Wyoming, 2006. http://proquest.umi.com/pqdweb?did=1292461511&sid=1&Fmt=2&clientId=18949&RQT=309&VName=PQD.
Повний текст джерелаLomas, Martin. "The development of high performance scanning probe microscopes for biomedical applications." Thesis, University of Nottingham, 1999. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.298050.
Повний текст джерелаLarsson, Marcus. "Influence of optical properties on Laser Doppler Flowmetry /." Linköping : Univ, 2004. http://www.bibl.liu.se/liupubl/disp/disp2004/tek914s.pdf.
Повний текст джерелаTweedie, Richard John. "Conception, design and development of the Impulse Response Impedance Spectroscopy instrument." Thesis, University of Dundee, 1995. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.242447.
Повний текст джерелаYao, Hsin-Yun 1974. "Touch magnifying instrument applied to minimally invasive surgery." Thesis, McGill University, 2004. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=81578.
Повний текст джерелаWilliams, Robin Bede. "An instrument for the measurement of body/support interface stresses : with particular application to below-knee prostheses." Thesis, King's College London (University of London), 1993. https://kclpure.kcl.ac.uk/portal/en/theses/an-instrument-for-the-measurement-of-bodysupport-interface-stresses--with-particular-application-to-belowknee-prostheses(75e24619-efdb-4d71-bd55-2080cf733aea).html.
Повний текст джерелаSmith, Heather D. "Designing an Instrument Based nn Native Fluorescence to Determine Soil Microbial Content at a Mars Analog Site." DigitalCommons@USU, 2009. https://digitalcommons.usu.edu/etd/614.
Повний текст джерелаSaez, Miguel Angel. "Micro-forging technique for rapid, low-cost manufacture of lens array molds and its application in a biomedical instrument." Thesis, Massachusetts Institute of Technology, 2007. http://hdl.handle.net/1721.1/40478.
Повний текст джерелаIncludes bibliographical references (leaves 46-48).
Interest in micro-optical components for applications ranging from telecommunications to the life sciences has driven the need for accessible, low-cost fabrication techniques. Most micro-lens fabrication processes are unsuitable for applications requiring 100% fill factor, apertures around 1 mm, and scalability to large areas with millions of lenses. A flexible, low-cost mold fabrication technique that utilizes a combination of milling and micro-forging is reported. The technique involves first performing a rough cut with a ball-end mill. Final shape and sag height are then achieved by pressing a sphere of equal diameter into the milled divot. Using this process, molds were fabricated for rectangular arrays of 1-10,000 lenses with apertures of 0.25-1.6 mm, sag heights of 3-130 [mu]m, inter-lens spacings of 0.25-2 mm, and fill factors of 0-100%. Mold profiles have roughness and figure error of 68 nm and 354 nm, respectively, for 100% fill factor, 1 mm aperture square lenses. The required forging force was modeled as a modified open-die forging process and experimentally verified to increase nearly linearly with surface area.
(cont.) The optical performance of lens arrays injection molded from micro-forged molds was characterized by imaging the point spread function, and was found to be in the range of theoretical values. Limitations include milling machine range and accuracy. Application to biological fluorescence detection in a biomedical device is also reported.
by Miguel Angel Saez.
S.B.
Bonilla, Guerrero Jader Alfredo. "Jämförelse av natrium-resultat mellan patientnära instrument (GEM Premier 5000) och central laboratoriet instrument (Advia Chemistry XPT) på Universitetssjukhus Örebro. Finns det signifikant skillnad?" Thesis, Örebro universitet, Institutionen för hälsovetenskaper, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:oru:diva-92908.
Повний текст джерелаBackground: Sodium (Na +) is an important electrolyte in the body, and is analyzed, among other things, to be able to assess the patient's condition in the intensive care unit (IVA) and to determine if emergency treatment is necessary. The analysis of Na + on IVA is done with the help of GEM Premier 5000, which is a patient-centered instrument and uses a direct method for analysis of whole blood. For patient sample comparison, the sample is sent to the central laboratory where the plasma is analyzed by indirect method on Advia Chemistry XPT. Deviation between the methods must not exceed 3%, otherwise the cause must be investigated. Aim: The aim of the study is to investigate whether there is a systematic difference in Sodium results between patient-related instruments, Gem Premier 5000 and the central laboratory's instrument, Advia Chemistry XPT in different patient groups. Method: Measurement was performed on blood samples taken in Lithium Heparin tubes of 60 participants, of which 30 were healthy blood donors (group 1) and the remaining 30 consisted of inpatients (IVA) and kidney dialysis patients, (group 2). The samples were analyzed for sodium on GEM Premier 5000 and shortly thereafter for sodium, albumin, total protein, C-reactive protein (CRP), glucose and triglycerides on Advia Chemistry XPT. Results: Advia Chemistry XPT gave a higher concentration of Na + (139 mmol / L) than GEM Premier 5000 (138 mmol / L) for all participants. The percentage difference of Na between the methods differed for 3 participants in group 1 while it differed for half of the participants in group 2. Conclusion: Na + results on Advia Chemistry XPT were higher than on GEM Premier 5000 for all participants. The difference was greater in patients with a high degree of morbidity. This suggests that the current acceptable deviation of 3% should be increased to 5%, in order to reduce the number of deviating values to almost the same for both groups. This must be taken into account and implemented in the business.
Книги з теми "BIOMEDICAL INSTRUMENT"
1932-, Webster John G., ed. Bioinstrumentation. Hoboken, N.J: John Wiley & Sons, 2004.
Знайти повний текст джерелаChow, Chan Chung, ed. Analytical method validation and instrument performance verification. Hoboken, N.J: Wiley-Interscience, 2004.
Знайти повний текст джерелаTogawa, Tatsuo. Biomedical sensors and instruments. 2nd ed. Boca Raton: CRC Press, 2011.
Знайти повний текст джерелаToshiyo, Tamura, and Öberg P. Åke, eds. Biomedical transducers and instruments. Boca Raton: CRC Press, 1997.
Знайти повний текст джерелаWelkowitz, Walter. Biomedical instruments: Theory and design. 2nd ed. San Diego: Academic Press, 1992.
Знайти повний текст джерела1918-, Deutsch Sid, and Akay Metin, eds. Biomedical instruments: Theory and design. 2nd ed. San Diego: Academic Press, 1992.
Знайти повний текст джерелаC, Dorf Richard, ed. Sensors, nanoscience, biomedical engineering and instruments. Boca Raton: CRC/Taylor & Francis, 2005.
Знайти повний текст джерела1975-, Singh Rahul, and Lee Hua, eds. Biomedical devices and technology. Hoboken, N.J: Wiley, 2012.
Знайти повний текст джерелаUtah. Business Expansion & Retention., ed. Utah biomedical industry directory. Salt Lake City, UT (324 S. State, Salt Lake City 84114-7355): State of Utah, Division of Business & Economic Development, Business Expansion & Retention, 1993.
Знайти повний текст джерелаM, Verga Scheggi A., ed. Biomedical optical instrumentation and laser-assisted biotechnology. Boston: Kluwer Academic, 1996.
Знайти повний текст джерелаЧастини книг з теми "BIOMEDICAL INSTRUMENT"
Kügler, David, Martin Andrade Jastrzebski, and Anirban Mukhopadhyay. "Instrument Pose Estimation Using Registration for Otobasis Surgery." In Biomedical Image Registration, 105–14. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-92258-4_10.
Повний текст джерелаOthman, Wan Zulkarnain, Mohamad Redhwan Abd Aziz, Nor Hana Mamat, and Ahmad Fikri Ramli. "Development of Cutting Force Measurement Instrument for Turning Tool Post Using Arduino UNO." In Proceedings of the 1st International Conference on Electronics, Biomedical Engineering, and Health Informatics, 239–49. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-33-6926-9_21.
Повний текст джерелаDennis, Cindi L. "Magnetic Characterization: Instruments and Methods." In Biomedical Applications of Magnetic Particles, 83–120. First edition. | Boca Raton : CRC Press, 2021.: CRC Press, 2020. http://dx.doi.org/10.1201/9781315117058-5.
Повний текст джерелаDubra, Alfredo, and Zachary Harvey. "Registration of 2D Images from Fast Scanning Ophthalmic Instruments." In Biomedical Image Registration, 60–71. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-14366-3_6.
Повний текст джерелаFriedman, Charles P., Jeremy C. Wyatt, and Joan S. Ash. "Designing Measurement Processes and Instruments." In Evaluation Methods in Biomedical and Health Informatics, 177–203. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-86453-8_9.
Повний текст джерелаOlivier Fernandez, Jean Raphaël, and César Briso Rodríguez. "Gbps Data Transmission in Biomedical and Communications Instruments." In 4G Wireless Communication Networks, 427–40. New York: River Publishers, 2022. http://dx.doi.org/10.1201/9781003357247-20.
Повний текст джерелаNarang, Mahak, Ankit Gambhir, and Mandeep Singh. "Harnessing Energy for Implantable Biomedical Instruments with IoT Networks." In Energy Harvesting, 105–16. Boca Raton: Chapman and Hall/CRC, 2022. http://dx.doi.org/10.1201/9781003218760-5.
Повний текст джерелаGupta, Meena, and Dinesh Bhatia. "Retrain the Brain Through Noninvasive Medically Acclaimed Instruments." In Application of Biomedical Engineering in Neuroscience, 51–60. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-13-7142-4_3.
Повний текст джерелаDewanjee, Mrinal K. "Principles of Measurement of Radioiodinated Tracers and Related Instruments." In Radioiodination: Theory, Practice, and Biomedical Applications, 19–25. Boston, MA: Springer US, 1992. http://dx.doi.org/10.1007/978-1-4615-3508-9_3.
Повний текст джерелаSantos, João P., João P. Ferreira, Manuel Crisóstomo, and A. Paulo Coimbra. "Instrumented Shoes for 3D GRF Analysis and Characterization of Human Gait." In Bioinformatics and Biomedical Engineering, 51–62. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-17935-9_6.
Повний текст джерелаТези доповідей конференцій з теми "BIOMEDICAL INSTRUMENT"
Burns, S. "A biomedical instrument development center." In IEE Seminar on Appropriate Medical Technology for Developing Countries. IEE, 2002. http://dx.doi.org/10.1049/ic:20020046.
Повний текст джерелаLiu, Ning, Yang Yu, Angelo Sassaroli, and Sergio Fantini. "Spectral Imaging Instrument for Optical Mammography." In Biomedical Optics. Washington, D.C.: OSA, 2008. http://dx.doi.org/10.1364/biomed.2008.bmd42.
Повний текст джерелаMirbagheri, Alireza, Mobin Yahyazadehfar, and Farzam Farahmand. "Conceptual Design of a Novel Laparoscopic Instrument for Manipulation of Large Internal Organs." In ASME 2010 5th Frontiers in Biomedical Devices Conference. American Society of Mechanical Engineers, 2010. http://dx.doi.org/10.1115/biomed2010-32012.
Повний текст джерелаDubnack, S., R. Rützler, M. Wiechmann, J. Hinz, and P. Amend. "New instrument solutions for Photodynamic Therapy." In Biomedical Topical Meeting. Washington, D.C.: OSA, 1999. http://dx.doi.org/10.1364/bio.1999.ctub5.
Повний текст джерелаSato, Rika, Norihiko Saga, Naoki Saito, and Seiji Chonan. "Development of a Rehabilitation Instrument for Prevent Contracture of Ankle." In ASME 2007 2nd Frontiers in Biomedical Devices Conference. ASMEDC, 2007. http://dx.doi.org/10.1115/biomed2007-38061.
Повний текст джерелаEmir, Uzay, Ahmet Ademoglu, Cengizhan Ozturk, Kubilay Aydin, Tamer Demiralp, Adnan Kurt, Alp Dincer, and Ata Akin. "Design of an MR-compatible fNIRS instrument." In Biomedical Optics 2005, edited by Kenneth E. Bartels, Lawrence S. Bass, Werner T. W. de Riese, Kenton W. Gregory, Henry Hirschberg, Abraham Katzir, Nikiforos Kollias, et al. SPIE, 2005. http://dx.doi.org/10.1117/12.590710.
Повний текст джерелаTahani, Nada, Shayaan Hussain, Kunta Nithya Sri, and Vijaya Gunturu. "Enhancement of a Biomedical Instrument using Machine Learning." In 2023 International Conference on Sustainable Computing and Smart Systems (ICSCSS). IEEE, 2023. http://dx.doi.org/10.1109/icscss57650.2023.10169625.
Повний текст джерелаNieman, Linda T., Alexey Myakov, Konstantin Sokolov, and Rebecca Richards-Kortum. "Polarized reflectance spectroscopy instrument for the clinical setting." In Biomedical Topical Meeting. Washington, D.C.: OSA, 2002. http://dx.doi.org/10.1364/bio.2002.wb1.
Повний текст джерелаJelÍnková, Helena, Michal Němec, Jan Šulc, Pavel Černý, Mitsunobu Miyagi, Yi-Wei Shi, and Yuji Matsuura. "Delivery system for laser medical instrument." In European Conference on Biomedical Optics. Washington, D.C.: OSA, 2003. http://dx.doi.org/10.1364/ecbo.2003.5143_300.
Повний текст джерелаStockford, Ian M., Stephen P. Morgan, John A. Crowe, and John G. Walker. "A polarized light imaging instrument for characterizing skin lesions." In Biomedical Optics 2004, edited by Robert R. Alfano and Alvin Katz. SPIE, 2004. http://dx.doi.org/10.1117/12.529030.
Повний текст джерела